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Abstract: Herein, in the present study, we developed the synthesis of new trifunctional epoxy resin 

(TER) namelytriglycidyl ether N,N bis (3-phenylamino propyl) 3-phenylamino propoxy phenyl and the 

elaboration of its nanocomposite. TER was characterized and confirmed using Fourier transform 

infrared and nuclear magnetic resonance spectroscopy. Further, the storage modulus and loss modulus 

for all formulated nanocomposite increase with the increase in the zinc oxide filler. The results of the 

thermogravimetric analysis confirm the amelioration in the thermal properties of different 

nanocomposites TER/MDA/ZnO crosslinked by methylene dianiline (MDA) and formulated by zinc 

oxide (ZnO) as a filler at varying mass percentage (0, 0.5, 1, and 2%). 
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1. Introduction 

Epoxy resins are widely used and employed in several industrial application fields such 

as aerospace, automotive, encapsulate electrical and electronic components [1-4]. Epoxy resins 

thermosetting are the most commonly used owing to their excellent thermal and mechanical 

properties and their exceptional anticorrosive coatings properties [5-10]. However, some 

current problems in the thermosetting resins applications are low stiffness and strength, as well 

as exothermic heat generated by the curing of epoxy resins. Then, additives are often employed 

to modify materials' characteristics and properties, including diluents, loads, modifiers, flame 

retardants, antioxidants, or plasticizers [11-17]. Several researchers have currently adopted that 

the addition of zinc oxide compound in the epoxy resin matrix exhibits high flame retardancy 

and thermal stability [18-22]. Further, liquid crystal epoxy resins are widely investigated 

because of their unusual mechanical and thermal properties, little shrinkage in curing, low 

thermal expansion coefficient, and dielectric constant [23-27]. The advanced applications of 

epoxy resins are not alone very demanding, but many new applications with new performance 

https://biointerfaceresearch.com/
https://biointerfaceresearch.com/
https://doi.org/10.33263/BRIAC114.1240312413
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0003-3080-5021


https://doi.org/10.33263/BRIAC114.1240312413  

https://biointerfaceresearch.com/ 12404 

requirements are developed every year [28-32]. In addition, the rheological properties of epoxy 

resins and their nanocomposites are very interesting. The incorporation of zinc oxide as a 

charge in elaborated nanocomposites could be increasing the storage modulus and the loss 

modulus. Also, the increase of storage modulus and the loss modulus depends on the dispersion 

of filler addition into formulated nanocomposite [33-38]. In this potential study, we synthesized 

and developed the triglycidyl ether N,N bis (3-phenylamino propyl) 3-phenylamino propoxy 

phenyl trifunctional epoxy resin was identified and confirmed using FTIR and NMR 

spectroscopy. Moreover, viscosity, rheological, and thermal analyses of the TER and its 

nanocomposite were examined using an Ubbelhod VB-1423 capillary viscosimeter, RHM01-

RD HAAKE rheometer, and thermogravimetric analysis, respectively. 

2. Materials and Methods 

2.1. Synthesis of trifunctional epoxy resin (TER). 

 Trigycidyl of para aminophenol (TGPAP), aniline (98%), epichlorohydrin (99%), 

triethylamine (97%), methylene dianiline (99%), zinc oxide, and methanol were purchased by 

Aldrich Chemical Company and used without any other purification. Trifunctional epoxy resin, 

namely triglycidyl ether N,N bis (3-phenylamino propyl) 3-phenylamino propoxy phenyl 

(TER) was synthesis in two steps according to the procedure reported in many works of 

literature [39-41]. In the first step, 5.5×10-3 mol of aniline as the nucleophilic group was added 

to 6.54×10-3 mol of TGPAP with magnetic stirring for 6 h at 80 °C to open the epoxy groups. 

During the second step, 5.53 10-3 mol of epichlorohydrin was added to the intermediate product 

by condensation reaction with magnetic stirring for 4 h at 70 °C. Besides, 9.85 ×10-3 mol of 

triethylamine as a basis was added to the reaction mixture with magnetic stirring for 3 h at 40 

°C. TER epoxy resin was obtained by removing the secondary products using the rotary 

evaporator. Finally, TER was obtained with a yield of 92 % (Figure 1). 

 
Figure 1.Synthesis of trifunctional epoxy resin (TER). 

