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Abstract: Considering the current trends in the development of biodegradable films and materials 

interacting with food packaging through the incorporation of active substances into the packaging 

material, the possibility of using propolis as a natural bioactive compound was evaluated in order to 

propose a bioactive packaging development technology. Cassava-starch-based films were 

supplemented with propolis extract (PE) at concentrations of 0, 30, and 60 g per 100 g of starch. The 

chemical profile and antioxidant and antimicrobial activities of the PE were evaluated. The effect of PE 

incorporation on the film's mechanical properties and the microstructure, the concentration of phenolic 

compounds, and the antioxidant activity were also evaluated. Artepelin C (10.957 mg/mL) was the 

highest compound identified in PE. The S. aureus was more susceptible to PE than E. coli. The PE 

incorporation into the cassava starch-based films improved their flexibility and extensibility while 

making them more homogeneous and less harsh. Cassava starch-based films include phenolic 

compounds and antioxidant activity from PE. In the present work, the developed film revealed its 

potential as active food packaging materials, reducing the number of synthetic antioxidants used for 

food preservation. 

Keywords: green propolis; bioactive compound; antioxidant activity; active packging antimicrobial 

properties. 
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1. Introduction 

Plastic films are used on large scales in food packaging because they can be produced 

in large quantities at low cost with good mechanical and barrier characteristics. However, the 

accumulation of synthetic plastics waste in the environment has driven the research into the 

development of biodegradable packaging as an environment-friendly strategy [1]. Moreover, 

biodegradable materials in plastics production only become viable if it is financially and 

functionally attractive compared to synthetic production routes. Agro-industrial raw materials 

can be used for the production of biofilms. The incorporation of bioactive compounds into the 
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films, such as the propolis extract, allows the elaboration of films to offer extra benefits when 

compared to conventional materials [2-4]. 

The strategy to control phytopathogens' growth during post-harvest of fruits is the use 

of active edible coatings [5]. Edible coatings are defined as a thin layer produced from proteins, 

polysaccharides, and/or lipids that cover food surfaces that act as a protective layer [6]. The 

choice of the material to be used in the films' formulation is crucial. This will depend on the 

interactions between the components of the material, which may react with the films' barrier 

and mechanical properties. Starch has been considered an excellent raw material for the 

production of polymers due to its ability to form a continuous matrix, low oxygen permeability, 

cyclic availability, low cost, and harmless to the environment and rapidly metabolized for soil 

microorganisms when disposed of in the environment [7-10]. 

Due to the need to avoid oxidative deterioration of packaged food, the interest in active 

packaging has increased [11]. Besides the conservation of food, this type of system can present 

additional functionality to support antioxidant substances. Thus, incorporating antioxidant 

compounds into biodegradable films would promote new ways to improve the safety and shelf-

life of ready-to-eat foods [4,12,13]. A natural substance with a high potential to act as an 

additive in polymeric materials is the propolis extract [14-16]. 

Propolis, a natural resinous substance collected from plant resins by bees, has 

antibacterial, anti-fungal, anti-cancer, anti-inflammatory, antioxidant, antiviral, anesthetic, 

immunostimulant, and cytostatic effects [17-20]. Studies involving starch films with propolis 

extract (PE) as a source of bioactive compounds are still scarce in the literature. The present 

study's objective was to evaluate the antimicrobial activity against Escherichia coli and 

Staphylococcus aureus, the chemical profile, and the antioxidant activity of the Brazilian green 

propolis extract (PE), and the effect of supplementation of cassava starch-based films with PE. 

2. Materials and Methods 

 2.1. Materials. 

Caffeic acid (PubChem CID: 689043), p-coumaric acid (PubChem CID: 637542), 3,5-

Di-O-caffeoylquinic acid (PubChem CID: 13604687), 4,5-Di-O-caffeoylquinic acid 

(PubChem CID: 6474309), aromadendrin (PubChem CID: 122850), drupanin (PubChem CID: 

6440361), artepillin C (PubChem CID:  5472440), and baccharin (PubChem CID: 5358645) 

were acquired from Sigma Aldrich (St. Loius, MO, US). 

