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Abstract: Coumarins are structurally motivating molecules for synthesizing pharmaceutical agents 

such as anticancer, anticoagulants, and antimicrobial. The structure of the synthesized coumarin 

derivative (N-(2-pheny-4-thiazolidinone-3-yl)-2-(coumarin-4-yloxy)acetamide) was elucidated by 

spectroscopically techniques. The bacterial inhibition efficiency of N-(2-pheny-4-thiazolidinone-3-yl)-

2-(coumarin-4-yloxy)acetamide against selected types of bacteria, namely “Staphyloccocus aureus, 

as  Gram-positive bacteria and Gram-negative bacteria Escherichia coli, Proteus vulgaris, 

Pseudomonas, and Klebsiella pneumoniae was determined utilizing a disc diffusion method. The 

scavenger effectiveness of the N-(2-pheny-4-thiazolidinone-3-yl)-2-(coumarin-4-yloxy)acetamide was 

also evaluated through the superoxide-radical method. The N-(2-pheny-4-thiazolidinone-3-yl)-2-

(coumarin-4-yloxy)acetamide has significant inhibitive efficiency against all studied microorganism. 

The N-(2-pheny-4-thiazolidinone-3-yl)-2-(coumarin-4-yloxy)acetamide molecules have considerable 

activity as antioxidant compounds against vitamin C. 
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1. Introduction 

Coumarin derivatives, as natural and/or synthetic, have considerable interest due to 

their wide medicinal performances. Published studies demonstrate that coumarins are the most 

significant heterocyclic compounds with broad pharmacological activity spectra such as 

antitumor, anticoagulant, antimicrobial, scavengers, and anti-inflammatory [1-6]. The search 

for antibiotics has, for many years, created the field of intensive research in the field of drug 

chemistry due to the resistance that the microorganisms have created against known 

antibacterial or antifungal agents  [6-9]. Antibacterial and antifungal agents are some of the 

most important factors in fighting microorganisms. It is known that bacteria and fungi cause 

infection and disease in humans [10]. Coumarins have a wide range of structural modifications 

[11-13] and can serve as molecular blocks for drug development. Coumarin derivatives are also 

considered potential antibacterial and antifungal agents, apart from antioxidants [14-17]. 

Continuing our investigations on the newly synthesized coumarin derivatives [18-41], we 

found it is interesting to synthesis a Schiff base compound derived from coumarin, namely “N-

(2-pheny-4-thiazolidinone-3-yl)-2-(coumarin-4-yloxy)acetamide“ as an efficient antimicrobial 
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agent. The scavenging activity of the newly synthesized compound was evaluated using the 

superoxide-radical technique. 

2. Materials and Methods 

 2.1. General. 

Starting materials and solvents were purchased from Merck and Fluka. No further 

purifications for the purchased chemicals. Fourier-transform infrared (FTIR) spectra were 

conducted by Spectrophotometer-8300 Shimadzu-FTIR. UV-Vis spectra were performed on 

spectrophotometer-160A Shimadzu-UV-VIS. Nuclear Magnetic Resonance (NMR) spectra 

were performed on Bruker-spectrometer-DPX 300MHz.Tetramethylsilane (YMS) was used as 

an internal standard. Carbon/Hydrogen/Nitrogen analyzers (CHN analysis) was achieved on a 

Carlo CHN-5500, Erba analyzer. 

2.2. Synthesis of  N-(2-pheny-4-thiazolidinone-3-yl)-2-(coumarin-4-yloxy)acetamide.  

A dry benzene solution which has equimolar quantities of N'-benzylidene-2-coumarin-

4-oxyacetohydrazide and 2-mercaptoethanoic acid was refluxed for 20 h. Water was used to 

wash the filtered yield. The dichloromethane was used to recrystallized the dried product. Yield 

70 percentage and the melting point was 261.0 celsius; Proton-Nuclear magnetic resonance 

spectroscopy (Chloroform-d):δ 7.320, δ 7.441, δ 7.92 (s, 1H) for aromatic protons; δ 5.82 and 

4.77 (s, 1H) for vinyl proton; δ 5.110 (s, 2H) for methylene oxide proton; δ 8.98 (s, 1H) for 

amino proton, δ 5.40 (s, 1H) for S-CH, and δ 3.83 2(H) for methylene protons, δ (s, 2H). 13C-

