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Abstract: Nanofibers are used in a wide range of applications, including scaffolds for tissue 

engineering. Electrospinning is a promising technique to fabricate nanofibrous scaffolds capable of 

supporting cell attachment and growth. Nanofibers with biomimetic alignment could also guide neural 

cell growth and orientation of cell processes necessary for peripheral nerve regeneration. This study 

fabricated aligned nanofibers of polycaprolactone/chitosan (PCL/CS) scaffolds and immobilized nerve 

growth factor (NGF) on them via dopamine coating mediated bonds to confer bioactivity to the scaffold 

and support attachment and growth of PC12 cells. The results showed that PCL/CS nanofibrous 

scaffolds revealed appropriate mechanical and surface properties. Cells remained viable on the 

scaffolds, and surface-modified aligned nanofibrous scaffolds interacted better with the cells, inducing 

neural morphology and orientation. Immobilization of NGF via polydopamine (PD) on nanofibers' 

surface proved to be a proper method to enhance PC12 cell attachment and proliferation. Thus, this 

construct could potentially be used as a scaffold for peripheral nerve regeneration.  
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1. Introduction 

Peripheral nerve injuries occur in 200000 cases every year around the globe. Strategies 

such as applying autografts, allografts, and xenografts are fairly limited due to loss of function 

at the donor site, potential immune reactions, limited availability of donors and need for 

multiple surgeries [1,2]. Due to these reasons, scaffolds fabricated from natural and synthetic 

polymers have been studied for nerve tissue regeneration. An ideal scaffold should mimic the 

nanofibrous structure of native ECM to help the damaged tissue repair by neighboring cells 

[3,4]. Electrospinning has been commonly used to fabricate the nanofibers scaffolds[5]. These 

scaffolds mimic the collagen fibrils and increased surface area to support cell attachment[6]. 

Synthetic polymers such as PCL, PLA, and PLGA have been investigated as scaffolds for nerve 

regeneration [7]. Although they are biocompatible and biodegradable, synthetic polymers 

cannot support cell adhesion because they are typically hydrophobic and lack cell recognizing 

sites [8]. On the other hand, natural polymers like chitosan (CS) and collagen are hydrophilic 

and biocompatible [9-11]. To take the advantages of both PCL and CS for nerve regeneration, 

polymer blending has been used. PCL/CS blends are miscible and do not require a toxic 

crosslinking agent [12]. In nerve regeneration, aligned fibers have shown increased cell 
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attachment and nerve cell growth [12]. Since neurotrophic activity is critical for nerve 

regeneration, scaffolds with these properties better support cell survival and differentiation of 

neural and modulates injured nerve repair [13,14]. Results of recent studies showed that 

immobilized NGF has a positive effect on sprouting and neurite outgrowth in different cells 

such as PC12 cells, hippocampal neurons, and dorsal root ganglion (DRG) neurons [15,16]. 

The diffusion of NGF administered in solution from injury sites needs periodic injection, and 

it is impractical. Immobilization of NGF on the scaffold can solve this problem [17,18]. Most 

studies that immobilize NGF on to the scaffolds have used complicated methods for chemical 

activations [19]. However, these methods can change scaffolds properties and induce surface 

denaturation. Besides, chemicals such as NHS (N-hydroxysuccinimide) used for 

immobilization may be hydrolyzed during the reaction which can decrease surface conjugation 

efficacy [20]. 

To overcome these limitations, natural adhesives have attracted broad interest. The 

strong adhesion of mussels to any surface results from an extensive repeat of 3, 4-dihydroxy-

L-phenylalanine (dopamine) and lysine residues in the mussel adhesive pads [7,21-23]. 

In this study, we fabricated PCL/CS nanofibers and fully characterized their properties. 