Propolis was collected in the city of Nepomuceno (21º 12’ 17.79”S/45º 13’ 17.2” W) 

(Minas Gerais state, Brazil). Propolis extract (PE) was prepared, according to Bodini, Sobral, 

Favaro-Trindade, and Carvalho [14]. Briefly, a sample of 30 g of propolis was triturated with 

100 mL of ethyl alcohol (80:20, etanol:water, v/v) under heating at 50 °C and stirring for 30 

minutes. Then, the PE was then cooled, stored at 10 °C for 24 hours, and then filtered through 

a Whatman No. 4 filter paper. 

2.2. Characterization of propolis extract (PE). 

2.2.1. Antimicrobial activity. 

The antimicrobial activity of the EEP was determined by the microdilution technique 

in 96-well microplates (NCCLS, 2003) against Escherichia coli (ATCC25922) and 

Staphylococcus aureus (ATCC25923). The initial microorganism suspensions were prepared 
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in saline solution (0.85%, w/v) with a turbidity of 0. 08-0.1 at 625 nm measured using a 

spectrophotometer. The initial suspension was diluted in Mueller Hinton Broth to the 

concentration of 5x105 CFU/mL. An aliquot of the suspension (10 μL) was added to all wells 

with the PE (yielding a total of 5x103 CFU/mL), and the plates were incubated at 36 ± 1 °C for 

24 hours for further evaluation of cell viability. Minimum inhibitory concentration (MIC) was 

defined as the lowest concentration of PE that shows no growth of microorganisms from an 

aliquot of the mixture (10 µL) inoculated on Mueller Hinton Broth incubated at 36 ± 1 °C for 

24 hours, while minimum bactericidal concentration (MBC) was defined as the lowest 

concentration of PE that shows no growth of microorganisms from an aliquot of the mixture 

(20 µL) inoculated on Mueller Hinton medium at 36 ± 1 °C for 24 hours under anaerobic 

conditions.  

2.2.2. Phenolic composition of propolis extract. 

Chromatographic analysis of PE was performed using a High-Performance Liquid 

Chromatograph (HPLC) (Shimadzu LC-20AT Prominence Liquid Chromatograph) equipped 

with a diode array detector (HPLC-UV-DAD), automatic injector, oven, degasser, and 

quaternary pump. The Shim-Pack VP-ODS column (4,6 mm x 250 mm, a particle diameter of 

5 μm) was used. The mobile phase consisted of a solution of methanol and 0.1 % formic acid 

in water. Elution was performed using a linear gradient from 25 to 100 % in 77 minutes at a 

flow rate of 0.8 mL. The temperature was maintained at 40 ºC, and the injection volume was 

10 μL. The spectral data were collected at 275 nm, and identification was performed by 

comparison of retention times with those of standards. Patterns were used to quantify phenolic 

compounds using a calibration curve. The standards used were: gallic acid, caffeic acid, p-

coumaric acid, aromadendrin, artepelin C, 3,5-dicafeoylquinic, 4,5-dicapheoquinquine, 

drupamine, and baccharin. The minimum detection limits were 0.12 μg/mL and 0.35 μg/mL. 

2.3. Film development and characterization. 

The filmogenic solutions were obtained by mixing 3 g of cassava starch and 100 mL of 

distilled water described by López et al. [21]. After the suspension was wholly dissolved, 

glycerol (20g/100 g of starch) was added, and the solution was heated at 70 °C and then cooled 

to 40 °C. Finally, PE in three concentrations (0, 30, and 60 g/100 g of starch) and ethyl alcohol 

(15 g/100 g of starch) were added to the mixture. The film solution was kept in an ultrasonic 

bath for 20 minutes to avoid bubble formation. 100 mL of the film-forming were then spread 

on each petri dish (15×15 cm²) and dried in BOD chamber at40 ºC for 30 hours. 

2.3.1. Film characterization. 

The films were equilibrated at 23 ± 2 °C and 50% ± 10 relative humidity with a 

desiccator over 48 hours. The thickness of the films was determined using a digital micrometer 

(n=10) [22]. 

2.3.2. Mechanical properties. 

The tensile strength, elongation at rupture, and Young’s modulus were determined 

using a texture analyzer (Instron - Series 3367, Grove City, US) [23] (n=10). The films were 

cut into a piece of 10 cm x 1.5 cm and conditioned at 50 ± 10 % RH at 23 °C ± 2 for 48 hours. 

