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Abstract: Lateral difluoro substituent liquid crystal based on a three-aromatic core has been 

synthesized. It has been designed to correlate the molecular structure and mesomorphism with reference 

to the difluoro substituent and -COO- linkage group. This compound was characterized by elementary 

analyses and spectroscopic techniques such as FTIR and 1H-NMR. The synthesis compound's 

mesomorphic behavior was studied by polarizing optical microscope, differential scanning calorimetry, 

and dielectric measurements. The recent investigation reveals only SmB phase. 
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1. Introduction 

Liquid Crystals (LCs) have drawn significant attention. They are now one of the hot 

topics in LC research due to their fascinating and functional properties. The essential properties 

used to characterize a liquid-crystal are optical anisotropy, dielectric anisotropy, viscoelastic 

properties, phase stability, and research. The molecular structure influences these. Recent 

research has reported the synthesis of a wide range of mesogenic, in particular, fluorinated 

thermotropic liquid crystals [1-7]. Due to the combination of polar, steric effects and the great 

strength of the C-F bond, these materials have played an essential role in satisfying the exacting 

demands of the various types of liquid crystal displays. The influence of the lateral fluoro 

substituent on the mesophase behaviors of the ferroelectric and antiferroelectric LCs has been 

studied by several groups [8-10]. It has been found that the lateral fluoro substituent leads to 

the reduction of transition temperature and in the ferroelectric stability (SmC*). In contrast, 

more stability of the antiferroelectric SmC𝛼 has been observed compared to the non-fluoride 

series [11-12]. In general, for the non-chiral calamiticmesogens, the influence of lateral fluoro 

substituent on melting point, nematic and smectic stability, and anisotropic dielectric has been 

discussed with the result of enhancing some properties [13-19]. 
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It is already known that the lateral mono and di-fluoro-substituent terphenyls have been 

used as host materials to give SmC* systems for ferroelectric display devices [20-24]. It has 

been found that the lateral fluoro-substituent in terphenyl systems enhances the stability of the 

tilted smectic phases and reduces the melting point. The difluorophenyl, which confer a high 

lateral dipole, shows an enhancement in negative dielectric anisotropy. To produce excellent 

host ferroelectric LC with lower viscosity, Hird has synthesized the terphenyl system with 2.3-

difluoro substituent [25-26]. Then, the different positions of substitution must be distinguished.  

In this work, we report the synthesis and mesomorphic properties of the lateral difluoro 

substituted terphenyl LC in an attempt to obtain a nematic phase with negative anisotropic 

dielectric and low viscosity. However, the differential scanning calorimetry and polarizing 

optical microscopic investigation reveal the following phase sequence: Cr-SmB-I. 

2. Materials and Methods 

 2.1. Syntheticprocedures. 

In the present work, the organic synthesis of the difluoro compound is illustrated in 

Figure 1. The 1,4-phenylene bis (2,3-difluoro-4-octyloxybenzoate) was synthesized by 

esterification of the 3,2-fluoro-4-octyloxybenzoic acid (2) with the hydroquinone (3) as 

described in [9]. The residue was purified by using column chromatography on silica gel 

eluting with toluene. The compound was recrystallized from absolute ethanol. The 2,3-

difluoro-4-hydroxybenzoic acid (1) and the hydroquinone (3) were supplied by Sigma Aldrich. 

The compound (2) was prepared by the well-known method described in the reported literature 

[27]. 

 
Figure 1. The synthetic route of the studied compound. 

2.2. Characterization and computational details. 

The synthesized product's chemical structure was characterized by Fourier transform 

infrared spectroscopy (FTIR) using Perkin-Elmer PARAGON 1000 PC and by nuclear 

magnetic resonance (NMR) spectroscopy on a Bruker AV 300 MHz Spectrometer. 

All our theoretical calculations were performed using the GAUSSIAN09 program [28]. 

