
 

 https://biointerfaceresearch.com/  12516 

Review 

Volume 11, Issue 5, 2021, 12516 - 12529 

https://doi.org/10.33263/BRIAC115.1251612529  

 

A Review on the Use of Essential Oil-Based 

Nanoformulations in Control of Mosquitoes 

Fariba Esmaili 1 , Alireza Sanei-Dehkordi 2 , Fatemeh Amoozegar 3 , Mahmoud Osanloo 4*  

1 Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical 

Sciences, Tehran, Iran; fesmaeili2010@gmail.com (F.E.); 
2 Department of Medical Entomology, School of Health, Hormozgan University of Medical Sciences, Hormozgan, Iran; 

alireza.sanee@gmail.com (A.S.D); 
3 Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran; amoozegar.fateme@gmail.com (F.A.); 
4 Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa, Iran; 

m.osanloo@fums.ac.ir (M.O.); 

* Correspondence: m.osanloo@fums.ac.ir; osanloo_mahmood@yahoo.com;  

Scopus Author ID 57192379172 

Received: 16.12.2020; Revised: 20.01.2021; Accepted: 23.01.2021; Published: 30.01.2021 

Abstract: It is estimated that one million deaths per year are caused by mosquito-borne diseases 

worldwide. While preventing such diseases is possible and, of course, more manageable than attended 

to treat patients. Prevention of these diseases is based on improving the environment (e.g., decreased 

stagnant water) and controlling mosquitoes in immature and adult forms. Resistances among 

mosquitoes, environmental pollution, and adverse effects on non-target species, such as humans, are 

some of the major disadvantages of using chemical insecticides. Essential oils (EO)s with a wide range 

of activities on mosquitoes, including ovicide effect, larvicide effect, pupicide effect, adulticide effects, 

and repellent effect, are proper alternatives for synthetic ones. However, their practical usage is 

questioned due to their volatility and lower efficiency than synthetic samples. In recent years, 

researchers have attended to overcome these challenges by formulating EOs into nanoformulations. In 

this study, existing reports on exploiting EO-based nanoformulations in mosquito control have been 

categorized as larvicides, repellents, and adulticides. Moreover, by discussing the reported results, the 

appropriate nanoformulations for each purpose have been suggested; polymeric nanoparticles are more 

suitable for larvicides, lipid nanocarriers are more suitable for repellents nanoemulsions are more 

suitable for adulticide.  
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1. Introduction 

Mosquitoes are the most important arthropods in public health [1,2]. They could 

transmit many diseases, such as malaria, dengue, yellow fever, chikungunya, encephalitis, and 

filariasis [3,4]. Malaria is the most important mosquito-borne disease; 228 million malaria 

cases and 405,000 deaths were reported worldwide just in 2018 [5,6]. Besides, the global 

incidence of Aedes-borne disease has grown dramatically in recent decades [7,8]. Nearly half 

the world's population is at risk of infection by dengue; ~ 400 million infections occur per year, 

of which approximately one-quarter of these patients manifest clinically [9].  

Management of mosquitoes is a serious concern in developing countries facing vector-

borne disease outbreaks [10,11]. Synthetic (chemical) insecticides are commonly used 

compounds for the control of both immature (egg, larva, and pupa) and mature stages of 
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mosquitoes [12,13]. Adverse effects on the environment (contaminating soil, water, and air), 

side effects on non-target populations (especially humans), and the development of resistance 

has increased considerably in recent years [14,15]. Furthermore,  synthetic repellents' 

application to exposed skin to protect from mosquito bites is a common approach for reducing 

the transmission of mosquito-borne diseases and irritating bites [16]. However, there are 

concerns about their toxicity and safety [17,18]. These limitations have necessitated researchers 

to develop new compounds to combating mosquitos and preventing mosquito bites.  

Essential oils (EO)s are naturally oily liquids that commonly extracted through hydro 

distillation from different parts (bark, stem, flower, and rhizome) of aromatic plants using the 

Clevenger type apparatus [19,20]. They have possessed a wide range of biological activities 

such as antibacterial effect [21,22], leishmanicidal effects [23,24], larvicidal effect [25,26], and 

repellent effects [27,28]. Recently, EO-based insecticides were introduced as alternatives to 

synthetic ones to control mosquitos because of their selective action on target and minimal side 

effects on non-target organisms and their high degradation in the environment [29,30]. The 

literature includes many studies about using EOs against mosquitoes [31,32]. However, 

applications of EOs as insecticide and repellent are limited because some of their ingredients 

are volatile. 

