Biointerface Research in Applied Chemistry
Platinum Open Access Journal (ISSN: 2069-5837)
Article
Volume 11, Issue 4, 2021, 11272 - 11283
https://doi.org/10.33263/BRIAC114.1127211283

Computational Exploration of Dibenzo [a,l] Pyrene
Interaction to DNA and its Bases: Possible Implications to
Human Health

Khan Mohammad Kalim Ahmad *® | Akhtar Salman 1@, Al-Khodairy Salman F 2 ® | Al-Marshad Feras
M3 ® | Alshahrani Abdulrahman M. 3 @ | Arif Jamal M & @

1 Department of Bioengineering, Integral University, Lucknow-226026, Uttar Pradesh, India; mkakhan@iul.ac.in
(K.M.K.A)); sakhtar@iul.ac.in (A.S.);
2 Imam Muhammad lbn Saud Islamic University, Riyadh 13318, KSA, sfalkhodiry@sm.imamu.edu.sa (A.K.S.F.);
3 Department of Internal Medicine, College of Medicine, Shagra University, Shagra, 11961, KSA; falmarshad@su.edu.sa
(A.M.F.M.); alshahrani.md@su.edu.sa (A.A.M.);
4 Department of Biochemistry, College of Medicine, Shagra University, Shagra, 11961, KSA; jmarif@su.edu.sa (A.J.M.);
*  Correspondence: jmarif@su.edu.sa;
Scopus Author ID 6603906517
Received: 6.11.2020; Revised: 2.12.2020; Accepted: 5.12.2020; Published: 10.12.2020

Abstract: Dibenzo[a,l]pyrene (DBP), an environmental pollutant, undergoes a series of enzymatic
reactions yielding electrophilic diastereomeric diol-epoxides (DEs) that subsequently bind to DNA
covalently and hampers the healing mechanism of cascaded biological pathways resulting in onset of
different diseases. In the proposed work, we meticulously investigated and elucidated the mechanistic
details of DNA adduct formation and nucleotide excision repair (NER) pathway proteins interaction
with all possible diastereomers of dibenzo[a,l]pyrene-diol-epoxides (DBPDES) namely- ()-anti-, (£)-
syn-, trans- and cis- forms of (-)-anti- and (+)-syn- DBPDEs through a computational simulation study.
Our findings revealed that (+)-anti- and (-)-syn-DBPDEs interact more strongly with dT20 while (+)-
syn-DBPDE exhibits strong interaction with dG6. Moreover, cis- and trans-conformations of (-)-anti-
and (+)-syn-DBPDEs depicted strong binding towards N°®-dA. Furthermore, aforesaid metabolic
intermediates exhibited weak interactions with NER proteins. This imbalance of interaction tendencies
relatively favors the DNA-adduct formation than the NER pathway. Based on our computational data,
a robust understanding of the underlying molecular mechanism(s) of DBP-DNA interactions may
subsequently lead to the design of novel potential compounds to exert inhibition and block its DNA
binding ability and eventually facilitate cancer prevention.

Keywords: dibenzo[a,l]pyrene; environmental pollutant; molecular docking; DNA adduct; NER-
proteins.
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1. Introduction

Dibenzo[a,l]pyrene (DBP), a well-studied environmental polycyclic aromatic
hydrocarbon (PAH) and smoke carcinogen, is mainly produced by incomplete combustion of
woods, charcoals, and fossil fuels [1-4]. Biotransformation of DBP into its carcinogenic diol-
epoxides (DEs) is facilitated by a series of catalytic reactions [5-8]. PAH diol-epoxides can
form adducts with DNA, RNA, and proteins, but their mutagenic and tumorigenic effects are
thought to be related to the covalent interaction with DNA [9,10]. The majority of diol-epoxide-
derived DNA adducts have been found to result from the reaction of the benzylic oxiranyl
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carbon of the molecule with the exocyclic amino groups of the DNA bases deoxyguanosine
(dG) and deoxyadenosine (dA) [9-13]. Research looking at preferences information of DNA
adducts shows that bay-region diol-epoxides prefer forming adducts at the exocyclic N2-amino
group of dG whereas the sterically hindered fjord-region diol-epoxides favour reaction with
the N®-amino group of dA [14-17], For instance, the bay-region diol-epoxide (+)-anti-
benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE) has >90 % preference of forming DNA adducts
with dG [6,7] whereas fjord region diol-epoxide (-)-anti-dibenzo[a,l]pyrene-11,12-diol-13,14-
epoxide (DBPDE) shows a corresponding 75% preference for dA adducts [14-17].The
difference in DNA binding preference between bay- and fjord-region diol-epoxides is probably
due to the structural dissimilarities [18,19].

