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Abstract: In this work, the interaction between titanocene dichloride, an anticancer drug, and carbon 

nanotube was studied at the B3LYP-D3/6-311G(d,p) level of theory. The external electric field effects 

on the total energy, dipole moment, electronic spatial extent (ESE), and the HOMO-LUMO gap of the 

Cp2TiCl2…nanotube molecule were studied. Also, the interaction energy values of the titanocene 

dichloride with carbon nanotube were calculated. We found good linear relationships between 

interaction energy, dipole moment, and ESE with external electric field strength. 
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1. Introduction 

After the discovery of the anticancer activity of titanocene dichloride (Cp2TiCl2, Cp = 

5-(C5H5)2), numerous experimental researches have been reported on it [1-3]. Whereas the 

consequences of phase II clinical trials were unsuitable due to the absence of activity against 

the examined tumors, the described important research on titanium compounds motivated the 

attention in new titanium compounds with anticancer properties [4-7]. 

The action mechanism of the TiCl2Cp2 is unknown; initial studies recommended that it 

be connected with the purine bases of DNA [8-10]. Theoretical studies have been conducted 

on the hydrolysis chemistry of anticancer drug titanocene dichloride [11]. Interaction between 

titanocene dichloride anticancer drug and Al12N12 nano-cluster has been reported [12]. In other 

investigations, the complexation of titanocene dichloride with C20 and M+@C20 (M+= Li, Na, 

K) cages has been studied [13]. Later, more synthetic attempts have been made for boosting 

the cytotoxicity of titanocene dichloride derivatives [14-16]. A novel process starting from 

titanium dichloride and fulvenes [17,18] paved the way for directly accessing highly substituted 

ansa-titanocenes [19-21].  

In their efforts for progressing a drug delivery system, the ability of carbon nanotubes 

(CNT) and nanocages [22-26] has been studied. Moreover, the planar nanostructures have been 

considered suitable surfaces for holding and carrying the biological molecules [27-30].  

External electric fields influence the molecules' structure, electronic properties, and 

chemical reactivity [31]. Several computational investigations in this field have been reported 

[32-48].  
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In this work, we have reported a computational investigation of the interaction of 

titanocene dichloride anticancer drug with a carbon nanotube in the presence of the external 

electric field. The external electric field effects on the total energy, dipole moment, electronic 

spatial extent (ESE), and the HOMO-LUMO gap of the Cp2TiCl2…nanotube molecule were 

explored. 

2. Materials and Methods 

 2.1. Computational methods. 

By Gaussian 09 software package, optimization and vibrational analysis were handled 

[49]. Geometry optimizations were done using the B3LYP-D3 model. B3LYP-D3 model 

maintains the benefit of the B3LYP method on the one hand. On the other hand, it modifies 

simulates the weak interactions well utilizing Grimme term D3 [50]. The standard 6-311G(d,p) 

basis set  [51-54] were regarded for elements. For verifying the optimization structures have 

no imaginary frequency, harmonic vibrational frequencies were computed. 

3. Results and Discussion 

3.1. Energetic aspect. 

The structure of the Cp2TiCl2… nanotube complex and direction corresponding to the 

external electric field (EEF) are indicated in Figure 1. The selected carbon nanotube (CNT) is 

a (6,0) zigzag nanotube with the stoichiometry of C48H12, in which the hydrogen atoms are 

considered to saturate the atoms of tubular tips to avoid dangling effects [55].  

 
Figure 1. The structure corresponding to Cp2TiCl2…nanotube complex and direction corresponding to the used 

electric field. 

Table 1. Strength of external electric field along +y-axis (Ey, a.u), absolute energy (E, a.u), relative energy (E, 

kcal/mol), interaction energy (Eint, kcal/mol), dipole moment (Debye), electronic spatial extent (ESE, a.u), 

C…Cl distances (Å) in the Cp2TiCl2…nanotube complex at B3LYP-D3/6-311G(d,p) level of theory. 