Nanotechnology is targeted manipulations of materials in the nanoscale (especially 1 – 

200 nm) for obtaining size-dependent features or functions [33,34]. The novel approach to 

stabilize EOs and improve their stability is formulating them into nanoformulations [35,36]. It 

has been accepted that by decreasing the droplets' size and increasing the surface-to-volume 

ratio, the solubility of EOs is improved, which ultimately leads to enhanced efficacy [37,38]. 

Formulating EOs into nanoformulation has recently been considered a promising approach for 

improving the stability and efficacy of EOs [39,40]. 

2. Review Methodology 

 Almost all reports (till 07.31.2020) on using only EO-based nanoformulations to 

control mosquitoes have been reviewed. For this purpose, three different channels, including 

the search engine (Google Scholar), indexed databases of scientific publications (PubMed), 

and also academic networks (Research Gate) were searched to find any original or review 

articles, commentaries, and reports related to this subject. Collected documents have been 

categorized as their reported approach to mosquito control, including larvicide, repellent, and 

adulticide. No research has yet been reported on the ovicidal and pupicidal effect of EO-based 

nanoformulations. 

Due to the lipophilic nature of EOs, three types of formulations have been widely used 

for the preparation of EO-based nanoformulations; nanoemulsions, lipid-based nanocarriers 

(liposomes, solid lipid nanoparticles (SLN), and nanostructured lipid carriers (NLC)), and 

polymeric nanoparticles. For a better discussion, a brief about the mentioned nanoformulations 

has been first given. 

2.1. Nanoemulsions. 

The mixture of two phases of water and oil is called emulsion; if droplet size is at the 

nanoscale, they called nanoemulsion [41]. Emulsions are classified as two basic categories of 

oil-in-water (O/W) and water-in-oil (W/O); in the former, oil as droplets are dispersed in water, 

but in the latter, vice versa (see Figure 1A and 1B). In both, surfactants or surface tension 
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reducing agents are used to mix the two phases. In particular, O/W nanoemulsions are much 

more frequently used because most of the drugs and all EOs are lipophilic and should be 

solubilized in blood flow or water (41, 42).   

Nanoemulsions generally are prepared using high- and low-energy techniques. 

Ultrasonic-, a high-pressure homogenizer-, and microfluidizer-assisted fabrications belong to 

high energy methods. Low-energy techniques include phase inversion temperature, phase 

inversion composition, and solvent diffusion or spontaneous emulsification [42,43]. Given that 

some of the components of EOs are volatile, spontaneous emulsification is preferred over other 

approaches to prepare EO-based nanoemulsions. In this technique, nanoemulsions are prepared 

based on optimizing oil, water, and surfactant [35,44]. Thus, the prepared nanoemulsions in 

such a manner are not affected by physical and chemical stress, such as temperature and pH 

[45,46]. 

 
Figure 1. A: oil in water nanoemulsion, B: water in oil nanoemulsion. 

2.2. Lipid-based nanocarriers. 

Lipid-based carriers are suitable candidates for delivering various water-insoluble 

drugs and EOs due to the hydrophobic nature. They could increase drug molecules' solubility 

and stability, which led to improved pharmacokinetics' performance [47]. Moreover, compared 

to polymeric nanoparticles, their biocompatibility, and capacity to encapsulate highly lipophilic 

active substances are higher [48]. The following paragraphs describe some of the common 

lipid-based nanoformulations. 

Liposomes composed of phospholipids and cholesterol; they formed a bilayered 

spherical structure by hydration in an aqueous medium (see Figure 2A). The presence of 

cholesterol in the liposome structure increases bilayers' stability and decreases cargos leakage 

[49]. Interestingly, both hydrophilic/phobic drugs could be loaded into liposomes; the 

phospholipid bilayer is a suitable space for hydrophobic drugs and the aqueous cavity for 

hydrophilic ones. Therefore, liposomes are commonly used in the pharmaceutical, cosmetic, 

and food industries [49]. Liposomes could increase the stability, solubility, and bioavailability 

of the drugs. Moreover, by encapsulating EOs into liposomes, they are preserved from 

oxidation and evaporation [50].  
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Depend on preparation methods, different liposomes from a few nanometers to 

micrometers have been reported. The common approaches are thin-film hydration, freeze-

drying, reverse evaporation, and ethanol injection [51]. Among these approaches, thin-film 

hydration is mostly employed in the preparation of liposomes. In this method, lipid components 

containing a drug are dissolved in an organic solvent. The solvent is evaporated using rotary 

evaporation, and the lipid film is rehydrated in an aqueous solvent. Some techniques, including 

homogenization, sonication, freeze-thawing, and membrane extrusion, are used to control 

liposomes' size and size distribution [52].  