To handle different DNA adducts or damage that may arise in a cell, versatile, and
sophisticated cellular machinery comprised of several different pathways has been developed
[20-22]. The two main mechanisms for excision of DNA damage are base excision repair
(BER) and nucleotide excision repair (NER). The most apparent function of NER in humans
is to remove those photoproducts from DNA caused by UV-irradiation. It is especially apparent
in individuals with NER defects, e.g., the disorder Xeroderma pigmentosum (XP), where
patients show a high incidence of UV-related skin cancers [23]. However, NER has also been
shown to be an effective DNA repair strategy for eliminating a vast number of bulky PAH diol-
epoxide DNA adducts [24-26]. NER in human cells essentially involves the steps-recognition
of DNA damage, incision, and subsequent excision of the DNA strand containing the lesion
and, finally, DNA synthesis and ligation [27-30]. The most critical step in NER is the
recognition of the DNA lesion, a mechanism principally different in global genome repair
(GGR) and transcription-coupled repair (TCR). While the DNA damage binding protein
(DDB) and Xeroderma pigmentosum group C (XPC)-human homolog of RAD23B (hHR23B)
are responsible for the rate-limiting step in GGR, the arrest of RNA polymerase 11 upon
encountering a DNA adduct during translation initiates the repair in TCR [30,31]. Although
the initiation of the two different pathways is different, they both lead to the recruitment of the
entire repair protein apparatus, in the latter case, with the Cockayne syndrome proteins CSA
and CSB. Subsequently, the lesions are opened by the concerted action of Xeroderma
pigmentosum group A (XPA), replication protein A (RPA), and the helicase subunits of the
transcription factor 1IH (TFIIH) complex. During incision of the damaged DNA, the
Xeroderma pigmentosum group F (XPF) intricate cuts at the single-strand to double-strand
transition on the 5' side of the damage, and Xeroderma pigmentosum group G (XPG) cuts at
the 3' side of the open complex. Finally, DNA excision and de novo synthesis are accomplished
by mammalian DNA replication factors such as the heterotrimeric replication protein A (RPA),
proliferating cell nuclear antigen (PCNA) and DNA polymerase 6 (DPOL 9) and € (DPOL ¢).
The reaction is completed by ligation of the newly synthesized DNA [31,32].

In this study, we have comprehensively explored and explicated the mechanism of
DNA adduct formation by different diol-epoxides enantiomers of DBP viz., (£)-anti-
DBPDE, (z)-syn-DBPDE, trans- and cis- forms of (-)-anti-DBPDE, and (+)-syn-DBPDE
(Figure 1a-h), followed by molecular interaction studies of metabolites above with NER-
pathway proteins viz., DDB, XPC, hHR23B, TFIIH, XPA, RPA, XPF, DPOL §, DPOL ¢ and
PCNA through the integrated approach of computational biology and bioinformatics.
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Figure 1. Chemical structures of (a) (-)-anti-DBPDE; (b) (+)-anti-DBPDE; (c) trans-derivative of (-)-anti-
DBPDE; (d) cis-derivative of (-)-anti-DBPDE; (e) (-)-syn-DBPDE; (f) (+)-syn-DBPDE; (g) trans-derivative of
(+)-syn-DBPDE; (h) cis-derivative of (+)-syn-DBPDE.

2. Materials and Methods

2.1. Retrieval and optimization of targets 3D structures.

The 3D structures of DNA (PDB: 2LZK), DDB (3El4), XPC (2GGM), hHR23B
(1PVE), TFIIH (1PEJ), XPA (1D4U), RPA (1JMC), XPF (2A1J), DPOL & (3E0J), DPOL &
(3MR2) and PCNA (1U7B) were retrieved from Protein Data Bank (http://www.rcsb.org). All
targets were prepared for molecular interaction so that undesired atoms, ions, and molecules
were removed. The CHARMmM force field was assigned to optimize target biomolecules,
followed by energy minimization using steepest descent and conjugate gradient algorithms
[33].

