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Abstract: In this study, the review and synthesis of ZnO and Mn-doped ZnO are discussed. ZnO is a 

substance that, because of its high potential in various applications such as the manufacture of solar 

cells, gas sensors, chemical absorbents, optical and electrical instruments, etc., is taken into 

consideration. ZnO and various levels of manganese (Mn) - doped ZnO were synthesized by the Sol-

gel method. Characterization was carried out by XRD and SEM. Using Taguchi experimental design 

by software Qualitek-4. Optimum is determined, and this case was investigated by varying the time 

parameter. Photodegradation of Pyridine under visible light in a batch reactor by un-doped and doped 

ZnO. The optimal concentration of 6% Mn and calcined at 350 ° C for 3 hr was introduced. The curve 

map of broadened partial DOS (PDOS) and overlap DOS (OPDOS) for 6% and 10% Mn-doped ZnO 

have also been plotted and comprised of experimental data. 

Keywords: ZnO; sol-gel; manganese doping; nano-particles; photocatalytic degradation; Taguchi. 

© 2021 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative 

Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). 

1. Introduction 

Zinc oxide is a semiconducting material with a hexagonal crystalline structure known 

as the wurtzite structure. It is a semiconductor material with a bandgap of approximately 3,2-

3,37 eV at 300 K, and the bandgap is wide [1-4]. It consists of a crystal lattice defined by the 

lattice parameters a and c and a basis containing 4 atoms as illustrated in scheme 1. Zinc oxide 

is a typical semiconductive and piezoelectric material with applications in electronics, 

optoelectronics, sensors, and energy conversions. According to reports, instead of titanium 

dioxide, zinc oxide is a good economical alternative. It has a good photocatalytic ability to 

remove organic contaminants [5-6]. One-dimensional nanostructures of ZnO are very 

important semiconductor building blocks with unique and novel physical and chemical 

properties. Various morphologies of ZnO nanostructures, such as nanowire arrays, nanorods, 

nanobelts, and nanotubes, have been synthesized using physical, chemical, and electrochemical 

methods. Pure, undoped ZnO photocatalysts have limited applications. It consists of a crystal 

lattice defined by the lattice parameters a and c and a basis containing 4 atoms as illustrated in 

scheme 1. The wurtzite surfaces are typically described in a four-vector basis - three in the (x-

y) plane defining the hexagonal geometry and one along the z-axis as seen in scheme1. The 

ions are doped to achieve some desired properties like wide or narrow bandgap, increases in 
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optical absorbance and ferromagnetism, etc. [7]. Mn-doped ZnO has been synthesized by 

various techniques [8-16]. On the nanoscale, ZnO strongly favors crystalline growth in the c-

direction, resulting in the formation of many different nanostructures such as nanotubes and 

nanorods nanobelts, and nanowire. The most studied is the hexagonal nanowire. The 

nanowires, synthesized by a physical vapor deposition (PVD) process, are very uniform in 

appearance, being single-crystalline rods. In this study, ZnO and Mn-doped ZnO crystals were 

synthesized using the sol-gel technique. This method is the easiest and best way to synthesis 

nanoparticles. Pyridine is a toxic organic compound found in some industries' wastewater, such 

as the food and pharmaceutical industries. Pyridine is used in the synthesis of vitamins and 

medicines, herbicides, etc. To evaluate the photocatalytic ability to remove pyridine has been 

studied [17]. Synthesis of ZnO and Mn-doped ZnO was carried out by the sol-gel method. 

Taguchi method of experimental design is performed by Qualitek-4 software. Optimum is 

determined to remove pyridine in the batch reactor under visible light. The missing absorbance 

of visible light makes this material one of the best transition metal oxide nanoparticles [18-19]. 

 
Scheme 1. Zinc oxide in various structures. 

2. Materials and Methods 

 2.1. Materials & preparation. 

Zn(CH3COO).2H2O (99%, Merck), Na2CO3 (99.5%, Merk), n(CH3COO)2.4H2O 

(99.99%, Merk), pyridine (99%, Merk), deionised water, were used without further 

purification. The synthesis of ZnO and  Mn-doped ZnO by the sol-gel method is presented. 

This study's synthesis method is similar to Article 20 has been in references with a slight 

change. A typical synthesis of undoped ZnO, 13.5 g of Zn(CH3COO).2H2O and 6.5 g of 

Na2CO3 were separately dissolved in 50 ml of deionized water. Next, the Na2CO3  solution to 

form white precipitates. Precipitates on the filter paper are washed with deionized water to 

remove reaction by-products until the TDS of the supernatant becomes less than 100 ppm. The 
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separated precipitates were dried in an oven 80 °C and then heat-treated at 350°C for 1 hr. A 

solid mixture of 2, 4, and 6 mole% Mn(CH3COO)2.4H2O was dissolved in 50 ml of deionized 

water and then mixed with an aqueous solution of Na2CO3, followed by the same procedures 

for undoped ZnO (9). According to the experimental design, time and the calcined temperature 

is set to.  