Solid Lipid Nanoparticles (SLN) are biodegradable and biocompatible 

nanoformulation. They are prepared by dispersing physiological lipids and surfactants (for 

stabilization) in an aqueous phase in a size of 50 to 200 nm (see Figure 2B) [51,53]. In SLNs, 

the drug is dissolved in lipids with high melting points (> 40 oC) [54]. Since SLNs maintain 

they are solid-state at body temperature, they are attractive as long-acting or controlled-release 

formulations [47]. From the literature, SLNs commonly have been used for the delivery of 

different drugs, e.g., budesonide-loaded SLN for management of asthma [55], curcumin loaded 

SLNs to the improvement of oral bioavailability [56], SLN loaded kiteplatin for treatment of 

glioblastoma multiform [57]. Besides, SLNs have the potential to encapsulate EOs to control 

release. For example, Zhao et al. have prepared EO-loaded SLNs through a high-shearing 

homogenization technique for sustained inhalation [58]. 

Nanostructured Lipid Carriers (NLC) are another class of lipid nanoparticles that both 

liquid lipids solid lipids are used in their structure (see Figure 2C). Thus, their melting point is 

lower than SLNs; however, they preserved solid-state at room temperature. NLC is stabilized 

in an aqueous phase using a or combination of surfactants [59]. Many techniques for the 

preparation of NLC have been reported, e.g., displacement of solvents, micro emulsification, 

and high-pressure homogenizer. The high-pressure homogenizer is favorable, as no solvents 

are required in the preparation. Briefly, the mixture of drug-containing lipids is melted (about 

10 °C above the melting temperature). The hot surfactant solution is then added and mixed 

using a high-pressure homogenizer [60].  

 
Figure 2. Lipid-based nanocarriers; A: liposome, B: solid lipid nanoparticles; C: nanostructured lipid carriers. 

2.3. Polymeric nanoparticles. 

Polymeric nanoparticles could be described as colloidal polymeric particles in a size 

range of 1–200 nm [61].  Polymeric nanoparticles could be biodegradable or non-

biodegradable; however, the degradation rate and drug release rate could be modified using a 
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different mixture of polymers [37]. Some of the advantages of polymeric nanoparticles as 

drug/EOs carriers include proper control of the size, prolonged elimination, increased 

therapeutic effectiveness, simple preparation procedure, low toxicity, and drug preservation 

[62,63]. As demonstrated in Figure 3 A and B, cargoes could be incorporated in the matrix of 

polymeric nanoparticles (called nanospheres) or loaded in the core (called nanocapsules) 

[64,65]. 

Polymeric nanoparticles could be prepared using natural polymers such as chitosan, 

hyaluronic acid, and albumin, or from semi/synthetic polymers such as poly (lactide-co-

glycolide) (PLGA), polyglycolic acid (PGA), polyacrylic acid (PAA), polylactic acid (PLA), 

and cellulose derivatives including carboxymethyl cellulose (CMC) and Hydroxypropyl 

methylcellulose (HPMC) [66,67]. Furthermore, nanoparticles are prepared using various 

methods, such as nanoprecipitation, solvent evaporation, ionotropic gelation, electrospray, 

salting out, and supercritical fluid technology [68,69]. 

 
Figure 3. Polymeric nanocarriers: A: polymeric nanosphere, B: polymeric nanocapsule. 

3. The Use of EO-based Nanoformulations for Control of Mosquitoes 

Collected documents have been analyzed, and the use of EO-base nanoformulations are 

categorized as larvicide, repellent, and adulticide.  

3.1. EO-based nanoformulations as larvicides. 

Twenty EO-based nanoformulations as larvicides are listed in Table 1. Seventeen of 

them are nanoemulsions, and three others are chitosan nanostructures, including nanoparticles 

and nanobeads. Reasons for excessive utilization of nanoemulsions compared to other 

nanoformulations are easier access to the constituents and more straightforward preparation 

methods.  