A 500 N load cell was used, and the tensile force was recorded during the extension of films to 
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0.2 mm/s until rupture. The tensile strength values, elongation at rupture, and Young’s modulus 

were estimated from force deformation data.  

2.3.3. Morphological properties. 

Scanning electron microscopy analysis of the films was performed using an electron 

microscope. JSM-6610 series scanning electron microscope (Jeol®, Tokyo, Japão) equipped 

with EDS at 5 kV accelerating voltage. The films were placed on conductive carbon tape and 

sprayed with a thin layer of gold before the imaging.  

2.4. Total phenolic content and antioxidant activity. 

Total phenolic content and antioxidant activity of PE and films were realized. The 

extract from films was performed using a mixture of 11 mg and 6 mL of water heated to 50 °C 

for 50 minutes. 4 mL of ethyl alcohol (80%) was added, and the temperature was maintained 

for another 10 minutes with subsequent filtration. 

Total phenolic content was realized as described by Al-Duais et al. [24] with adapted 

for micro volumes. Briefly, 20 µL of the extracts were mixed with 100 µL of the Folin-

Ciocalteau reagent (10 %), and after 5 minutes, 75 µL of 4 % sodium carbonate (7.5 %) was 

added. After 40 minutes of the reaction, the absorbance was measured at 740 nm using a 

microplate reader Spectra-Max M3 (Molecular Devices, LLC, Sunnyvale, CA, US). The total 

content of phenolic compounds was expressed in gallic acid equivalent (GAE) calculated using 

a calibration curve (20 to 120 μg/mL). 

The antioxidant activity was determined using the ABTS•+ scavenging method (2,2'-

azinobis (3-ethyl-benzothiazoline-6-sulfonic acid)) as described by Al-Duais, Müller, Böhm, 

and Jetschke [24]. 220 μL of the ABTS•+ solution and 20 μL of Trolox or sample were mixed 

inside of each well of the microplate. Then, the plate was shaken and kept in the dark for 6 

minutes. Absorption was measured at 734 nm using a microplate reader. The results are 

expressed in μmol Trolox equivalents calculated using a standard curve (12.5 to 200 µM). 

2.5. Statistical analyses. 

All tests were performed in triplicates with three replicates. Mechanical properties and 

thickness were carried out in ten replicates were run for each sample. Data are expressed as 

mean ± standard deviation, and statistical comparison between groups was carried out using 

analysis of variance (ANOVA) followed by Tukey’s test (p<0.05). 

3. Results and Discussion 

3.1. Propolis extract characterization. 

Table 1 shows the minimum inhibitory concentration (MIC) and minimum bactericidal 

concentration (MBC) of propolis extract. Although the PE showed activity against the two 

microorganisms tested, S. aureus was more susceptible to PE than E. coli. 

Table 1. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of propolis 

extract (n=3). 

Microorganisms MIC (mg/mL) MBC (mg/mL) 

S. aureus (ATCC25923) Gram-positive 0.017±0.00 0.161±0.00 

E. coli (ATCC25922) Gram-negative 0.161±0.00 1.288±0.00 
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These results corroborate what has been described in the literature [25,26], 

demonstrating propolis is more active against gram-positive than gram-negative bacteria 

[27,28]. Gram-negative bacteria have a chemically complex cell membrane. One of its 

constituents, the lipopolysaccharide, determines the antigenicity, toxicity, and pathogenicity of 

these microorganisms [29,30]. The bactericidal and bacteriostatic effects of propolis can result 

from the combined actions of cinnamic and flavonoid derivatives, increasing the permeability 

of the bacterial cell membrane by acting as ionophores, inhibiting the motility, and thereby 

contributing to the cytotoxic effect [28,31]. 

Figure 1 and Table 2 show the HPLC analysis of PE. The phenolic compounds 

identified were: caffeic acid, p-coumaric acid, 3,5-di-O-caffeoylquinic acid, 4,5-Di-O-

caffeoylquinic acid, aromadendrin, drupanin, artepelin C, baccharin, and levels of prenylated 

phenolic acids, including artepelin C. 