To have active scaffolds for nerve regeneration NGF as a neurotrophin was immobilized on 

the PCL/CS nanofibers via dopamine coating. Dopamine was used to conjugate NGF onto the 

scaffold and improve the cell-adhesive characteristic of scaffolds [21]. Finally, we evaluated 

the effects of dopamine and NGF on the adhesion and proliferation of cells. 

2. Materials and Methods 

2.1. Materials. 

 Diacetate (4,6-diamidino-2-phenylindole) (DAPI), Tris (trisaminomethane), 

polycaprolactone, and chitosan with a molecular weight of 80 and 100 kDa, respectively were 

purchased from Sigma Aldrich. 3-Hydroxytyraminim chloride and all solvents such as 

trifluoroacetic acid (TFA), 2,2,2-trifluoroethanol, and methanol were obtained from Merck. 

PC12 cells were purchased from ATCC (CRL-1721). Fetal bovine serum and RPMI were 

purchased from Gibgo. Nerve growth factor from Vipera lebetina venom was obtained from 

Sigma Aldrich.  

2.2. Fabrication of nanofibrous scaffolds. 

PCL was dissolved in TFE to obtain 8-10% (w/w) solution by stirring for 1 hour. To 

have CS solution, it was dissolved in TFA at a concentration of 2-2.5% (w/w) under stirring 

for an hour.  PCL and CS were mixed with different ratios 60:40, 70:30, and 80:20 (PC: CS). 

After stirring for 1 h, the solution was placed into a 5 ml plastic syringe and fed through an 18 

G blunted stainless steel needle at a rate of 0.7 ml/h. The distance between the tip of the needle 

and the collector covered with an aluminum foil was set at 10-14 cm while a high voltage of 

20 kV was applied. The collector was rotated with a speed of 400 rpm for random fibers and 

3000 for aligned. 

2.3. Surface modifications of nanofibers. 

For PD coating, nanofibrous substrates (random and aligned mats) were immersed into 

a dopamine solution (2 mg/mL in 10mM Tris, pH 8.5) with shaking for 1 h at room temperature. 
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The substrates were then rinsed with distilled water several times to remove the unattached 

dopamine molecules. The PD-coated substrates were coated with nerve growth factor (NGF) 

by immersing them into an NGF solution (1 µg/ml in 10 mM Tris buffer, pH 8.5) for 18 h. The 

NGF immobilized substrates (PCL/CS-PD-NGF) were then washed with distilled water to 

remove the loosely bound nerve growth factors. 

2.4. Characterization of morphology, chemistry, and contact angle of nanofibers. 

Scanning electron microscopy (SEM) was used to characterize nanoscale surface 

morphology with and without cells. Raman spectra were recorded in the region 700-2000 cm-

1 using Raman spectroscopy (Model: Takram P50C0R10, Teksan, Iran). The wettability test 

was done through water contact angle measurement. For this 5 samples of each group were 

prepared, and contact angle measurement was done.  

2.5. Cell culture. 

PC12 cells were cultured in RPMI supplemented with 10% FBS and 1% 

penicillin/streptomycin in a 25 cm2 flask (37C, 95% humidity, 5% CO2). After the cell number 

increased, the cells were detached using trypsin/EDTA and seeded on the fibers in 96 well 

plates. Before cell experiments, scaffolds were sterilized by UV light exposure for an hour. 

The Alamar blue assay was employed to evaluate cytotoxicity and cell viability on samples 

(PCL, PCL/CS, PCL/CS-PD, and PCL/CS-PD-NGF). The test measured the fluorescence 

intensity (530 nm excitation, 590 nm emission) and was repeated on days 1, 3, and 5 using a 

plate reader. The morphology study of PC12 cells on samples was performed with SEM after 

2 days of in vitro culture. To do this, cell-scaffold constructs were fixed with glutaraldehyde 

2.5% and followed by different ethanol concentrations (50%, 70%, 90%, and 100%) to 

dehydrate the samples. 