2.2. Characterization.  

X-ray Diffraction (XRD) analysis of the photocatalysts for structural characterization 

was carried out using a Philips Diffractometer. The samples' chemical composition and 

morphology were carried out using a scanning electron microscope (SEM), model Leo 440i. 

Crystal size measured by equation Williamson - Hall has been calculated. The optical 

absorption spectra were obtained using a (model) UV-Vis spectrometer. 60ppm concentration 

of pyridine was prepared using deionized water. Magnetic stirring at a speed of 200 rpm was 

applied to mate the suspension solution during the reaction. The photoreactor is located in a 

tin-Cylinder, and the Mixing chamber is made of Pyrex. A tungsten lamp (300 Watt) was used 

as a light source. Pyridine was used as a probe molecule to evaluate the photocatalytic activity 

of undoped and doped ZnO nanoparticles in response to visible light irradiation of pyridine's 

characteristic optical absorption peak 256 nm was chosen to monitor the photocatalytic 

degradation process, for each set of experiments, 200 ml of a standard pyridine solution (60 

ppm) mixed with 1 g/l of each of the powders. The suspension was stirred in the dark for 30 

minutes to ensure the establishment of absorption and desorption equilibrium of pyridine on 

the par ticle surface. Next, the solution's pH is adjusted by a device pH meter and Concentrated 

HCl acid to reach the level 6.8 ± 0.2 (21). Then the solution is transferred into the reactor and 

stays under visible light for 30 minutes.  

3. Results and Discussion 

Taguchi method of experimental design is performed by software Qualitek-4. The 

experiments are considered concentration, time, and temperature factors, and These factors 

have been studied in three-level. The factors and levels are shown in Table 1. 

Table 1. Factors and levels. 

Factor Level 1 Level 2 Level 3 

Mn doped ZnO 2% 4% 6% 

Temperature 350°C 450°C 550°C 

Time 1 hr 2hr 3hr 

Experiments were designed to help software, suggested array L9, and are given in Table 2. 

Table 2. The proposed experiments by software. 

No. Mn-doped ZnO Temperature Time 

1 2% 350°C 1hr 

2 2% 450°C 2hr 

3 2% 550°C 3hr 

4 4% 350°C 2hr 

5 4% 450°C 3hr 

6 4% 550°C 1hr 

7 6% 350°C 3hr 

8 6% 450°C 1hr 

9 6% 550°C 2hr 
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The experiment results are shown in Table 3 are repeated three times. The maximum 

absorption wavelength is 256 nm it has been found that the results. Maximum absorption at a 

wavelength of 256 nm to ZnO is 3.389(au.). 

Table 3. The result of experiments. 

No. Result 1 

Absorbance 

(au.) 

Result2 

Absorbance 

(au.) 

Result3 

Absorbance 

(au.) 

1 3.295 3.29 3.300 

2 3.907 3.900 3.921 

3 3.008 3.007 3.020 

4 3.732 3.621 3.730 

5 2.927 2.910 2.928 

6 3.100 3.104 3.103 

7 2.724 2.725 2.751 

8 3.189 3.169 3.190 

9 3.801 3.800 3.798 

Pyridine adsorption by ZnO and Nano-photocatalysts made according to the design of 

experiments is shown in Figure 1. 

 
Figure 1. Pyridine adsorption by photocatalysts. 

First, the results of the first experiments to test the accuracy of the standard method are 

investigated. The optimum concentration of 6%, time 3 hr at 350°C has been provided by the 

software. Experiments repeated three times, and then with the help of S/N method, optimal 

conditions have been determined. In this method, the same result is obtained using the standard 

method. The effect of each factor in Figure 2 (a bar) and Figure 3 (a pie) is shown. As can be 

seen, the time factor has the greatest effect, and the temperature factor has the least effect. It 

should be noted that the software design based on the response of less is better Because the 

absorption rate is less than the ability to remove the photocatalysts. In figure 1 is presented by 

optimal design of experiments that have the lowest absorption. 
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Figure 2. The effect of each factor on a bar graph. 

 
Figure 3. The effect of each factor on a pie graph. 

3.1. Study of optimum.  

The XRD pattern of undoped ZnO and Mn-doped ZnO with 6% Mn, time 3 hr at 350°C 

concentration are presented in figure 4. The XRD pattern shows only the peaks correspond to 

the wurtzite crystal structure of ZnO. There is no signature of impurity peaks in the XRD 

pattern of samples that might belong to the Mn-related secondary phase. 

 
Figure 4. The XRD pattern of undoped ZnO and Mn-doped ZnO. 
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Crystalline particle size is shown in Table 4. In the case of the doped crystal, size 

increased. 

Table 4. Crystalline particle size. 

Zinc Oxide ZnO 6%,3hr,350°C 

Crystallite size (nm) 13.68 16.94 

Crystalline particle size By changing the time factor 

Zinc Oxide 6%,1hr,350 °

C 

6%,3hr,350 °C 

Crystallite size (nm) 17.25 16.94 

The SEM image of 6% Mn-doped ZnO illustrates the morphology is well ordered. A 

lower aggregation and better particle size distribution (Figure 5). 