2.2. Retrieval and optimization of ligands 3D structures.

Chemical structures of all diastereomeric-DBPDEs were drawn using ChemDraw tools
(www.cambridgesoft.com). The Simplified Molecular-Input Line-Entry System (SMILES)
notations were (x)-anti-, (x)-syn-, trans- and cis- forms of (-)-anti- and (+)-syn- DBPDE were
taken for each of the ligands and by using publically available tool CORINA
(http://www.molecular-networks.com/products/corina) generating 3D structure structural

suitable for molecular interaction tool viz., AutoDock Tool 4.0 (ADT) [34]. CHARMmM force
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field was applied, and subsequent energy minimization was accomplished using the steepest
descent algorithm [33].

2.3. Active site identification.

We identified the preferable ligand binding site of different proteins of NER pathways
by Q-Site finder (http://www.modelling.leeds.ac.uk/gsitefinder). It takes 3-D co-ordinates of
biomolecules as reference points. It predicts plausible binding cavities of residues with graphic
representations as output [35-37].

2.4. Computational simulation.

Computational interaction of DBPDEs and biomacromolecules was carried out using
ADT to find the preferred binding orientation. A grid-box within a grid parameter file (gpf)
generated was large enough to cover the binding site and accommodate ligands to move freely
[34,38]. The number of grid points in X, y, and z-axes was 60x60x60 A. The distance between
the two connecting grid points was 0.375 A. The center of the ligand in the X-ray crystal
structure was used as the center of the grid-box. Lamarckian Genetic Algorithm (LGA), which
has enhanced performance relative to simulated annealing and GA alone were used for
receptor-fixed ligand-flexible docking calculations [39]. Ten search attempts were performed
for ligands. Before the LGA run, the maximum number of energy evaluations was 2500000.
The maximum number of generations of the LGA run before termination was 27000. Other
docking parameters were set to the software’s default values. During the docking process, a
maximum of 10 different conformations was considered. The conformer with the lowest
binding free energy of binding (AG) and inhibition constant (Ki)) was used for further analysis
[40-44].

2.5. Visualization of docked complexes.

The docked complex of biomolecule and ligands was visualized by Ligplot, Ghost
script viewer (GSV), PyMol (http://www.pymol.org), and Discovery studio visualizer [45].
The Ligplot generates a postscript (ps) file, subsequently converted into the desired image by
GSV.

2.6. Validation of docking methodology.

Ligand present within the PDB structure of DNA (PDB: 2LZK) was extracted and re-
docked using the same parameters used for docking DBP's diol-epoxides to validate the
docking program. The top-ranking conformational clusters from this dock were evaluated in
terms of root mean square deviation between docked position and experimentally determined
position for the ligand. The low RMS (1.20 A) between the experimental and docked co-
ordinates of ligand indicated the same binding orientation that favored the validation of the
adopted docking method [8,36,37,46,47].

3. Results and Discussion

3.1. Diol-epoxides-DNA adduct formation by DBP.

Our docking results revealed that trans- form of (-)-anti-DBPDE showed strong binding
affinity with DNA (BE: -9.83 kcal/mol, Ki: 0.062 uM) followed by trans- form of (+)-syn-
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DBPDE (-9.78 kcal/mol, 0.069 uM), cis- form of (-)-anti-DBPDE (-8.88 kcal/mol, 0.308 uM),
cis- form of (+)-syn-DBPDE ( -8.62 kcal/mol, 0.479 uM), (-)-anti-DBPDE ( -8.49 kcal/mol,
0.599 uM), (+)-syn-DBPDE ( -8.48 kcal/mol, 0.612 uM), (+)-anti-DBPDE (-7.50 kcal/mol,
3.21 uM) and (-)-syn-DBPDE (-7.20 kcal/mol, 5.24 uM).

(e) () (@) (h)
Figure 2. Molecular interactions of DNA with (a) (-)-anti-DPBDE; (b) (+)-anti-DPBDE; (c) (-)-syn-DPBDE;
(d) (+)-syn-DPBDE; (e) trans-derivative of (-)-anti-DBPDE; (f) cis-derivative of (-)-anti-DBPDE; (g) trans-
derivative of (+)-syn-DBPDE; (h) cis-derivative of (+)-syn-DBPDE.

Table 1. Molecular docking studies of diastereomers of DBPDEs with DNA.

Compounds DNA
BE# (kcal/mol) Ki* (UM)

(-)-anti-DBPDE -8.49 0.599

(-)-trans-anti- -9.83 0.062
DBPDE

(-)-cis-anti- -8.88 0.308
DBPDE

(+)-anti-DBPDE -7.50 321

(-)-syn-DBPDE -7.20 5.24

(+)-syn-DBPDE -8.48 0.612

(+)-trans-syn- -9.78 0.069
DBPDE

(+)-cis-syn- -8.62 0.479
DBPDE

#Calculated free energy of binding (AG) in kcal/mol.
*Calculated inhibition constant Ki from AutoDock Tools 4.0.