Nuclear magnetic resonance spectroscopy: 33.2, 65.4, 77.6, 101.4, 110.1, 112.9, 114.4, 117.1, 

120.1, 124.3,126.1, 127.8, 128.2, 159.8,154.1, 167.8,169.0 and 171. Fourier-transform is 

infrared in cm-1:  1689 and 1667 for carbonyl of the amide group, 1731 carbonyl of lactone 

group, 2921 aliphatic hydrogen, 3087.7 aromatic hydrogens, 3198.7 amino group, 1632.8 

cm−1 (aromatic carbon-carbon bonds; Calculated/ Theoretical CHN analysis for C20H16N2O5S: 

C 60.41/60.60%, H 3.91/4.07%, N 6.88/7.07%.  

2.3. Antibacterial activity. 

The synthesized compound  N-(2-pheny-4-thiazolidinone-3-yl)-2-(coumarin-4-

yloxy)acetamide was screened in vitro for its antimicrobial efficiency against gram-positive 

bacteria (Staphylococcus aureus) and gram-negative bacteria (Escherichia coli, Proteus 

vulgaris, Klebsiella pneumoniae, and Pseudomonas aeruginosa) by disc diffusion techniques 

[42]. The method of disc diffusion was utilized due to its Comfortable, worth, and inexpensive. 

The N-(2-pheny-4-thiazolidinone-3-yl)-2-(coumarin-4-yloxy)acetamide in dimethyl-

formamide as a stock solution has been prepared. The stock solution was diluted by 

dimethylformamide to prepare various concentrations (50-500 μg/ml). For each dilution, 

dimethylformamide was utilized as control. The nutrient agar was used for subcultured the 

bacteria. Chloramphenicol (positive control) was used as a standard antimicrobial drug and 

compared with the synthesized compound. Whatman filter papers (no. 4) discs of 6 mm 

diameter have been sterilized and immersed in the desired concentration of the N-(2-pheny-4-

thiazolidinone-3-yl)-2-(coumarin-4-yloxy)acetamide. The socked discs were placed in Petri-

dishes, having the nutrient agar with the selected types of bacteria individually and incubated 

for 24  h., at 37°C. The antibacterial efficiencies were evaluated as mean ± SD. 
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2.4. Antioxidant activity. 

The antioxidant efficiency measurements were conducted by the superoxide anion 

technique, according to Chang 2002 [43]. Nitro blue tetrazolium solution (1 mL) which was 

prepared by dissolve Nitroblue tetrazolium in phosphate buffer and various concentrations (50, 

100, 150, 200, 300, 500 μg/ml) of N-(2-pheny-4-thiazolidinone-3-yl)-2-(coumarin-4-

yloxy)acetamide. Added 100 μl to the above solution. The incubation was conducted for 5 min., 

at 25°C, and the absorbance was measure at 560 nm. The comparing of N-(2-pheny-4-

thiazolidinone-3-yl)-2-(coumarin-4-yloxy)acetamide has been done with the standard (vitamin 

C). 

2.5. Statistical analysis. 

ANOVA technique was used to evaluate the statistical analysis. P < 0.05 was the 

significant value, and P < 0.001 the excellent one. 

3. Results and Discussion 

3.1. Chemistry. 

N'-benzylidene-2-coumarin-4-oxyacetohydrazide was refluxed with 2-

mercaptoethanoic acid to synthesis the target N-(2-pheny-4-thiazolidinone-3-yl)-2-(coumarin-

4-yloxy)acetamide as demonstrated in Figure 1. The spectrum of FTIR for the synthesized 

compound N-(2-pheny-4-thiazolidinone-3-yl)-2-(coumarin-4-yloxy)acetamide exhibited 

significant bands at 1689 and 1667 for carbonyl of amide group and 1731 carbonyl of lactone 

group. The NHM spectrum showed the singlate for single protons at 5.82 ppm and 4.77 ppm 

for the vinyl group and also siglate at 5.110 ppm for two protons of methylene oxide group.  

 
Figure 1. Synthesis of N-(2-pheny-4-thiazolidinone-3-yl)-2-(coumarin-4-yloxy)acetamide. 