 
Figure 5. SEM micrograph for 6% doped ZnO. 

3.2. Times calcined effect in the doped state.  

They have been synthesized to investigate the concentration of 6% and a temperature 

of 350 °C for 1 hr. XRD results show that the calcined particle size decreased with increasing 

time (Table 4). XRD results are similar to previous studies (Figure 6). 

 
Figure 6. The XRD pattern of 6% doped ZnO. 

3.3. Modeling and simulation results. 

Our model has been simulated based on our previous works [22-49]. Several new 

methods have been simulated based on recent works[50-58]. Using Density-of-states (DOS), 
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the number of states in a unit energy interval can be presented since energy levels are 

contiguous. Thus, DOS has been plotted as a curve map due to isolated systems and discrete 

energy levels. We have considered the DOS graph to analyze the nature of electronic structures 

over the surfaces. The original total DOS (TDOS) of our system have been calculated via 

𝑇𝐷𝑂𝑆(𝐸) = ∑ 𝛿(𝐸 − 𝜀𝑖𝑖 ) (1) formula. The eigenvalue "𝜀" is a set of single-particle Hamilton, 

and "𝛿" is the Dirac delta function that can be yielded after replacing Gaussian [59-61]. There 

is another formula as:𝐺(𝑋) =
1

𝑐√2𝜋
𝑒

−𝑥2

2𝑐2   (2) that the FWHM (𝑐 =
𝐹𝑊𝐻𝑀

2√2𝑙𝑛2
) (3) stands for “full 

width at half maximum”, an adjustable parameter in a multi-wave function program where the 

larger FWHM results in a smoother looking TDOS graph, making the analysis to be performed 

easier. The normalized Lorentzian function is defined as  𝐿(𝑋) =
𝐹𝑊𝐻𝑀

2𝜋

1

𝑥2+0.25𝐹𝑊𝐻𝑀2 (4) 

Pseudo-Voigt function is weighted as a linear combination of Gaussian function and Lorentzian 

function [59,60]: 𝑃(𝑥) = 𝑤𝑔𝑎𝑢𝑠𝑠 𝐺(𝑥) + (1 − 𝑤𝑔𝑎𝑢𝑠𝑠)𝐿(𝑥)(5). The curve map of broadened 

partial DOS (PDOS) and overlap DOS (OPDOS) are valuable for visualizing orbital 

composition analysis PDOS function of fragment A is defined as: 𝑃𝐷𝑂𝑆𝐴(𝐸) = ∑ 𝛯𝑖,𝐴𝑖 𝐹(𝐸 −

𝜀𝑖) (6) where 𝛯𝑖,𝐴 is the composition of fragment “A” in orbital i. The OPDOS between 

fragment “A” and “B” is defined as𝑂𝑃𝐷𝑂𝑆𝐴,𝐵(𝐸) = ∑ 𝑋𝐴,𝐵
𝑖

𝑖 𝐹(𝐸 − 𝜀𝑖) (7) where 𝑋𝐴,𝐵
𝑖  A, B is 

the composition of a total cross term between fragment A and B in orbital. Both original and 

broadened TDOS/PDOS/OPDOS are shown in this study. It is important to note that the height 

is only meaningful for lines (original data) and not for curves. The left-axis and right-axis 

correspond to TDOS/PDOS and OPDOS, respectively [59-61]. The graph of gradient map with 

contour lines type represents the gradient direction of real space function. Since gradients of 

real space function are needed to be evaluated in our system, we have calculated these contour 

maps in our works. The vector field map with contour lines is very similar to the last graph 

type. However, the gradient lines are replaced by arrows, which distribute on grids evenly and 

represent gradient vectors at corresponding points [59-61]. It can also use filename .wfn instead 

of filename .fchk to calculate the gradient within the contour map with topology paths of 

electron density. This type of graph is very useful in Bader’s QTAIM analysis. It can also plot 

the gradient + contour map for any other real space functions supported by Multiwfn [59-61]. 

The critical points and paths to be portrayed on the graph are needed to do topology analysis. 

The deformation map of electron density clearly shows us the electron density variation during 

the formation of the molecule, molecular electron density minus electron densities of each atom 

in free-state (Fig.5)[62-88].  

 
Figure 5. The curve map of broadened partial DOS (PDOS) and overlap DOS (OPDOS) for 6% and 10% Mn-

doped ZnO. 
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4. Conclusions 

 Various levels of Mn-doped ZnO were synthesized by the Sol-gel method. 

Characterization was carried out by XRD, SEM. In order to evaluate the synthesized 

photocatalyst, pyridine photodegradation was studied under visible- light. Experimental design 

with three factors and three levels were Qualitek-4 Software. In conclusion, 6% Mn-doped 

ZnO in 350°C and 3 hr is suitable as the best photocatalyst for removing pyridine. According 

to the results, XRD doped crystalline particle size increased, and Mn-doped ZnO is suitable for 

removing pyridine. Finally, the partial DOS (PDOS) and overlap DOS (OPDOS) for 6% and 

10% Mn-doped ZnO have been analyzed and comprised of experimental data. 
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