Furthermore, dC1, dC2, dA3, dT4, dG6, dC7, dG16, dC17, dG18, dA19, dT20, and
dG21 of DNA are involved in molecular interaction with (+)-anti-DBPDE, (£)-syn-DBPDE,
trans- and cis- form of (-)-anti-DBPDE and (+)-syn-DBPDE. H-bonds were formed by dT20
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with (+)-anti-DBPDE and (-)-syn-DBPDE, dG6 with (+)-syn-DBPDE, dC2, dT4, dA3 (N°)
with (-)-trans-anti-DBPDE, dT4, dT20, dA19 (N8 N’) with (-)-cis-anti-DBPDE, dT4, dA19
(N8, N7), dT20 with (+)-trans-syn-DBPDE, dA19 (N8, N7) and dT20 with (+)-cis-syn-DBPDE
(Figure 2a-h). The binding pattern of different DBPDEs with DNA were followed the order as
(-)-trans-anti-DBPDE > (+)-trans-syn-DBPDE > (-)-cis-anti-DBPDE > (+)-cis-syn-DBPDE >
(-)-anti-DBPDE > (+)-syn-DBPDE > (+)-anti-DBPDE > (-)-syn-DBPDE (Table 1).

In addition, docking simulation was also carried out in order to assess the binding
activity of (x)-anti-DBPDE and (z)-syn-DBPDE with individual nucleotides, dA, dG, dC and
dT. Almost similar interactions were observed by all diol-epoxides (DEs) of DBP as
highlighted by their binding energies ranging from -4.12 to -4.92 kcal/mol. On the basis of Ki
values, the order of activity of (-)-anti-DBPDE and (-)-syn-DBPDE towards individual
nucleotides were observed the same and followed the order as- dG > dT > dA > dC.
Furthermore, the order of activity of (+)-anti-DBPDE (dT > dC > dA > dG) and (+)-syn-
DBPDE (dT > dG > dC > dA) were observed different as compared to (-)-anti-DBPDE and
(-)-syn-DBPDE (Table 2).

Table 2. Molecular docking studies of (z)-anti- and -syn-DBPDEs with individual nucleotides.

Compounds dA dG dcC dT
BE* Ki* BE (kcal/mol) | Ki BE (kcal/mol) | Ki BE (kcal/mol) | Ki
(kcal/mol) (1MW) (HM) (HM) (HM)
(-)-anti-DBPDE | -4.53 477.41 -4.64 398.48 -4.27 743.52 -4.64 399.59
(+)-anti-DBPDE | -4.32 613.07 -4.12 845.27 -4.70 365.50 -4.83 263.15
(-)-syn-DBPDE -4.55 466.01 -4.73 343.86 -4.27 740.21 -4.61 420.21
(+)-syn-DBPDE | -4.48 548.80 -4.61 418.81 -4.56 444.92 -4.92 224.38

#Calculated free energy of binding (AG) in kcal/mol.
*Calculated inhibition constant Ki from AutoDock Tools 4.0.

Our comprehensive in silico investigation observed that no N°-dA adduct was formed
either in (x)-anti-DBPDE or (z)-syn-DBPDE. However, dT and dG adduct formed with diol-
epoxides described above, contrary to the wet lab data. Moreover, promising results were found
when cis- and trans-conformations of most carcinogenic diol-epoxides of DBP, (-)-anti-
DBPDE, and (+)-syn-DBPDE were taken under consideration. In our docking experiment, N°-
dA adduct with (-)-trans-anti-DBPDE, N®, N’-dA adduct with (-)-cis-anti-DBPDE, (+)-trans-
syn-DBPDE and (+)-cis-syn-DBPDE (Figure 2e-h) were formed which is completely
consistent to the reported data [45]. Furthermore, weak interactions of (z)-anti-DBPDE
and (x)-syn-DBPDE with individual nucleotides, dA, dG, dC, and dT compared to DNA
emphasized the formation of preferable DNA adduct than individual nucleotides.

