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Abstract: Molecular modeling is an important tool for elucidating the electronic properties of polymers 

as well as polymers interacting with metal oxides. In this sense, Polypropylene (PP) is a synthetic and 

thermoplastic polymer with high electrical resistivity. A computational study based on density 

functional theory was established to study the effect of the addition of metal oxide such as zinc oxide 

(ZnO) on the electronic properties of PP. DFT theory at B3LYB/6-311g (d, p) level was chosen to study 

PP electronic properties and PP/ZnO nanocomposite. According to the results of total dipole moment 

(TDM) and HOMO/LUMO bandgap energy calculations, the studied model structures' reactivity for 

nanocomposite increased due to the addition of metal oxide. The values of the energy bandgap 

decreased due to the interaction of metal oxide with the original polymer. 
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1. Introduction 

Polypropylene (PP) is a semi-crystalline and thermoplastic polymer which commonly 

used as nanocomposites. PP is widely used for such study according to its flexible structure, 

mechanical properties, and optical properties. PP nanocomposites are extensively applied for 

packaging, automotive, electrical/electronic, and aerospace applications [1].  Owing to PP has 

special features as adaptation flexibility, thermal resistivity highly strength, lightweight, and 

low effective cost [2]. PP nanocomposites have excessive attention recently, according to 

properties improvement. Appropriate nanofiller makes expressive improvements in polymer 

properties mechanically, optically, electrically, and thermally [3-9] to be applied for various 

applications [10-13]. PP/ZnO nanocomposite conveyed significant enhancement in 

crystallization, tensile strength, resistance, and impact strength [14,15] and growing in 

dynamical, mechanical properties, and thermal stability [16]. Also, PP with CaCO3 as filler is 
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widely used according to low cost. It improves physical, thermal stability, and mechanical 

properties [17]. 

Moreover, nanocomposite  PP could be applied in environmental applications [18]. PP/ 

TiO2 nanofibers were prepared for biomaterial applications as antibacterial [19]. PP/ 

organophilic clay nanocomposites injected also recorded improved mechanical properties 

compared with PP according to flexural, impact, and strength results [20]. Meanwhile, 

PP/Multiwall carbon nanotubes (MWCNT) important upgrading in PP properties [21,22]. 

PC/PP CNT Nanocomposites [23] also showed exceptional electrical conductivity and high 

electromagnetic interference shielding [24]. One of the most important Carbons nanomaterials 

is Graphene Oxides (GO), which is similarly used as PP nanofiller to improve mechanical, 

thermal, and mechanical behavior [25]. Experimental comparison between PP, talc/PP, and pp/ 

Clay nanocomposites due to their mechanical and thermal parameters [26]. 

Moreover, PP was prepared with Cellulose nanowhiskers to upgrade PP properties [27]. 

It is reported that different classes of computational methods and molecular modeling were 

effectively utilized to elucidate different molecular properties, including physical, chemical, 

and thermal properties for many molecular systems. In contrast, the experimental approaches 

are limited or even unavailable [28-34]. Different researchers pointed out that some physical 

parameters such as TDM  could be good indicators for molecular reactivity [35-40]. As the 

TDM  is increased and bandgap energy decreased, the reactivity of the studied structure is 

increased. Another descriptor for reactivity and active site of the studied structure is indicated 

in terms of the charge on the surface. This could be indicated by mapping the molecular 

electrostatic potential (MESP), as stated earlier [41-46]. Through the distribution of colors, one 

can detect the active site on the given surface by mapping MESP .   

Accordingly, molecular modeling at DFT: B3LYP/6-311g(d,p) level is utilized in the 

present computational work to study PP and PP's electronic properties interacted with ZnO. 

2. Materials and Methods 

 2.1. Calculation details. 

Molecular models for PP and PP interacted with ZnO were formed, once the interaction 

through O then from Zn. By utilizing Gaussian 09 software [47] at Spectroscopy Department, 

National Research Centre, Egypt. The model structures are optimized using DFT theory at 

B3LYP/6-311g(d,p) level [48-50]. Physical parameters are calculated at the same level of 

theory, such as TDM and highest occupied molecular orbital and lowest unoccupied molecular 

orbital (HOMO/LUMO) band gap energy. 

3. Results and Discussion 

3.1. Building model molecules.  

For calculating the electronic properties of PP and PP/ZnO composites. At first, the 

model structures which represent PP and the interaction of PP with ZnO are designed. Models 

started by four units of PP monomers to represent PP molecule. The model structure of PP 

supposed structure is represented in figure 1. The interaction between PP with ZnO may occur 

through a hydrogen bond, so many probabilities are used to interact ZnO with PP molecule. 