3. Results and Discussion 

3.1. Preparation and characterization of nanofibrous scaffolds. 

Production of composite scaffolds containing heterogeneous fibers of natural and 

synthetic polymers could provide a scaffold with desirable characteristics [24-26]. Since 

electrospinning is a complex process and depends on different factors, the polymers 

concentration ratio was studied to determine the best ratio. Figure 1(a) shows the morphology 

of nanofibers fabricated using different concentrations of polymers. As shown, increasing the 

PCL concentration from 8 wt % to 10 wt % increased the mean diameter of the fibers from 224 

nm to 252 nm, while CS was kept at 2 wt% in both formulations. As shown in Figure 1(b), by 

increasing polymer concentration, the fiber's diameter increased with more straight fibers 

crossed together with sharper angles. Other researchers reported that decreasing polymer 

concentration in solution followed by viscosity reduction caused beaded and thinner fibers 

[23,27]. 
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Figure 1. SEM images of PCL/CS nanofibers and their diameter analysis. (a) A1 and A2, PCL (8%)/CS (2%), 

B1 and B2, PCL (10%)/CS (2%); (b) Diameter analysis of PCL/CS nanofibers with different formulations. By 

increasing polymer concentration, the diameter of the fiber increased. 

Aligned nanofibers play a critical role in neurite outgrowth of the neural cells when 

compared to random nanofibers. Neurite outgrowth and cell migration of the neural cells tend 

to be extended parallel with nanofibers' alignment [12]. Figure 2(a) shows SEM images of 

aligned and random oriented nanofibers collected on high speed rotating and static drum, 

respectively. Orientation distribution analysis of aligned and random nanofibers is shown, too. 

As it is displayed, electrospinning at about 3000 rpm collector rotation speeds could produce 

aligned nanofibers [28], reducing the drum's rate to 400 rpm [29], changed their alignment. 

Change in nanofibers alignment can result from the centrifugal force caused by an increase in 

drum rotation speed [30-32]. Besides, the diameter of the electrospun nanofibers decreased as 

the drum speed increased to 3000 rpm. Comparison between the diameter of aligned and 

random nanofibers are shown in Figure 2(b).  

 
Figure 2. SEM picture and orientation distribution of random (speed of drum= 400rpm) and aligned (speed of 

drum = 3000 rpm) nanofibers. (a) A1, A2, and A3 related to SEM picture and orientation distribution of random 

fibers while B1, B2, and B3 related to aligned one; (b) The average diameter of aligned and random nanofibers 

with different ratio of PCL and Cs. As it can be noticed, the fibers became more aligned and thinner by 

increasing drum speed. 
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SEM images in Figure 3(a) display dopamine-modified nanofibers. The average 

diameter of nanofibers did not increase significantly (p˂0.05) after dopamine coating (Figure 

3(b)), so the polydopamine layer was very thin. It is in agreement with previous studies [33]. 

Moreover, this thin layer could not decrease the porosity percentage significantly, with slight 

changes from 48.5% to 47% (p˂0.05).  

 
Figure 3. Poly dopamine modified PCL/CS nanofibers. (a) SEM images of nanofibers before (A) and after (B) 

dopamine coating; (b) Comparison between the diameter of nanofibers before and after dopamine coating. 

There was no significant difference in fiber diameter before and after dopamine coating (p˂0.05). 

A wettability test was done to confirm the presence of the PD layer further. Figure 4 

shows the contact angle measurements, which provide information on changes in surface 

properties as a result of surface modification. The static contact angle of water droplets on PCL 

nanofibers was 133±21°, which was significantly (p<0.05) different from PCL/CS nanofiber 

(12.9±2°).  It can be attributed to the presence of amine groups of chitosan. Junka et al. reported 

that by increasing the CS ratio in PCL/CS nanofibers, the hydrophobicity decreased [34,35]. 

On the other hand, the contact angle of polydopamine coated nanofibers (66±3°) was greater 

than PCL/CS nanofibers. As Nielsen reported, two factors can change wettability: morphology 

and changes in surface chemistry.  