3.2. Molecular interaction studies of diol-epoxides of DBP with NER- proteins.

Binding pattern of (-)-anti-DBPDE with different proteins were highlighted as- RPA
(BE: -6.01 kcal/mol, Ki: 39.61uM)> XPA (-5.84 kcal/mol, 52.53 uM)> hHR23B (-5.83
kcal/mol, 52.85uM)> RFIIH(-5.61 kcal/mol, 77.73 uM)> DDB (-5.54 kcal/mol, 86.75 pM)>
DPOL ¢ (-5.50 kcal/mol, 92.25 uM)> XPC (-5.48kcal/mol, 96.94 uM)> DPOL & (-5.38
kcal/mol, 114.08 uM) > PCNA(-5.21 kcal/mol, 151.74 uM)>XPF (-4.85 kcal/mol, 280.08 uM)
(Table 3). PHE1076, ASN950, ASN952, PRO951, TRP953, ARG1080, LYS1081 residues of
DDB, LEU90, LYS30, GLU27, THR26, LEU25, GLU24 residues of XPC, GLN63,PRO61,
GLN23, VAL62, GLN20 residues of hHR23B, ASP23, THR74, ASN76, THR75, PHE27,
HIS45, ILE43, GLN17 residues of TFIIH, LYS70, PHE24, HIS23, PRO73, LYS71, ILEGS,
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VALG9 residues of XPA, GLU407, PHE300, GLU299, PRO296, THR297, ILE405 residues
of RPA, MET884, THR892, PHE889, ILE890, ALA8G66 residues of XPF, LEU144, VAL150,
SER151, ASP149,ILE148, GLY146, THR147 residues of DPOL 6, LYS163, LEU229,
LYS213, TYRS52, PRO232 residues of DPOL g, GLU124, VAL123, ILE128, ASN3G6,
GLN49,GLN38, LEU37 and GLN125 residues of PCNA were engaged in hydrophobic
interactions with (-)-anti-DBPDE (Figure 3 a-j).

Table 3. Molecular docking studies of (+)-anti- and -syn-DBPDEs with NER proteins.

Proteins (-)-anti-DBPDE (+)-anti-DBPDE (-)-syn-DBPDE (+)-syn-DBPDE

BE* Ki* BE (kcal/mol) | Ki BE (kcal/mol) | Ki BE (kcal/mol) | Ki

(kcal/mol) (HM) (uM) (uM) (UM)
DDB -5.54 86.75 -5.14 169.79 -6.10 33.73 -5.33 124.41
XPC -5.48 96.94 -5.77 58.74 -5.76 59.98 -6.51 16.95
hHR23B -5.83 52.85 -5.50 93.17 -5.21 151.74 -5.76 60.13
TFIIH -5.61 77.73 -5.69 66.95 -5.24 144.17 -6.05 36.91
XPA -5.84 52.53 -4.89 261.53 -5.99 40.40 -6.19 28.89
RPA -6.01 39.61 -5.57 82.06 -6.50 17.28 -6.51 16.84
XPF -4.85 280.08 -5.12 177.81 -6.54 16.02 -6.22 27.61
DPOL & -5.38 114.08 -5.18 160.57 -5.59 80.34 -5.37 115.10
DPOL ¢ -5.50 92.25 -5.92 45.47 -5.11 179.12 -6.21 28.07
PCNA -5.21 151.74 -5.61 76.91 -6.52 16.57 -6.57 15.37

#Calculated free energy of binding (AG) in kcal/mol.
*Calculated inhibition constant Ki from AutoDock Tools 4.0.

() (9) (h) (i) @

Figure 3. Molecular interactions of (-)-anti-DBPDE with (a) DDB; (b) XPC; (c) hHR23B; (d) TFIIH; (e) XPA;
(f) RPA; (g) XPF; (h) DPOL §; (i) DPOL ¢; (j) PCNA.