 
Figure 1. High-performance liquid chromatography (HPLC) of propolis extract detected at 2754 nm. 

Table 2. Phenolic compounds of propolis extract determined using High-Performance Liquid Chromatography 

with Diode Array Detector (HPLC-DAD). 

Peak Number Phenolic compound Retention time (min) mg/mL of PE 

1 Caffeic acid 19 0.278 

2 p-coumaric acid 23 1.494 

3 3,5-dinitrocatechol 26 2.975 

4 4,5-di-caffeoylquinic acid 30 4.761 

5 Aromadendrin 39 1.623 

6 Drupanin 50 2.017 

7 Artepillin C 63 10.957 

8 Baccharin 67 2.263 

The main compound found in the present work was artepillin C (10.96 mg/mL), which had 

already been reported in the literature. The compound was present in greater quantity in 

Brazilian green propolis [32,33]. This is one of the most important biologically active 

compounds in Brazilian green propolis [34], previously reported for important biological 

activities including antitumor [35,36], immunomodulatory, and immunosuppressive effects 

[37], as well as induction of apoptosis and excellent scavenging of free radicals [38,39]. 

3.2. Characteristics of the cassava-based film supplemented with propolis extract.  

3.2.1. Physical and morphologic characteristics. 

Table 3 shows the thickness measurements and mechanical characteristics of the 

cassava-based films with propolis extract. There was no difference in the thickness after PE 

addition, indicating that the propolis extract did not alter the solids in the filmogenic solutions.  
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Table 3. Physical and morphologic characteristics of cassava-based film supplemented with propolis extract in 

the concentration of 0 (PE0), 30 (PE30), and 60 (PE60) g per100 g of starch. 

Films Thickness (mm) Tensile strength (MPa) Elongation at rupture (%) Young’s modulus (MPa) 

PE0 0.07±0.00a 13.66±0.06a 1.61±0.03c 1196.21±52.71a 

PE30 0.07±0.00a 6.47± 0.72b 20.58±2.21b 471.94±54.19b 

PE60 0.07±0.00a 4.55± 0.33b 28.39±1.32a 277.41±7.41c 

       Different letters in the same column indicate a significant difference by the Tukey test (p>0.05). 

When tensile strength and Young’s modulus decreased with the addition of PE 

(concentration-dependent), elongation at rupture increased with the addition of PE. This 

increase in elongation at rupture resulted in more flexible films. We hypothesized that PE might 

have acted with plasticizing behavior due to its strong interaction with the starch's polymer 

matrix. The polar compounds of the PE may form molecular interactions with the hydroxyl 

groups, substituting the interactions previously formed by the starch molecules. This 

plasticizing effect of PE was related to biodegradable gelatin films with PE (5 to 200 g of 

PE/100 g of gelatin), resulting reduction in tensile strength and modulus of elasticity with an 

increase of PE concentration [14]. For applications such as packaging, tray coverings in food 

storage, or the like, the films developed in the present work can confer an advantage due to 

their high elongation capacity.  

Figure 2 shows the surface micrographs of cassava-based film supplemented with 

propolis extract. The films’ surface micrographs revealed the presence of insoluble particles in 

all treatments, characterized by residual starch dispersed in the film matrix. This indicates an 

incomplete dissolution of the starch molecules during the process. However, the amount of 

non-solubilized starch granules decreased on the surface of the films supplemented with PE. 

The PE addition to the polymer matrix granted greater homogeneity to the films due to 

hydroxyl groups on the phenolic compounds present in PE. These hydroxyl groups form 

hydrogen bonds with hydroxyl groups of starch and, consequently, reduce the intermolecular 

interactions between the polymer chains, improving the film's homogeneity [40]. The PE 

concentration increase also made the film less harsh, reflecting the compounds present in the 

PE with the cassava starch. 

 
Figure 2. Surface image (100 x) cassava-based film supplemented with propolis extract: (a) PE0: film without 

propolis extract, (b) PE30: film with 30 g of propolis extract per 100 g of starch, and (c) PE60: film with 60 g of 

propolis extract per 100 g of starch. 
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In the present work, the film of matrix homogeneity results in diminishing the films' 

mechanical resistance, which was previously related by other authors [2,3]. Moreover, the 

films' maximum tensile strength decreased with the addition of PE and presented a significant 

difference in relation to the control (Table 3). 