 
Figure 4. Contact angle of different nanofibrous scaffolds. The addition of NGF enhanced the hydrophilicity of 

PD coated PCL/CS nanofibers. 
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The reduction of hydrophilicity of polydopamine coated nanofibers can be mainly 

attributed to CS amine groups' involvement with dopamine's functional groups. The dopamine 

layer could cover the fibers and reduce the porosity of scaffolds. Hence scaffolds could not trap 

the water molecules as much as before, and hydrophilicity was reduced [36-38]. The addition 

of NGF on the nanofibers enhanced the hydrophilicity by changing surface chemistry [39]. The 

hydrophilicity of aligned fibers was more than random ones, confirming that topography and 

morphology can influence contact angle as well as chemical properties [40,41]. 

Raman spectroscopy confirmed dopamine's ability to polymerize on the surface of 

PCL/CS nanofibers to form the PD layer [42,43]. As shown in Figure 5, strong bands between 

1400 and 1500 cm-1 are related to δ (CH2) vibrations [44,45]. Whereas PD-coated nanofibers 

displayed an additional peak at about1600 cm−1, which belongs to catechol's deformation, 

indicating the successful deposition of the PD layer onto nanofibers [46,47]. This peak could 

be observed due to the presence of CS, but its sharpness and intensity ensure dopamine 

existence [42]. 

 
Figure 5. Raman spectra of electrospun PD coated PCL/CS nanofibers. The peak at about 1600 cm−1 

corresponds to the deformation of catechol. 

Suitable mechanical properties are required for scaffolds to withstand applied stresses 

during the surgical procedure with adequate implantation flexibility [24,48]. To compare 

nanofibers' tensile properties with and without surface modification, mechanical properties 

such as ultimate tensile stress and Young’s modulus were evaluated. The ultimate tensile stress 

represents the sample's first failure points, and Young’s modulus has been defined as the slope 

of the linear region of the stress-strain curve below the yield stress [34]. Results are gathered 

in table1. The Young’s modulus of PCL, PCL- CS (random), PCL-CS (aligned), and PCL/CS-

PD nanofiber was 15.68, 22.87, 10.48, and 9.56 MPa, respectively. Previous studies reported 

that a thick coating of PD can affect the nanofibrous scaffold's mechanical behavior, leading to 

less elastic and more rigid materials [49-51].  

Table 1. Mechanical properties of different scaffolds. 

Nanofiber Young’s modulus (MPa) Ultimate tensile stress (MPa) 

PCL 15.68 0.79  

PCL-Cs(Random) 22.87 1.16 

PCL-Cs(Aligned) 10.48 1.55 

PCL-Cs-PDA  9.56 1.05 
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Nonetheless, our results showed that the PD layer formed during one-hour incubation 

was not thick enough to significantly change mechanical properties. 

3.2. Cell-scaffold interaction. 

Cell attachment to the scaffold is a critical step in nerve regeneration. Hence the 

scaffold should mimic the natural extracellular matrix (ECM) properties such as composition, 

topography, mechanical properties, and biological cues [34].  

To evaluate the performance of scaffolds in vitro, PCL/CS-PD-NGF, PCL/CS-PD, 

PCL-CS, and PCL scaffolds were tested to study PC12 cell attachment and proliferation at 3-

time points. Alamar blue assay showed that the number of PC12 cells on PCL/CS-PD-NGF 

scaffold increased significantly higher than other scaffolds and control groups after 24 hours 

(p<0.05) (Figure 6). After 72 hours, although the number of cells decreased on the PCL/CS-

PD-NGF scaffolds, cell viability on this scaffold remained significantly higher than other 

groups (p<0.05). As NGF on the scaffold induces neurite extension in PC12 cells, they need 

more space to stretch out. Strongly attached PC12 cells extended their neuritis while the ones 

with no strong adhesion might be detached from the scaffolds during the time. This event might 

lead to a decreased number of differentiated PC12 cells on the scaffolds with less desirable 

interactions with the scaffolds. Lee et al. immobilized NGF covalently on PLGA-Ppy and 

reported that immobilized NGF on the nanofibers was as effective as exogenous NGF to induce 

neurites formation and extension [19]. 