Moreover, binding pattern of (+)-syn-DBPDE with different proteins were followed the
order as- PCNA (-6.57kcal/mol, 15.37uM) > RPA(-6.51 kcal/mol, 16.84 uM)> XPC (-6.51
kcal/mol, 16.95 uM)> XPF (-6.22 kcal/mol, 27.61 uM)> DPOL ¢ (-6.21 kcal/mol, 28.07 uM)>
XPA (-6.19 kcal/mol, 28.89 uM)> TFIIH (-6.05 kcal/mol, 36.91 uM)> hHR23B (-5.76
kcal/mol, 60.13 uM) > DPOL 6 (-5.37 kcal/mol, 115.0 uM) > DDB (-5.33 kcal/mol, 124.41
HM) (Table 3). GLN1055, SER1075, LEU1052, ALA1085, PRO1084, SER1071, PHE1088,
PHE998 residues of DDB, ARG58, LYS54, LYS66, ILE69, ILE73, LYS51 residues of XPC,
GLY1, GLU7, PHES8, LEU6, PRO5, HIS50, GLN, residues of hHR23B, LYS18, ASN46,
GLN17, LYS19, ASP73, THR74, GLY27 residues of TFIIH, LEU65, LEU58, GLUG62,
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PRO63, PHEG67, TYR84 residues of XPA, GLU407, PHE302, PHE300, ILE405, GLN299,
PRO406 residues of RPA, ARG853, LYS850, HIS858, LEU877, ILE876, SER854, HIS857
residues of XPF, GLY411, LEU362, THR407, PRO408, HIS361, GLU359, ASP360, PHE410
residues of DPOL &6, ASN359, GLU101, ASP358, ARG93, VAL97,MET100, LEU315,
GLN314, ARG111 residues of DPOL ¢, ASP29, GLN38, VAL123,LEU126, GLY 127, ILE128
and GLN49 residues of PCNA were involved in hydrophobic interactions with (+)-syn-
DBPDE (Figure 4a-j). Further, almost similar results were obtained with (+)-anti-DBPDE and
(-)-syn-DBPDE showing binding energy in the range of -4.89 to -6.54 kcal/mol and Ki value
in the range of 16.02 to 261.53 uM (Table 3).
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(9) (h) (i) )
Figure 4. Molecular interactions of (+)-syn-DBPDE with (a) DDB; (b) XPC; (c) hHR23B; (d) TFIIH;
(e) XPA; (f) RPA; (g) XPF; (h) DPOL 3; (i) DPOL ¢; (j) PCNA.

The diol-epoxides of DBP, either (x)-anti-DBPDE or (+)-syn-DBPDE do not interact
with N°-dA of DNA; however, it interacted more preferably with dT and dG of DNA. However,
when cis- and trans-conformations of most potent carcinogenic diol-epoxides of DBP, namely
(-)-anti-DBPDE and (+)-syn-DBPDE were taken under consideration, also obtained similar
results. Cis- and trans-refer to the relative orientation of the dA's amino group or dG bound to
the benzylic carbon and the adjacent hydroxyl group. Cis adducts are less conformationally
flexible than trans adducts because they are inherently more sterically crowded with two
hydroxyl groups located on the same side of the benzylic ring as the purine and sugar-residues.
In contrast, the two hydroxyl groups in the trans- adducts are located on the opposite side of
the purine and sugar-residues, leading to a less crowded adduct [13]. As a result, some of these
stereoisomeric adducts may adopt different conformations in DNA. Diol-epoxide DNA
adducts can be relative to the DNA helix, either intercalated or external, and situated in the
major or minor groove, all depending on the adduct's stereochemistry (trans or cis) and base
preferences (dA or dG). This disturbs the DNA conformation to a varying extent leading to a
more or less efficient recognition and subsequent removal by the DNA repair machinery [19,
48-52]. In our in silico experiment, N®-dA adduct with trans-derivative of (-)-anti-DBPDE, N°,
N’-dA adduct with cis-derivative (-)-anti-DBPDE, trans-derivative of (+)-syn-DBPDE and cis-
derivative of (+)-syn-DBPDE were formed, which is in agreement to wet lab findings [45].
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3.3. Validation of docking methodology.

Re-docking of ligand truncated from the complex (PDB: 2LZK) exhibited the same
binding orientation as in the parent molecule. Similar binding of the re-docked ligand into the
binding cavity of protein ascertained the accuracy of the binding and docking parameters used
in the study (Figure 5).

Figure 5. Validation of docking methodology showing the same binding orientation of the ligand present within
the DNA (green) and re-docking the same (yellow).

4. Conclusions

The biological functions of numerous bioactive molecules are closely dependent on
specific molecular interactions of integrated cellular pathways. Thus, understanding these
interactions helps advance the existing knowledge to correct the imbalances of integrated
pathways. The equilibrium between DNA adducts formation and its repair or removal by the
NER pathway is essentially required to maintain perfect cellular homeostasis. Our results based
on the molecular docking investigated that the preferential binding tendencies of DBPDEs
towards DNA are more than that of proteins of NER pathways as exhibited by AG and Ki
values. Stronger interactions of (-)-anti-DBPDE and (+)-syn-DBPDE with DNA further favor
forming more stable adducts than their removal or repair, which may subsequently lead to
mutation and cancer. These findings may enhance our knowledge of the most carcinogenic
naturally occurring PAH-DNA interactions to design new or test the existing molecules for the
prevention and therapeutics of DBP-induced cancers.
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