2.2. Curing of trifunctional epoxy resin (TER). 

 TER was cured using methylene dianiline (MDA) as a curing agent to form a three-

dimensional material (Figure 2). Then, the four hydrogens atoms of methylene dianiline react 
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with the oxirane groups of TER by the condensation reaction. Besides, MDA and TER are 

curing in the oven at 80 °C. Moreover, TER was mixed with MDA to provide a single-phase 

[42, 43]. Further, the development specimens were placed in a geometrically designed mold at 

70°C for 24 h. Finally, we proceeded to develop the nanocomposite using the identical 

procedure above in the hardening of TER with MDA and zinc oxide (ZnO) as charge at 

different percentages (0, 0.5, 1, and 2%) [20]. 

 
Figure 2.TER crosslinking using MDA. 

2.3. Fourier-transform infrared spectroscopy. 

 The infrared spectrometer used is BRUKER Fourier transformed infrared spectrometer 

(FTIR). The light beam passes through the specimen to a thickness of about 2 μm. The analysis 

is carried out between 4000 cm-1 and 600 cm-1. 

2.4. Nuclear magnetic resonance. 

 The nuclear magnetic resonance (1H NMR and 13C NMR) analysis was obtained using 

an apparatus of Bruker AVANCE 300 by dissolving the product in DMSO. The chemical 

displacements are presented in ppm. The letter s, d, t, q, and m denote singlet, doublet, triplet, 

quadruplet, and multiplet, respectively. 

2.5. Rheological analysis. 

 The viscosimetric and rheological properties of epoxy resin and its composites were 

analyzed using capillary viscosimeter VB-1423 of the Ubbelohd and RHM01-RD HAAKE 

rheometer (HAAKE MARS), respectively. 

2.6. Thermogravimetric analysis. 

 To realize our study, which deals with the degradation of elaborated epoxy resin and its 

nanocomposites, we employed the thermogravimetric analysis method (ATG). Measurements 
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of the kinetics of degradation by mass loss were carried by using a SETARAM TAG 24S. The 

heating rate is 10 °C/min, and the range of the measurement temperature is 0 to 600 °C. 

3. Results and Discussion 

3.1. FTIR and NMR characterization. 

 Fourier transform infrared (FTIR) and nuclear magnetic resonance (1H NMR and 13C 

NMR) analyses were realized to confirm the chemical structure of the triglycidyl ether N,N bis 

(3-phenylamino propyl) 3-phenylamino propoxy phenyltrifunctional epoxy resin. FTIR, 1H 

NMR, and 13C NMR spectrums of TER are displayed in Figures 3, 4, and 5. Then, the different 

bands and chemical shift results obtained of the trifunctional epoxy resin are reported below. 

 
Figure 3. IR spectra of TER. 

 FTIR (cm-1): 3240 (band of N-H), 2900 (band of CH2 linked to oxygen), 1450-1580 

(band of N-C linked to aromatic rings), 1400 (band of C-N-Ar), 1030 (band of aromatic C-H), 

and 820 (band of oxirane group). 

 
Figure 4.1H NMR spectra of TER. 

 1H NMR (ppm): 1.2 (solvent); 2.5 (d, 6H, CH2 of oxirane group); 3 (m, 3H, CH of 

oxirane group); 3.3 (m, 3 H, CH linked to CH aliphatic); 3.5 (d, 6H, CH2 linked to oxirane 

group and nitrogen); 3.7 (d, 6 H, CH2 linked to phenylamino); 4.3 (s, 3 H, NH linked to phenyl); 

6-6.3 (m, 15 H, CH aromatic), 6.6 (d, 2 H, CH aromatic of N in ortho position), and 7.2 (d, 2 

H, CH aromatic of N in meta position). 
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Figure 5. 13C NMR spectra of TER. 

 13C NMR (ppm): 40 (solvent); 47 (s, CH2 of oxirane); 49 (s, CH2linked of 

aminophenyl); 55 (s, CH of oxirane); 58 (s, CH2 linked to N); 60 (s, CH2 linked to oxirane and 

oxygen); 65 (s, CH2 linked to oxirane and oxygen); 68 (s, CH2 linked to phenoxy); 70 (s, CH 

linked to methoxy oxirane); 70 (s, CH linked to methoxy oxirane); 75 (s, CH linked to 

methoxyphenyl); 112 (s, aromatic CH in ortho position to nitrogen); 115 (s, aromatic CH in 

meta position to nitrogen); 130 (s, aromatic CH in para position to nitrogen); 147 (s, aromatic 

carbon bound to N), and 149 (s, aromatic carbon bound to NH). 

3.2. Viscosity study. 

 Figure 6 display the variation of viscosity of the (TER/Ethanol) system according to 

the temperature at various weight percentages (5, 10, 15, and 20%).  

 
Figure 6. Viscosity of the TER/Ethanol system according to the temperature at various weight percentages. 