Ez E E Eint , Debye ESE C…Cl C'…Cl 

0 -3993.6695 0.00 -7.99 5.54 30619.75 3.291 3.303 

0.001 -3993.6704 -0.56 -7.89 6.72 30650.85 3.303 3.318 

0.003 -3993.6761 -4.13 -7.66 11.97 30732.34 3.326 3.358 

0.005 -3993.6870 -10.99 -7.4 18.21 30844.27 3.348 3.414 

0.007 -3993.7031 -21.08 -7.1 24.59 31012.85 3.497 3.374 

0.009 -3993.7242 -34.32 -6.62 30.70 31387.18 3.410 3.690 

The energy of Cp2TiCl2… nanotube complex is studied at Ey= 0.000 to +0.009 a.u. 

Table 1 shows the energy of Cp2TiCl2… nanotube complex at the EEFs in parallel with the +y-

axis. These values show that the application of field along +y-axis enhances the complex 
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stability. Linear correlation between energy changes in the presence of EEF relative to the 

absence of EEF (E) is: 

∆𝐸 =  −3750.5 𝐸𝑦 + 3.7816; 𝑅2 = 0.9320 

It can be observed that the E values are fitted with the quadratic equation on the 

strength of EEF: 

∆𝐸 =   −404169 𝐸𝑦
2 − 179.41 𝐸𝑦 + 0.0168; 𝑅2 = 1.00 

3.2. Interaction energy. 

Currently, we consider the interaction energy between the Cp2TiCl2 and nanotube 

fragment. Calculated interaction energy values are listed in Table 1. These values show that 

the interaction energy values of the examined complex are negative.  

The interaction energy values corresponding to Cp2TiCl2… nanotube complex are 

collected in Table 1 at the various EEF along +y-axis. It can be seen the weaker interactions 

by applying stronger fields along +y-axis. It can be found a good linear correlation between 

interaction energy values and the EEF strength: 

∆𝐸𝑖𝑛𝑡 =  146.85 𝐸𝑦 − 8.0552; 𝑅2 = 0.9769 

Weaker interactions are satisfactory for chemical sensors since, in this case, the 

desorption process will be easy.  

Figure 2 indicates the Cl…C distances in the Cp2TiCl2 and nanotube complex in the 

absence of EEF. These distances are listed in Table 1 in the presence of EEF. It can be deduced; 

these distances are longer in the presence EEF than in the absence of EEF. On the other hand, 

Cl…C distances enhance with increasing of EEF strength along +y-axis. Longer Cl…C 

distances in the stronger EEF show the weaker interactions between two molecules in this field. 

This result is compatible with interaction energy values. 

 

 
Figure 2. Cl…C bond distances in the Clp2TiCl2…nanotube complex in the absence of an external electric field. 

3.3. Dipole moment. 

External electric field influences Cp2TiCl2… nanotube complex and changes the atomic 

charge distribution and thus the negative and positive charges centers of the complex. 
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Consequently, the complex polarization changes and an induced electric dipole moment are 

created. Dipole moment values of the Cp2TiCl2… nanotube at the various EEF are collected in 

Table 1. It can be observed; EEF disturbs the achieved induced electric dipole moment values.  

On the other hand, the dipole moment enhances with increasing of the EEF strength. 

Subsequently, the system polarity changed in the existence of EEF. 

There is a good linear dependence of dipole moment values on the strength of electric 

field: 

 = 2875.1 Ey + 4.3091; R² = 0.9937 

3.4. Electronic spatial extent (ESE). 

The surface area covering the volume around any specific molecules is measured as its 

ESE, which defines its gross receptivity from an external electric field. Table 1 reveals the ESE 

values for the Cp2TiCl2… nanotube complex in different EEFs. It can be observed, ESE values 

enhance through applying stronger fields along +y-axis.  