The geometry optimization was performed in DFT/B3LYP/6-31G(d). All geometrical 

parameters were allowed to vary independently apart from the planarity of the rings. A previous 

study shows that this method is well suited to the conformational analysis of conjugated 

molecules [29]. The harmonic vibration frequencies of the stationary points were calculated 

with the same basis to identify the local minima. Only the calculation of the frequencies makes 

it possible to control the nature of this stationary point. 
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To study the compound morphology, we loaded the obtained liquid crystal into ITO 

electro-optical cells (about 6 µm thick) by capillary action at the isotropic temperature. The 

temperature regulator was controlled by a programmable multimeter (Keithly Model 2000), a 

programmable DC power supply (HP E3632A), and an oven developed in our laboratory 

The sample temperature was controlled using an oven with a precision better than 

±0.1°C/min. Optical observations were made under a polarizing optical microscope (POM) 

(Olympus BX51) equipped with a digital CCD camera (Sony). Imaging software (Archimed) 

was used to process, analyze, and store the LC textures. The POM observations were correlated 

with differential scanning calorimetry (DSC) measurement using a Perkin-Elmer DSC7. To do 

this, DSC thermograms are obtained in the heating and cooling cycle. The sample is heated and 

cooled with a scan rate of 5°C/min and held at its isotropic phase for two minutes to attain 

thermal stability. 

 The dielectric measurements were performed using commercial cells (EHC,Japan) 

coated with indium tin oxide (ITO). The thickness of the cells is 6µm. The active area is 25 

mm2. The cells were filled with isotropic phase liquid crystals by capillary action. The 

dielectric measurements were performed using an impedance analyzer (SOLARTRON 1260) 

coupled with a dielectric interface 1296. Generally, the dielectric system response submitted 

to an external alternating electric field is governed, in the frequency domain, by the complex 

permittivity formalism (equation 1) 

ε*(ω, T) = ε′(ω, T) − i ε″ (ω, T)     (1) 

Where ε’(ω, T) and ε″ (ω, T) are the real and imaginary parts of the complex permittivity, 

which represent the storage and the losses of the energy respectively during every electric field 

cycle. Several authors widely used this formalism of complex permittivity to identify the 

relaxation phenomena. The empirical Cole-Cole relaxation can express the nature of dielectric 

permittivity related to dipoles oscillating in an alternating field: 

 

ε′ = ε∞ +
(εS−ε∞)

(1+(jωτ)(1−α))
    (2) 

Where εS and ε∞ are the static and high frequency, respectively, ω(=2f) is the angular 

frequency, τ is the relaxation time and α is  constant  (0< α<1) 

3. Results and Discussion 

3.1. Molecular structure and supramolecular assembly. 

The spectra were obtained using CDCl3 as solvent and referenced to tetramethylsilane 

(TMS) as the internal standard (Figure 2).IR (KBr)  (cm-1) =2935, 2843 (C-H aliphatic),  

 =1748 (C=O),  =1000(C-F), )  =1630, 1515, 1492, 1470 (C=C phenyl rings) (Figure 3). 

The theoretical DFT/B3LYP/6-31G(d)calculation results, which are indicated in Figure 

4, clearly illustrate that the two isomers S1 and S3are the most stable thermodynamically. The 

calculated Boltzmann distribution of the two S1 and S3 forms is 56% and 44%, respectively. 

The 19F NMR spectrum decoupled from the proton shows that these forms are not equivalent 

either chemically or magnetically. The spectrum shows two systems of the AX type with the 

same 2J coupling and equal to -19.7Hz 30]. 
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(a) 

 
(b) 

Figure 2.  NMR spectra of the studied molecule in CDCl3:(a) S1: 19F NMR not decoupled; (b) S2: NMR 19F 

decoupled from 1H spectrum. 

 
Figure 3. FTIR spectra of the studied compound. 

The fluorine chemical shifts of the major isomer are -157.5 ppm for the A and -137,7 

ppm for the X part, whereas, for the minor isomer, the chemical shifts are -157.6 ppm for the 

A and -138.4 ppm for the Xpart.experimentally, the yield of the major isomer S1 is 83%. 

3.2.Phase diagram. 

Differential scanning calorimetry (DSC) measurements were carried out on synthesized 

compounds under a nitrogen atmosphere to identify the phase transitions of LC. The 

temperature measurements varied between 25 and 175 °C with a heating and cooling rate of 5 

°C/min. Figure 5 shows two endothermic peaks at 56.4°C and 101.5 °C, indicating that the 

present compound exhibits only one phase between crystal (Cr) and isotropic (I) phases. 

 

 
(a) 

 
(b) 

 

 
(c) 

 
(b) 

Figure 4. The four isomers structure and relatives’ energies (kJ.mol-1): (a):S1(E= 0 kJ.mol-1); (b):S2 (E= 

12.03kJ.mol-1); (c):S3(E = 0.535 kJ.mol-1); (d): S4 (E= 14.03 kJ.mol-1). 
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Figure 5. DSC diagram at a heating rate of 5°C min-1. 