In the five first reports, only the larvicidal activity of nanoformulations was reported; 

therefore, the effect of nanoformulation on the efficiency of EOs could not be evaluated                

[70-73]. In such reports, the efficiency of nanoformulations should be compared with non-

formulated EOs.  

According to the other fifteen reports, the achievement of nanoformulation of EOs as 

larvicide are summarized into four classifications. In two reports, nanoemulsions' effects were 

significantly improved than non-formulated EOs at an examined concentration [74,75]. In 

another study, the perfect larvicidal effect (100% mortality) was achieved at 4 hours instead of 

24 hours, related to non-formulated EO [76]. In 10 reports, reported lethal concentration 50 

(LC50) of nanoemulsions were significantly better than those of non-formulated EOs. In the 

two latest reports, continuity of larvicidal activity was investigated. Tarragon EO was 

encapsulated in chitosan nanoparticles at two different concentrations. The larvicidal effect of 

tarragon EO at concentrations of 1.6 and 6% was continued 2 and 4 days, while these times in 

nanoformulated forms were significantly improved, i.e., 4 and 9 days [77,78]. 
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The physical stability of nanoemulsion is generally high; however, when they diluted 

during larvicidal tests (100-200 times), their stability is great decreases. Instability ultimately 

leads to short-term durability of the larvicidal effects [74,75]. Thus, the long-lasting larvicidal 

activity for nanoemulsions has not been reported; as described above, only the efficiency of 

EOs was improved.  

The stability and loading capacity of lipidic nanocarriers for EOs is good. Besides, their 

spontaneous aggregation in the aqueous phase has been solved by exploiting different 

stabilization methods such as steric and electrostatic manners [79,80]. However, lipidic 

nanocarriers' preparation for spraying the environment on a large scale is not economically 

viable. In this regard, polymer nanoparticles (such as chitosan) with high stability and lower 

cost are preferred to prepare larvicides [77,78]. 

Furthermore, numerous articles have been published on the larvicidal properties of 

plant-synthesized silver nanoparticles. In such a manner, herbal extracts are used as reducing 

agents for the synthesis of silver nanoparticles from their salts, such as AgNO3 or AgCl [81]. 

This method does not require toxic reducing agents [82,83]. Nevertheless, an important point 

has been overlooked in these reports; silver nanoparticles easily interact with chemical 

functional groups. Thus, silver nanoparticles' final properties are strongly dependent on 

reducing agent, i.e., herbal extracts [84,85]. For instance, reported LC50 of plant-synthesized 

silver nanoparticles was varied from 2 to 12470 ppm against An. stephensi [86,87]. In our 

previous study, chemically synthesized nanoparticles with a particle size of 30 nm showed only 

a 20% larvicidal effect at 100 ppm [88]. In general, silver nanoparticles are not good candidates 

for larvicidal purposes on a large scale due to their high price, environmental pollution, and 

varied efficacy. 

Table 1. EO-based nanoformulations as larvicides. 

References EO names 
Nanoformulation 

(size) 
Target larvae Achievement 

[70] 
Ocimum 

basilicum 

nanoemulsion 

(28 nm) 

Cx. 

quinquefasciatus 

Larvicidal effect of nanoemulsion at 50 

μg/mL: 100% 

EO no reported 

[71] 
Azadirachta 

indica 

nanoemulsion 

(31.03) 

Cx. 

quinquefasciatus 

LC50 of nanoemulsion  reported at 11.75 

μg/mL 

EO no reported 

[72] 
Pterodon 

emarginatus 

nanoemulsion 

(125 nm) 
Ae. aegypti 

Larvicidal effect of nanoemulsion at 250 

μg/mL: 100% 

EO no reported 

[73] Lippia alba 
nanoemulsion 

(117.0 nm) 
Ae. aegypti 

LC50 of nanoemulsion  reported at 31.02 

μg/mL 

EO no reported 

[73] Lippia alba 
nanoemulsion 

(117.0 nm) 

Cx. 

quinquefasciatus 

LC50 of nanoemulsion  reported at 38.22 

μg/mL 

EO no reported 

[74] 
Anethum 

graveolens 

nanoemulsion 

(10.7 nm) 
An. stephensi 

Larvicidal effect of the EO increased from 

73.4 to 88.1 % at 60 μg/mL 

[75] 
Artemisia 

dracunculus 

nanoemulsion 

(14.5) 
An. stephensi 

Larvicidal effect of the EO increased from 

83.4 to 92.71% at 18 μg/mL 

[76] 
Eucalyptus 

globulus 

nanoemulsion 

(9.4 nm) 