The viscosity of the (TER/Ethanol) system increases with the increase in the weight 

percentage of trifunctional epoxy resin at each temperature. This augmentation can be 

explained by the increase in the molecular mass of the (TER/Ethanol) system [44-46]. This due 

to the increase in the (TER/Ethanol) system's density by a strong interaction between the bonds 
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of the epoxy resin employed. As the temperature increase suggests, the viscosity of 

(TER/Ethanol) system is decreasing. This decrease in viscosity indicates that the density is 

becoming low. Therefore, the heat is given by the apparatus feebleness the interaction between 

the bonds of TER. Further, the viscosity changes from a viscous state to a liquid state. 

3.3. Rheological properties. 

 Rheological properties are interesting properties that affect the processing of the 

formulation of the nanocomposite. Variation of storage modulus G' and loss modulus G'' versus 

frequency for nanocomposite pure (TER/MDA) and formulated nanocomposites 

(TER/MDA/ZnO) with various percentages of zinc oxide are plotted in Figure 7 and 8.  

 
Figure 7. Storage modulus G' for TER/MDA/ZnO according to frequency. 

 
Figure 8. Loss modulus G'' for TER/MDA/ZnO according to frequency. 

Storage modulus G' and loss modulus G'' values of different nanocomposites increase 

with increasing zinc oxide as charge [47, 48]. The loss modulus G'' was significantly lower 

than the storage modulus G' over the entire frequency examined for nanocomposite crosslinked 

by methylene dianiline and formulated with different zinc oxide percentages. The storage 

modulus G' of all prepared nanocomposite increases with an increase in ZnO percentages [40, 

49]. This result indicates the progressive curing of the three-dimensional network. The 

rheological behaviors were highly correlated with the formulation of the nanocomposites. 
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3.4. Thermal properties. 

 The thermal properties of the TER crosslinked by methylene dianiline as a hardener 

and formulated with zinc oxide (ZnO) as a filler (TER/MDA/ZnO) at various percentages were 

measured by thermogravimetric analysis (TGA). The TGA plots are displayed in Figure 9. The 

TGA results are depicted in Table 1 (Td, T50 and R (500 °C). The temperature at which 

decomposition begins, decomposition temperature at 50% of weight loss, and the residual 

amount at 500 °C, respectively). The result in Table 1 indicates that the residual amount of the 

formulated nanocomposite (TER/MDA/ZnO) is a higher value compared with the TER/MDA 

pure [50-54]. The reason is that zinc oxide does not decompose below 500 °C. Further, the 

higher the zinc oxide's mass ratio in the nanocomposite (TER/MDA/ZnO) elevates, the residual 

amount elevates consequently. All TGA plots display one peak, indicating thermal degradation 

of the elaborated nanocomposites [55-57]. Then, the temperature peak of the nanocomposite 

pure (TER/MDA) is 220 °C. The weight loss of the (TER/MDA) begins from 220 °C and loses 

all its weight at 409 °C. However, the temperature peak of the formulated nanocomposite 

(TER/MDA/ZnO) is 268 °C. The weight loss of the (TER/MDA/ZnO) starts from 268 °C and 

loses all its weight at 477 °C. Also, the temperature peak of the formulated nanocomposite 

(TER/MDA/ZnO) is higher than that of nanocomposite pure (TER/MDA) [20, 58, 59]. 

 
Figure 9. TGA plots of TER/MDA and TER/MDA/ZnO. 

Table 1. TGA data of TER/MDA and TER/MDA/ZnO. 

Nanocomposites Td (°C) T10 (°C) T50 (°C) Sdr (°C) R (%) (500 °C) 

TER/MDA/0% ZnO 220 333 409 344 32.5 

TER/MDA/0.5% ZnO 235 345 427 356 37.6 

TER/MDA/1% ZnO 255 357 443 368 42.5 

TER/MDA/2% ZnO 268 374 477 381 48.5 

 

4. Conclusions 

 In this study, we have developed and investigated the triglycidyl ether N,N bis (3-

phenylamino propyl) 3-phenylamino propoxy phenyl (TER) trifunctional epoxy resin. Epoxy 

resin (TER) was identified using FTIR and NMR spectroscopy. Viscosimetric behaviors of 

TER/Ethanol decreased with an increase in temperature. Further, TER/MDA/ZnO curing by 

methylene dianiline and formulated by zinc oxide were investigated as potential nanocomposite 

for rheological and thermogravimetric analysis. Then, storage modulus and the loss modulus 

for varying nanocomposites elevate with both the elevate into zinc oxide and frequency. This 

could explain that the charge employed incorporated into nanocomposites is very well 
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formulated. The thermogravimetric analysis data confirm the amelioration of the thermal 

properties of varying nanocomposites formulated at different percentages of ZnO. 
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