Also, by using a polarizing optical microscope (POM), the phase transition 

temperatures and the texture of LC mesogens were observed. Figure 6(a) shows the lancets and 

pseudo isotropic regions formed just below the isotropic temperature, which is generally an 

indication of the smectic B. At 56.5°C, the isotropic regions may be due to the homeotropically 

oriented molecules. Figure 6(b) depicts the coexistence of both phases, SmB, with crystalline, 

indicating the first characteristic order of this transition. According to the DSC analysis and 

the POM observations, we can conclude that the synthesized compound exhibits the following 

phase sequence: Cr-SmB-I. The associated enthalpies obtained from DSC thermograms and 

thus associated entropy of the prepared compound are given in Table 1. Therefore, the two-

phase transitions have a substantially larger latent heat and can be interpreted as the strongest 

first-order. In addition, the large peak at the I-SmB obtained by the DSC measurements (Fig.5) 

is due to the very slow transformation of the isotropic phase to the SmB. This behavior is 

consistent with the observed SmC-SmB-K phase sequence in CNT/LCs system by Klonkanda 

et al. [31]. They have demonstrated that both the SmC-SmB and SmB-K phase transitions are 

strongly first order, and the SmC was slowly transformed to the SmB. Moreover, a large peak 

at the transition SmB-I has been observed in the F8H6F8 system [32]. 

 
(a) 

 
(b) 

Figure 6. Morphological textures: (a) SmB phase and (b) coexistence (SmB and crystalline phases). 

Table1. Enthalpy and entropy change corresponding to various peaks observed in the DSC thermogram. 

 Cr-SmB SmB-I 

T(°C) 56.4 101.5 

∆𝑯5(k J.mol-1) 3.63 6.84 

∆𝑺(J.K-1.mol-1) 11.02 18.26 

3.3. Electrical and dielectric properties  
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The dielectric study was performed on a planar cell of 6µm thickness in the frequency 

range of 10 Hz-1MHz on cooling the sample from 100°C to 55°C. Figure 7 illustrates the 

frequency evolution of the imaginary part of the dielectric permittivity. 

 
Figure 7. Frequency dependence of the imaginary part ε” of the dielectric permittivity at 72°C, 74°C, and 78°C. 

At the low-frequency region, the dielectric behavior is dominated by the ionic 

contribution. Also, the low-frequency relaxation is attributable to the space-charge polarization 

resulting from the migration of mobile ions. It is important to signal that increases with 

increasing temperature, which can be explained by promoting the ion transport at higher 

temperatures or increasing the number of charge carriers contributing to electric conduction in 

the cells. These increases suggested an increase in the conductivity of the sample according to 

the well-known proportionality σ =𝜀0𝜔𝜀
′′[34-35].A plot of log (σ) with respect to the inverse 

temperature exhibited an Arrhenius-type behavior (Equation 3), as shown in Figure 8. 

𝜎 = 𝜎0𝑒
(
−𝐸𝑎
𝐾𝐵𝑇

)
     (3) 

Where Ea denotes the thermal activation energy of electrical conduction that depends on the 

conductor's nature, σ0 denotes the conductivity value when the reciprocal of temperature tends 

to zero, and kB is the Boltzmann constant. The activation energy obtained from the slope was 

Ea = 6.7 eV. This value is of the same order of magnitude for hydrogen-bonded liquid 

crystal[16]and higher than 0.6 eV measured in the antiferroelectric liquid crystal [35]. 

 
Figure 8. The electric conductivity of the sample in the 70°-86°C temperature range. 

Impedance Spectroscopy is a powerful method to investigate mobile charges' behavior 

in the liquid crystal's bulkor interfacial regions [36-42]. Therefore, both real (Zr) and imaginary 

(Zi) parts of the complex electrical impedance (Z*) were simultaneously measured as a function 

of the frequency (f) and as the temperature. The Nyquist plots (Zi versus Zr) for the studied 

samples demonstrated semi-circular arcs, as seen in Figure 9.  
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Figure 9. Nyquist representation of the complex impedance of the synthesized compound. 