3.2. Pharmacology: in vitro antibacterial studies. 

The results of the disk diffusion method are shown in Figure 2. The experiments were 

repeated three times, and the standard error was ±0.1 mm. Dimethylformamide was the 

negative control and the solvent for the N-(2-pheny-4-thiazolidinone-3-yl)-2-(coumarin-4-

yloxy)acetamide, which was used in this research, while chloramphenicol was the positive 

standard which was used in all the experiments. The results of these experiments reveal that N-

(2-pheny-4-thiazolidinone-3-yl)-2-(coumarin-4-yloxy)acetamide has significant efficiency 

against the human pathogenic tested gram-positive bacteria and human pathogenic tested gram-

negative bacteria, as shown in Figure 2. 
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Figure 2. Antibacterial efficiencies of different concentrations N-(2-pheny-4-thiazolidinone-3-yl)-2-(coumarin-

4-yloxy)acetamide against chloramphenicol. 

According to inhibition zone findings, the N-(2-pheny-4-thiazolidinone-3-yl)-2-

(coumarin-4-yloxy)acetamide demonstrates significant efficiency versus gram-positive 

Staphylococcus aureus than the efficiency against gram-negative. The efficiency has increased 

with an increase in the concentration of N-(2-pheny-4-thiazolidinone-3-yl)-2-(coumarin-4-

yloxy)acetamide. 

The nitrogen atoms were correlated with an increased inhibition efficiency 

for Staphylococcus aureus. N-(2-pheny-4-thiazolidinone-3-yl) -2-(coumarin-4-yloxy) 

acetamide demonstrated significant antimicrobial performance against Proteus vulgaris. N-(2-

pheny-4-thiazolidinone-3-yl)-2-(coumarin-4-yloxy)acetamide as the investigated compound 

was a lower efficiency than the control chloramphenicol.  
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3.3. Antioxidant activity. 

There is a growing interest in scavengers, specifically in these supposed to prevent the 

presumed deleterious outcomes of free radicals in the human physique and to stop the 

deterioration of fats and other ingredients of food stuffs. In each case, there is a choice for 

scavengers from herbal rather than from synthetic sources. As expanded scavenger fame helps 

limit the oxidative damage and delays or prevents pathological changes, a viable antioxidant 

remedy has to be blanketed both as natural free-radical-scavenging antioxidant enzymes or as 

an agent that is successful in augmenting the recreation of scavenger enzymes [44].  

Superoxide anion radical (O2-) is an important factor in the killing of bacteria- [45]. 

Indicating the superoxide exhaustion within the reaction mixtures. Figure 3 shows the 

inhibitive performance of superoxide radical using the concentrations 50, 100, 150, 200, 300, 

500 μg/ml of N-(2-pheny-4-thiazolidinone-3-yl)-2-(coumarin-4-yloxy)acetamide   compared 

with vitamin C. The concentration of the N-(2-pheny-4-thiazolidinone-3-yl)-2-(coumarin-4-

yloxy)acetamide has a significant level (P < 0.001) of superoxide radical antioxidant activity 

as compared with vitamin C. 
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Figure 3. Scavenging efficiencies of different concentrations of N-(2-pheny-4-thiazolidinone-3-yl)-2-(coumarin-

4-yloxy)acetamide  aginst vitamin C. 

4. Conclusions 

 In conclusion, N-(2-pheny-4-thiazolidinone-3-yl)-2-(coumarin-4-yloxy)acetamide was 

synthesized by reacting coumarin-Schiff base with 2-mercaptoethanoic acid. The chemical 

structure of N-(2-pheny-4-thiazolidinone-3-yl)-2-(coumarin-4-yloxy)acetamide was 

confirmed by various spectroscopic techniques, and the antimicrobial and antioxidant activities 

were assessed. N-(2-pheny-4-thiazolidinone-3-yl)-2-(coumarin-4-yloxy)acetamide was 

examined against a slected types of human pathogenic strains of Gram-positive 

(Staphyloccocus aureus) and Gram-negative (E. coli, Proteus vulgaris, Pseudomonas, and 

Klebsiella pneumoniae) bacteria. N-(2-pheny-4-thiazolidinone-3-yl)-2-(coumarin-4-

yloxy)acetamide a significant growth inhibition efficient against selected types of bacteria and 
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is promising to act as a considerable antibacterial agent as compared with chloramphenicol. 

Antioxidant results also revealed that N-(2-pheny-4-thiazolidinone-3-yl)-2-(coumarin-4-

yloxy)acetamide demonstrates significant efficiency against superoxide. 
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