The probabilities of interaction between PP and ZnO nano metal oxide, which be studied here, 

are through hydrogen atom with numbers 2, 3, 7, 27, 28, 31, 34, and 37 representing the all 
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supposed active sides of PP polymer. However, the interaction of ZnO with PP may be 

occurring according to two postulates, once through zinc (Zn) and the other through oxygen 

(O) atom. So, two groups of postulates are simulated to report the study of all probabilities.  

 
Figure 1.  B3LYP/6-311g(d,p) optimized structure of polypropylene model molecule. 

3.2. Total dipole moment TDM and HOMO/LUMO band gap energy calculations.  

The prospects of PP polymer and PP nano composite with ZnO nanometal oxide 

occurring through hydrogen atom with numbers 2, 3, 7, 27, 28, 31, 34 and 37 representing in 

figure 2, 3 and 4. TDM and HOMO/LUMO bandgap energy are important indicators for the 

electronic properties of polymeric materials. Where TDM is an indicator for material reactivity, 

and HOMO/LUMO bandgap energy expresses the electronic type for the material (conductor, 

semiconductor, or insulator). TDM as Debye and HOMO/LUMO bandgap energy as eV for 

the model structures of PP polymer and postulate interaction of ZnO nano metal oxide 

according to the two postulate groups were calculated mentioned in table 1. Figure 2 showed 

the optimized structure and HOMO/LUMO bandgap of PP polymer. 

 
Figure 2. B3LYP/6-311g(d,p) optimized structure of polypropylene model molecule and calculated 

HOMO/LUMO band gap, respectively. 

The first group of interactions between PP and ZnO through Zn atom (PP/ZnO) and its 

HOMO/LUMO band gap represented in figure 3.  Meanwhile, in the second group of 

interactions between ZnO with PP through O atom (PP/OZn) represented according to figure 

4. 
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Figure 3. B3LYP/6-311g(d,p) optimized structure of  polypropylene/ZnO whereas the interaction took place 

through Zn atom and HOMO/LOMU bandgap at a) PP H2  b) PP H3  c) PP H7 d) PP H27 e) PP H28  f) PP H31  

g) PP H34 h) PP H37 
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Figure 4.  B3LYP/6-311g(d,p) optimized structure of polypropylene/ZnO whereas the interaction took place 

through Zn atom and HOMO/LOMU bandgap at a) PP H2  b) PP H3  c) PP H7 d) PP H27 e) PP H28  f) PP H31  

g) PP H34 h) PP H37. 
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Table 1. Calculated total dipole moment (TDM) as Debye and HOMO/LUMO band gap energy(∆E) as eV using 

DFT theory B3LYP/6-311(d, p) level for PP and decorated PP with  ZnO once through Zn atom and once through 

O atom for all postulate active sides. 

Structure TDM ∆E 

PP 0.4258 6.5307 

PP+ZnO H2       7.5573 2.1737 

PP+ZnO H3       6.5231 2.8999 

PP+ZnO H7     6.9488 2.1715 

PP+ZnO H27 7.0602 2.1601 

PP+ZnO H28 7.5253 2.1897 

PP+ZnO H31  7.8110 2.1780 

PP+ZnO H34       6.2943 2.8741 

PP+ZnO H37     6.6143 2.8436 

PP+ OZn H2      4.3783 1.8950 

PP+ OZn H3      5.1155 1.8580 

PP+OZn H7      3.7819 1.9160 

PP+OZn H27 2.7877 2.3935 

PP+OZn H28 4.2653 2.4548 

PP+OZn H31 3.5172 1.7644 

PP+ OZn H34        4.5434 1.9339 

PP+OZn H37     5.2081 2.2969 

 

Table 1 data TDM and bandgap energy ∆E values for PP polymer were 0.4258 Debye 

and 6.5307 eV, respectively. For the first group that the interaction is occurring through Zn 

atom PP-ZnO, values of TDM for different postulate positions of interaction with supposed 

active sides H2, H3, H7, H27, H28, H31, H34, and H37 became 7.5573, 6.5231, 6.9488, 

7.0602, 7.5253, 7.8110, 6.2943 and 6.6143 Debye meanwhile bandgap energy ∆E valued 

became 2.1737, 2.8999, 2.1715, 2.1601, 2.1897, 2.1780, 2.8741 and 2.8436 respectively. For 

all postulate positions, TDM was increased while bandgap energy ∆E decreased, which 

indicates that all positions could affect by ZnO nano metal oxide. These results indicated ZnO's 

high effect on the reactivity of PP molecule, where TDM of PP-ZnO composites higher than 

TDM of PP molecule several times. The highest value of TDM and lowest band gap energy 

∆E values are more affected by ZnO nano metal oxide decoration. The highest reactivity is at 

hydrogen atom number 2, 7,27, 31 with TDM, and lowest ∆E. From the calculations, 

HOMO/LUMO bandgap energy ∆E of PP molecule equals 6.5307 eV. These result in a match 

with the fact that PP is an insulating polymer. But, due to the interaction with ZnO the values 

of ∆E decreased from 6.5307 to (2.1737, 2.8999, 2.1715, 2.1601, 2.1897, 2.1780, 2.8741 and 

2.8436) eV at hydrogen atom number (2, 3, 7, 27, 28, 31, 34 and 37) as presents in table 1. 