3.2.2. Total phenolic content (TPC) and antioxidant activity of cassava-based film 

supplemented with propolis extract.  

Table 4 shows TPC and antioxidant activity of developed films. The propolis extract 

presented a TPC of ~39 mg GAE/g, close to that reported by da Silva et al. [41] for the propolis 

from Minas Gerais state (4.10 to 39.0 mg GAE/mL). The main components of propolis from 

São Paulo and Minas Gerais states are terpenoids and prenylated derivatives of p-coumaric 

acid [25], which also were found in the present study (Table 2). 

Table 4. Total phenolic compounds and antioxidant activity of cassava-based film supplemented with propolis 

extract (PE) in the concentration of 0 (PE0), 30 (PE30), and 60 (PE60) g per100 g of starch. 

Samples Total phenolic compounds (mg GAE/g) ABTS•+ (μmol TE/g) ABTS•+ (mg TE/g) 

PE 38.40±0.36a 845.21±6.99a 211.35±0.4a 

PE0 0d 0c 0c 

PE30 4.18±0.28c 38.18±1.33b 9.55±0.13b 

PE60 5.52±0.21b 38.62±0.69b 9.66±0.60b 

GAE: gallic acid equivalent; TE = Trolox equivalent. Different letters in the same column indicate a 

significant difference by the Tukey test (p>0.05). 

In the present work, propolis extract showed antioxidant activity close to propolis from 

Minas Gerais region (77.90 to 86.40 mg TE/mL using the ABTS method) [42] and propolis 

samples from the southern region of Brazil (0.29 to 1.24 μmol TE/mg using the ABTS method) 

[43]. Tiveron et al. [43] showed the high antioxidant activity of artepelin C when compared to 

other compounds such as caffeic acid, coumaric acid, and gallic acid also present in propolis 

extract. The highest concentrations of artepelin C already observed in natural products are those 

from the green propolis produced in the South and Southeast of Brazil, whose source is the 

plant species Baccharis dracunculifolia [44]. 

Although artepelin C is one of the main compounds responsible for the antioxidant 

activity, the compounds verified in the HPLC analysis such as caffeic acid and derivatives, 

aromadendrin, and baccharin also have proven antioxidant activities and therefore may also 

have been responsible for the antioxidant activity of the extract [45]. Although the total 

concentration of phenolic compounds or flavonoids is important for contributing to antioxidant 

activity, the chemical nature (molecule structure, presence, and nature of groups linked to the 

main molecule) and the presence of other compounds may also contribute total antioxidant 

activity of the sample as well [42]. 

The propolis extract contributed to the increase in TPC (dose-dependent) (4.18-5.52 mg 

GAE/g) and antioxidant activity (38.18-38.62 μmol TE/g) of cassava-based films. Our results 

are in the same range found by Zhao and Saldaña [46]. These authors produced films with 

potato by-products and demonstrated that when the potato peel concentration in the film is 

increased, the total phenolic content (0.3-6.1 mg GAE/g of the film) and antioxidant activity 

of the films (1.5-93.2 mg TE/g film using the ABTS method) is also increased. However, when 

gallic acid was added to the films, the film showed higher antioxidant activity (1.5-1974.0 mg 

TE/g of film using the ABTS method). Our results are in the same range found by these authors. 
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Due to the antioxidant properties found in cassava starch films supplemented with PE, 

it is expected that film to assist in the inhibition of lipid oxidation can occur in several types of 

foods and thereby help decrease the number of synthetic antioxidants used in food preservation. 

4. Conclusions 

 The ethanolic extract of green propolis presented great potential for use as a bioactive 

compound with antioxidant properties in developing active packaging produced from cassava 

starch. The incorporation of the propolis extract into the starch biofilms resulted in 

homogeneous films, reflect on the compatibility of the compounds present in the propolis 

extract with the cassava starch. The films showed a decrease in mechanical strength and 

improved flexibility and extensibility, which can be appreciated by the packaging industry. 

Finally, according to the intended usage, the amount of propolis extract can be adjusted in 

complementary studies. 
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