Linear dependence of the ESE values on the strength of electric field is: 

ESE = 78580 Ey + 30547;  R² = 0.8986 

It can be observed that the ESE values are fitted with quadratic equation on the strength 

of electric field: 

ESE = 1  107 Ey
2 - 9326.6 Ey + 30640;  R² = 0.9891 

3.5. Molecular orbital analysis. 

Figure 3 shows the plots corresponding to frontier orbitals in the Cp2TiCl2… nanotube 

complex in the field's absence (field value = 0.00 a.u). It is observed that only the nanotube 

fragment plays a role in frontier orbitals. 

  
HOMO LUMO 

Figure 3. HOMO and LUMO plots of the Cp2TiCl2…nanotube complex in the absence of an external electric 

field. 

Table 2. Frontier orbital energy and HOMO-LUMO gap values of the Cp2TiCl2…nanotube complexes along the 

various external electric field at B3LYP-D3/6-311G(d,p) level of theory. 

Ez E(HOMO) E(LUMO) EGap 

0 -3.738 -3.285 0.453 

0.001 -3.741 -3.288 0.453 

0.003 -3.749 -3.293 0.456 

0.005 -3.761 -3.297 0.464 

0.007 -3.784 -3.298 0.486 

0.009 -3.830 -3.284 0.546 
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Table 2 shows the values of frontier orbitals energy for Cp2TiCl2… nanotube complex 

in the existence of various external electric fields.  

These values show that the values of HOMO energy of Cp2TiCl2… nanotube complex 

decrease in the existence of an electric field along the +y-axis. It can be found, the stability of 

frontier orbitals increases by increasing the electric field strength. 

It can be observed that the following linear relationships between the HOMO energy of 

frontier and strength of the external field:  

𝐸(𝐻𝑂𝑀𝑂) = −9.4398 𝐸𝑦 − 3.7278; 𝑅2 = 0.8761 

On the other hand, it can be observed that HOMO energy values and strength of the 

external field are fitted by the quadratic equation: 

E(HOMO) = -1357.1 Ey
2 + 2.5511 Ey - 3.7404;  R² = 0.9899 

The change in the HOMO-LUMO gap for the Cp2TiCl2…nanotube complex is assessed 

in the existence of external electric fields (Table 2). These values show that the HOMO-LUMO 

gap increase with enhancing of the external electric field. Consequently, the increase in the 

energy gap of the HOMO-LUMO decreases electrical conductivity. 

Linear dependence of the EGap values on the strength of electric field is: 

EGap = 9.1021 Ey + 0.4383;  R² = 0.7518 

It can be observed that the EGap values are fitted with quadratic equation on the strength 

of electric field: 

EGap = 1981.7 Ey
2 - 8.4072 Ey + 0.4568; R² = 0.9758 

3.6. Population of conduction electrons. 

The Egap values could be used as an effective variable for the anticancer drug's 

sensitivity with carbon nanotube. It is related to the population of conduction electrons (N) 

with the following equation:  

𝑁 = 𝐴. 𝑇
3
2. exp (−

Δ𝐸𝑔𝑎𝑝

2𝑘𝐵 . 𝑇
) 

where kB and A (in electrons/m3 K3/2) are the Boltzmann’s constant and a constant. This 

equation reveals as Egap drops; there is an exponential growth in the population of conduction 

electrons. The electron population will frequently be transformed into an electric signal. The 

magnitude of this signal could be attributed to the presence of anticancer drugs. A carbon 

nanotube can identify the presence of Cp2TiCl2 by making an electrical noise. 

4. Conclusions 

 This section is mandatory to be added to the manuscript even if the discussion is 

unusually long or complex. This section is mandatory to be added to the manuscript even if the 

discussion is unusually long or complex. This section is mandatory to be added to the 

manuscript even if the discussion is unusually long or complex. This section is mandatory to 

be added to the manuscript even if the discussion is unusually long or complex. This section is 

mandatory to be added to the manuscript even if the discussion is unusually long or complex. 
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