Cx. 

quinquefasciatus 

Larvicidal effect of EO at 250 μg/mL: 

100% in 24 h exposure 

For nanoemulsion: 4 h exposure 

[89] Citrus sinensis 
nanoemulsion  

(78.8 nm) 
Cx. pipiens 

LC50 of the EO decreased from 86.3 to 

27.4 μg/mL 

[90] 
Mentha  

piperita 

nanoemulsion 

(34 nm) 
Cx. pipiens 

LC50 of the EO decreased from 88.90 to 

31.24 μg/mL 

[91] Croton linearis 
nanoemulsion 

(163 nm) 
Ae. aegypti 

LC50 of the EO decreased from 64.24 to 

17.86 μg/mL 

[92] 
Anacardium 

occidentale 

nanoemulsion 

(52 nm) 
An. culicifacies 

LC50 of the EO decreased from 18.1 to 1.4 

μg/mL 
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References EO names 
Nanoformulation 

(size) 
Target larvae Achievement 

[93] 
Siparuna 

guianensis 

nanoemulsion 

(176 nm) 
Aedes aegypti 

LC50 of the EO decreased from 86.52 to 

24.75 μg/mL 

[94] 
Ricinus 

communis 

nanoemulsion 

(114 nm) 
An. culicifacies 

LC50 of the EO decreased from 52.3 to 3.4 

μg/mL 

[95] 
Ficus 

glomerata 

nanocrystal emulsion 

(104 nm) 
Ae. aegypti 

LC50 of the EO decreased from 60 to 20 

μg/mL 

[95] 
Ficus 

glomerata 

nanocrystal emulsion 

(104 nm) 

Cx. 

quinquefasciatus 

LC50 of the EO decreased from 48 to 22 

μg/mL 

[95] 
Ficus 

glomerata 

nanocrystal emulsion 

(104 nm) 
An. stephensi 

LC50 of the EO decreased from 60 to 17 

μg/mL 

[96] 
Eucalyptus 

globulus 

chitosan beads 

(200 nm) 
Cx. pipiens 

LC50 of the EO decreased from 20.301 to 

0.419 μg/mL 

[77] 
Artemisia 

dracunculus 

chitosan nanoparticles 

containing 1.6% EO 

(168 nm) 

An. stephensi 
Continuity of larvicidal effect of the EO 

increased from 2 to 4 days 

[78] 
Artemisia 

dracunculus 

chitosan nanoparticles 

containing 6% EO 

(222 nm) 

An. stephensi 
Continuity of larvicidal effect of the EO 

increased from 4 to 9 days 

3.2. EO-based nanoformulations as repellents. 

One of the most synthetic insect repellents (without insecticidal effect) is DEET (N, N-

diethyl-meta-toluamide), which is used as a gold standard in many repellency tests [97]. 

However, DEET's application has been questioned due to side effects such as allergy, 

dermatitis, cardiovascular and neurological disorders, and damage to the synthetic fabric and 

plastic [98,99]. So recently, much attention has been paid to the development of green 

repellents. Details of EO-based nanoemulsions as repellent are given in Table 2. Noted, 

microencapsulated lemongrass EO as repellent was also reported in the literature; however, 

that was related to preparing texture (polyester) with repellent activity [100]. 

A control group (chemical repellent or non-formulated EO) has not been reported in the 

two first reports in Table 2, so it is impossible to determine the advantages of using the 

nanoformulations. However, reported protection times are acceptable [101,102]; according to 

the Environmental Protection Agency (EPA), the minimum repellent time to obtain registration 

is 2 hours [103].  

In the other reports, EO-based nanoformulations' efficiencies were comparable with 

synthetic repellents. For instance, protection times of nanoemulsion of Eucalyptus globulus 

(15%) and DEET 15% against a mixture of mosquitoes were reported at 170 and 211 min [104]. 

Besides, nanoemulsion of EOs of Mentha piperita (50%) and Eucalyptus globulus (50%) was 

prepared with protection times of 257 and 351 min against An. stephensi; this time for DEET 

25% was 370 min [105].  

Furthermore, the protection time of nanocrystal emulsion of Ficus glomerata was 

comparable with an Odomos (synthetic repellent) against three mosquitoes [95]. For the 

preparation of this formulation (FON), a nanoemulsion of neem oil (NON) was first prepared. 