These results confirm the effect of ZnO on the electronic properties of PP, where PP-ZnO 

composites have ∆E value lower than the value of ∆E for PP molecule. In other words, PP-

ZnO composites became semiconductor materials. The lowest value for ∆E was the interaction 

at hydrogen number 2, 7,27, and 31. These indicated that PP interaction with ZnO through Zn 

atom could occur with the atoms number 2, 7,27, and 31. 

Similarly, the second group of postulates of interaction between ZnO nano metal oxide 

and PP polymer occurring through O atom PP-OZn was studied through the same hydrogen 

atoms H2, H3, H7, H27, H28, H31, H34, and H37. The values of TDM increased from 0.4258 

for PP polymer to 4.3783, 5.1155, 3.7819, 2.7877, 4.2653, 3.5172, 4.5434, and 5.2081 Debye 

for PP decorated with ZnO nanometal oxide at hydrogen atom as presents in Table 1 also. 

These results clear that PP-OZn composites have TDM higher than TDM for PP molecule but 

less than the values of TDM is produced from the first group. However, the results of 

HOMO/LUMO band gap energy ( ∆E) clear that PP-OZn composites have ∆E values less than 

the value of ∆E for PP molecule. E's value decreased from 6.5307 for PP to 
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1.8950,1.8580,1.9160, 2.3935, 2.4548, 1.7644, 1.9339, and 2.2969 eV for decorated PP with 

ZnO at hydrogen atom number H2, H3, H7, H27, H28, H31, H34, and H37 as presents in table 

1. The second group ∆E calculations clear that E's values are less than values of ∆E for the first 

group, and the lowest value of ∆E was 1.7644eV, corresponding to the interaction that may 

occur at hydrogen atom number 31. 

Accordingly, the decoration of PP with ZnO through Zn atom could have interacted as 

represented in figure 5 that the TDM and HOMO/LUMO band gap energy (∆E) made a 

significant change 13.8571 Debye and 0.2781 eV table 2. For the decoration of PP with ZnO 

through O atom, the interaction could be as element decoration at H number 31, the H of CH3 

group. Finally, ZnO nano metal oxide's electronic properties affect the electronic properties of 

PP polymer even if interacted through Zn atom or O atom. The case of decorated PP polymer 

by ZnO through Zn atom will interact with H of CH3 group and H on the opposite side, which 

could be applied for sensing. Also, the case of decorated PP polymer by ZnO through O atom 

could be used as an element in sensor or optoelectronic devices. 

 
Figure 5. Decorated PP with 9ZnO through Zn atom optimized structures and HOMO/LOMU bandgap. 

Table 2. Calculated total dipole moment(TDM) as Debye and HOMO/LUMO band gap energy(∆E) as eV using  

DFT theory at B3LYP/6-311g(d,P) level for PP and decorated Polypropylene through Zn atom of ZnO. 

Structure TDM ΔE 

PP+ 9ZnO 13.8571 0.2781 

4. Conclusions 

 The electronic properties of PP-ZnO and PP-OZn composites are calculated at 

quantum mechanical DFT: B3LYP/6-311g(d,P)  level. The results of calculations that are running 

for the model structures appear the effect of ZnO on the values of TDM and ∆E. Where the 

value of TDM of PP molecule equal to 0.4258 Debye meanwhile, as a result to addition ZnO 

TDM values increased and reaches to 7.8110 Debye with the interaction which may occur at 

hydrogen atom number 31 in the first group. Also, the value of ∆E decreased from 6.5307 eV 

for PP molecule to 2.1780 eV with the interaction, which may occur at hydrogen atom number 

31 in the first group. The values of TDM of PP-OZn composites in the second group increased 

by the addition OZn molecule but less than the values of TDM in the first group. Meanwhile, 

∆E values in the second group are lower than ∆E values in the first group and decreased to 

1.7644 eV Debye with the interaction, which may occur at hydrogen atom number. The present 
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computational model, which is utilized in these calculations, proves that the studied physical 

parameters are good indicators for the studied polymer/metal oxide system's reactivity. These 

findings are in good agreement with the previous findings [51-55]. 

It could be concluded that the studied composites could be dedicated to sensors and other 

optoelectronic devices. The most probable interaction could be corresponding to the lowest 

value of ∆E. This achieved for the interaction of PP with OZn in the second group at hydrogen 

atom number. 
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