To evaluate the ion behaviors near the bulk and surface region, we used an equivalent 

circuit that reproduces the experimental Nyquist data, as illustrated in Figure 10. This latter 

comprises the resistance, capacitance, and Warburg impedance, as shown in Figure 9. The 

generalized finite-length Warburg impedance (ZW) can be expressed as[43-45]: 

𝑍𝑊 =
𝑊𝑆𝑟

√𝑖𝑤
(1 − 𝑖)𝑡𝑛ℎ(𝑊𝑆𝑐√𝑖𝑤)   (4) 

Where the parameters WSr and WSc can be expressed as: 

𝑊𝑆𝑟 =
𝑅𝑇𝑁𝐴

𝐹2𝐴𝑛𝑆√2𝐷
     (5) 

𝑊𝑆𝑐 =
𝛿𝑁

√𝐷
      (6) 

where ω is the angular frequency, R is the gas constant, T is the temperature, NA is the 

Avogadro’s number, F is the Faraday constant, A is the surface area, ns is the surface 

concentration of the ions, D is the diffusion coefficient of the mobile ions, and δN is the 

thickness of the Nernst diffusion layer. 

 
Figure 10. Equivalent electric circuit for the liquid crystal 8CB and 8CB + NPs. 

The EEC's electrical parameters are obtained by fitting the experimental data and are 

summarized in Table 2. 

Table 2. Impedance spectroscopy parameters as the elements of the EEC model were obtained by using the 

measured impedance spectra. 

T (°C) Rcr (Ω) CLc (pF) RLC (Ω) CDL (nF) WSC(Ω∙s−1/2) WSR(MΩ∙s−1/2) 

74 891 59.5 236460 31.35 0,941 73.76 

78 1011 61.6 140670 34.3 0,686 37.7 

 

From this table, we can conclude that the electrode resistance RS, which represents the 

resistance of connectors and electrodes, is slightly affected by the temperature. In addition, the 

capacitance of the bulk CLC remains constant, while the bulk resistance RLC decreases with 
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increasing temperature. This increase in RLCis due to the increase in conductivity. This 

observation is in good agreement with the dielectric measurement. Also, the double-layer 

capacitance CDL, which is higher than the bulk capacitance CLC increases the temperature. It 

should be mentioned that this temperature-sensitive component in the EEC is quite useful for 

designing liquid crystal temperature.  

Figure11 presents the temperature dependence of the real permittivity (ε’) of the studied 

compound at 2 kHz, which shows significant changes at 100°C and 58°C indicating the 

I - SmB and SmB - Crystal phase transitions, respectively. This result is in good agreement 

with the POM and the DSC measurements. The increase of the real permittivity at the I-

SmBphase transition can be attributed to the dielectric and the elastic anisotropy of SmB. 

In fact, the influence of the lateral fluoro substituent on the nematic phase's stability 

and the improvement of  the physical properties have been investigated by different authors. 

For example, the nematic phase with a higher value of negative dielectric anisotropy has been 

observed in the compound with three benzenes and four lateral fluoro substituents required for 

some display applications [20]. However, in this case, the stability of the nematic phase is less 

than desired. To increase the nematic stability and maintain the negative dielectric anisotropy, 

in the present work, we modified the chemical structure of these compounds studied in 

reference [46]by introducing the ester function (CO2) as a linking group. 

 
Figure 11. Temperature dependence of the real part(ε’) of the dielectric permittivity at 2kHz. 

It is important to note that the ester extends the molecular length and enhances the 

polarizability anisotropy, which increases the liquid crystal thermal stability. Also, in the 

present compound, the molecular structure is quite symmetrical, with identical terminal chains. 

The nematic phase is expected. However, this structure excludes the nematic phase and 

allowing the SmB phase to be generated.  

The appearance of the ordered SmB phase may be due to the combination of the polarity 

of the lateral difluoro substituents, the ester as a linking group, and the ether oxygen in the 

terminal chain, such as this phase has been observed in the unsubstituent compound with ether 

function [47]. 

4. Conclusions 

 In summary, we have synthesized a lateral fluoro substituents liquid crystal. The 

mesogenic behavior of the synthesized compound was measured by POM and DSC studies. 

The phase-transition sequence of this compound has been found to be: Cr-SmB-I. Our 

experiments show that both Gr-SmB and SmB-I phase transitions are strongly first order. The 

phase transition temperature values obtained from the dielectric measurements agree with those 
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obtained by POM and DSC experiments. The DFT calculation shows two possible 

thermodynamically stable isomers. The obtained theoretical Boltzmann distribution was in 

good agreement with the experimental one. The use of four fluoro substituents in the aromatic 

core, in addition to those already present in ester function as a linked group, results in the 

appearance of smectic B. This study will help in exploring additional possibilities to design 

and synthesized several supramolecular with stable LC phases. 
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