Then, ethanol extract of the plant was added for crystallization of emulsion. The repellent 

effects of FON, NON, and Odomos were reported as follows; Ae. aegypti: 234, 192, and 223 

min, An. stephensi: 238, 198, and 230 min, and Cx. Quinquefasciatus: 233, 193, and 229 min 

[95].  

The stratum corneum cells (corneocytes) are dense, functionally dead, anucleated, and 

filled with keratin. Also, some lipids are forming several bilayers surrounded the corneocytes. 

Intercellular fat consists of a mixture of ceramides, cholesterol, and fatty acids [106]. 

Reviewing the literature, a substance with moderate lipophilicity could transit through the 
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stratum corneum, but the more hydrophilic substance is inhibited in the epidermis and dermis. 

However, when skin hydrated, the stratum corneum considerably swells and shows increased 

permeability [79,97]. 

Given that nanoemulsions contained a high amount of water; therefore, part of the 

formulation penetrates the skin after hydration. The other part evaporates. It is also topically 

usage of nanoemulsions are challenges due to low viscosity. Therefore, contrary to existing 

reports, nanoemulsions are not a suitable formulation as repellents. 

Furthermore, high lipophilic materials accumulate in the skin's uppermost layers, where 

their action as sunscreen or repellent should occur [79]. Incorporating sunscreen (or repellent) 

in the lipidic nanocarriers appeared to bind to keratin for an extended period and serve as a 

reservoir for elongation of their activity [80]. Therefore, lipidic nanocarriers with higher 

viscosity (easier topical usage) are better candidates for preparing EO-based nanoformulations 

as repellents. 

Table 2. EO-based nanoformulations as repellents. 

References EO names 
Nanoformulation 

(size) 
Target mosquitoes Protection time 

[101] Cymbopogon nardus 
nanoemulsion 

(135 nm) 
Ae. aegypti 

168 min 

No control 

[102] 

citronella (10%) 

hairy basil (5%) 

vetiver (5%) 

nanoemulsion 

(153.7) 
Ae. aegypti 

282 

No control 

[104] Eucalyptus globulus 
nanoemulsion (17.1 

nm) 

Cx. pipiens (62%), 

Ochlerotatus caspius 

(22%),  

Cx. pusillus (10%) Cx. 

tritaeniorhynchus (6%). 

170 min 

DEET: 211 min 

[105] Mentha piperita 
nanoemulsion (11.32 

nm) 
An. stephensi 

257 min 

DEET: 370 min 

[105] Eucalyptus globulus 
nanoemulsion  

(103.90 nm) 
An. stephensi 

351 min 

DEET: 370 min 

[95] Ficus glomerata 
nanocrystal emulsion 

(104 nm) 
Cx. quinquefasciatus 

233 min 

Odomos: 229 min 

[95] Ficus glomerata 
nanocrystal emulsion 

(104 nm) 
An. stephensi 

238 min 

Odomos:230 min 

[95] Ficus glomerata 
nanocrystal emulsion 

(104 nm) 
Ae. aegypti 

234 min 

Odomos:223 min 

3.3. EO-based nanoformulations as adulticides. 

Only one document has been found on the adulticide effect of EO-based 

nanoformulations. Nanoemulsion of Ocimum sanctum EO was prepared; however, its particle 

size was not reported. The knockdown effect (KD50) of the nanoformulation after one-hour 

exposure with Ae. aegypti and Cx. quinquefasciatus were reported as 7.01 and 4.05 mg/cm2. 

Its lethal dose fifty (LD50) after 24 hours of exposure were also reported at 28.60 and 20.09 

mg/cm2 [107].  

However, not many studies have been reported in this area (EO-based nanoformulations 

as adulticides). In residual spraying, the toxin's effect should not remain on the wall, so it seems 

that nanoemulsions are proper candidates for this purpose. Most of their contents are water, 

and it is also possible to prepare them on a large scale. 

4. Conclusions 

 According to existing studies and available sciences, polymeric nanoparticles are more 

suitable for larvicides, lipid nanocarriers are more suitable for repellents, and nanoemulsions 
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are more suitable for adulticide. Moreover, some recommendations worth to be mentioned: a) 

performing bioassay tests under field conditions, b) test of side effects of EO-based 

nanoformulations on non-target organisms, c) determination of the insecticidal effect of EO-

based nanoformulations against other medically important vectors, d) attempt to the application 

of EO-based nanoformulations in the vector control industry. 
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