 
Figure 6. Alamar blue assay of PC12 cells on nanofibrous scaffolds. (a) NGF on the scaffold induces 

differentiation and neurite extension in PC12 cells. White arrows show the direction of extensions; (b) 

Proliferation on day 5 was similar among all different groups without significant statistical difference, however, 

the number of PC12 cells on NGF immobilized scaffold was significantly higher than PCL scaffold on day 5. 

To verify Alamar blue assays' results, the fluorescence microscope images of PC12 

cells grown on different scaffolds were provided after 24 hours (Figure 7). As can be seen, the 

cell attachment on PCL/CS-PD-NGF scaffolds was significantly higher than other groups 

(p˂0.05), indicating desirable interactions between the cells and scaffolds. As it can be figured 
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out, the growth of PC12 cells on PCL-Cs nanofibers was higher than PCL nanofibers because 

of the hydrophilicity of PCL-Cs and the presence of amine groups in PCL-Cs nanofibers.   

 
Figure 7. The fluorescence microscopy of PC12 cells on (a) PCL nanofibers; (b) PCL-Cs nanofibers; (c) 

PCL/Cs-PD nanofibers; (d) PCL/Cs-PDA-NGF nanofibers. PC12 cells attached to all scaffolds but proliferation 

and attachment to NGF immobilized scaffolds were more than other scaffolds. Cell attachment on PCL/CS-PD-

NGF scaffold was higher than other groups. 

SEM images of PC12 cells on random and aligned nanofibrous scaffolds displayed the 

effects of topographic and biological cues on cell morphology. As shown in Figure 8, PC12 

cells on aligned nanofibrous scaffolds oriented aligned and more spread out the cells' 

extensions than the random nanofibrous scaffold, which induced an irregular cellular 

orientation. 

 
Figure 8. SEM pictures of PC12 on Random and aligned PCL-Cs nanofibers. (A) Random scaffold induced an 

irregular cellular orientation; (B) PC12 cells on the aligned nanofibrous scaffold were aligned and spreader. 
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The SEM images of PC12 cells on aligned PCL/CS-PD, PCL/CS-PD-NGF, and 

PCL/CS are shown in Figure 9. The cells cultured on aligned scaffolds showed bipolar 

morphology, which was allied with the direction of nanofibers. The cells displayed a more 

elongated morphology on NGF immobilized nanofibers. The immobilized NGF increased 

neuronal viability and induced differentiation with enhanced neurite outgrowth. It could be 

attributed to the interaction of NGF with receptors such as TrkA and p75 [18,52]. Based on 

this mechanism, NGF does not need to be internalized by the cell and could induce long-term 

effect without inhibitory receptor down-regulation [53-55]. 

 
Figure 9. SEM images of PC12 cells on (A) PCL-Cs (Aligned) nanofibers; (B) PCL-Cs-PDA nanofibers; (C) 

PCL-Cs-PDA-NGF nanofibers. Cells were spreader and longer on NGF immobilized nanofibers. 

4. Conclusions 

 The results of this study revealed that aligned PCL/CS nanofibers could provide 

essential requirements for neural cell growth, owing to their appropriate physicochemical and 

topographical features. Further improvement was achieved by functionalization of the scaffolds 

with NGF, as an effective agent for nerve regeneration. PCL/CS-PD-NGF nanofibrous 

scaffolds supported PC12 cell growth and differentiation with appropriate topographical and 

biological cues. Results showed that aligned nanofibers with immobilized NGF can increase 

cell attachment and proliferation in a particular direction with the aim of nerve regeneration. 
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