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Abstract: Titanium-doped zirconium oxide (mixed high-k) has been used as the gate oxide layer for 

the future generation metal oxide semiconductor devices. This mixed high-k layer was prepared by 

using Sol-Gel based spin-coated method. This mixed high-k layer’s chemical, structural, and initial 

electrical properties are investigated thoroughly. It is clearly confirmed that the suitable chemical 

composition and bond formation of the proposed mixed high-k layer from EDAX and FTIR analysis 

observations. The XRD spectra strengthened the presence of ZrTiO2. The measured dielectric constant 

of the proposed mixed high-k layer from the extracted C-V plots has been varying from 29.1 to 37.6 

with respect to spin coating from 4000 to 6000 rpm. With lower spin rates, the leakage current is less. 
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1. Introduction 

The chemical composition of a proposed mixed thin film will have a major role in 

achieving a metal oxide semiconductor device's enhanced performance. Though there was 

rigorous research on various high dielectric (high-k) TiO2, HfO2, Y2O3, La2O3, Gd2O3, Ta2O5, 

STO, ZrO2, Al2O3 monolayers, recently there is an intensive focus on the mixed high-k layers 

to replace the SiO2 [1-14] to have the bidirectional benefits on various physical and electrical 

applications. Among various high-k materials, TiO2 has a wide range of applications due to its 

physical and chemical properties. Its applications extend as a photocatalyst, solar cell, 

electrochromic devices, anti-reflection coating, sensors. Besides, TiO2 can also be used as 

reliable high-k material for DRAM applications because of its higher dielectric constant [15-

17].  ZrO2 has gained considerable attention during the recent decade because of its high 

bandgap of ~5eV [18], large melting and boiling points, high crystallization temperature, high 

thermal stability,  high dielectric constant [19-20]. 
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On the other hand, when we use these two high-k materials individually, there was a 

problem with the electronic instabilities of zirconium oxide on Si substrate. Eventually, there 

would be an unstable interface at ZrO2/Si stacks [21-22], and TiO2/Si shows a high leakage 

current even at low temperature due to a very low conduction band offset value [23]. To 

accumulate the benefits of both oxide layers at a stretch in a single device, we are proposing 

interface engineering to support the chemical configuration and physical structure of the 

titanium doped zirconium oxide (ZrTiO2) layers.  Zr-doped TiO2 thin films can be prepared by 

Plasma-assisted pulsed laser deposited [24], and atomic layer deposition [25], electron beam 

evaporation, DC magnetron sputtering, RF magnetron sputtering, and chemical deposition 

methods, namely chemical bath deposition, chemical spray pyrolysis method [26], sol-gel spin 

coating method [1-3,19,27-28]. We have chosen a sol-gel spin coating method in this work 

because it is an inexpensive method; coating can be carried out at room temperature over large 

areas under atmospheric pressure. The amorphous nature of the film prepared through the sol-

gel method, offers a very low leakage current of 1.5×10-6 A/cm2. Qian Zhang [1], and G. He 

et al., [2] reported that the crystallization temperature could be raised to 6000C by incorporating 

titanium into zirconium. The incorporation of Zirconium into TiO2 offers an increase in the 

conduction band offset to Si and subsequently reduced the leakage current density by 

approximately two orders than pure TiO2 thin films. 

2. Materials and Methods 

 p-Type Si (100) wafers with a resistivity of 5-10 ohm-cm were used in this study. After 

removing the native oxide, ZrTiO2 films were deposited with a thickness of 40.0 nm, 41.20 nm, 

and 44.28 nm were grown on the wafers using sol-gel based spin-coating technique at 4000, 

5000, and 6000 rpm for 30 Seconds with zirconium oxychloride octahydrate (ZrOCl2.8H2O) 

and titanium tetrachloride (TiCl4) precursors as the basic reactants. After each coating, the 

substrates were annealed at 2000C for 20 minutes. This process was repeated 10 times to 

achieve a considerable thickness of the coating. The physical thicknesses of the ZrTiO2 films 

were determined using ellipsometry studies. Thickness(tox) and of the ZTO thin films have 

been measured with automatic angle spectroscopic ellipsometer [M2000VI] using multipoint 

measurement technique at the visible wavelength of 632.8 nm. Topographic analysis of the 

films is carried out using FESEM[JEOL JSM-7100F], and compositional analysis is done with 

OXFORD’s EDX tool connected to FESEM. X-ray diffraction data were collected with a 

Philips x’pert system using CuKα radiation (λ=1.5418 A0) at 45KV and step size of 0.008Å. 

TiCl4 precursor was used as a dopant in the zirconium. A gel-like structure was formed upon 

the introduction of 2-Methoxy ethanol. All the chemicals were purchased from Sigma Aldrich 

(USA) and used without further purification or alteration. 0.62 grams of zirconium oxychloride 

octahydrate powder equivalent to 5 moles are mixed in 50ml of 2-methoxy ethanol using a 

magnetic stirrer for 5 min at 300rpm. Finally, 0.54 ml of titanium tetrachloride is added to the 

above mixture and again mixed by the magnetic stirrer for 720 min at 400 rpm. After stirring 

the ZrTiO2 solution for 12 hours, it was filtered using a 0.22µm syringe filter to get a clear 

transparent solution.  

All the as-deposited ZrTiO2 films were baked treated for 2 hrs at 2000C. After 

metallization (Contacts on both sides), though e-Beam evaporation, the samples are loaded into 

the furnace for baking at 2000C for 2hrs Al/ZrTiO2/p-Si gate capacitor. 
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3. Results and Discussion 

Figure 1 shows the field emission scanning electron micrograph of the films formed at 

4000 rpm. The film's topography showed a uniform coating made with the spin coating with 

less porosity and negligible cracks and delaminations on its surface. The other films formed at 

5000 and  6000 rpm (not shown here) also showed similar topography. Image is taken from 

FESEM at 650x magnification; over a surface of 10µm. FESEM enables obtaining chemical 

information from the specimen by using various techniques, including the X-ray energy 

dispersive spectrometer (EDS). 

 
Figure 1. FESEM image of ZrTiO2 Thin Film. 

The EDS spectrum, shown in figure 2. It has been obtained from FESEM through 

oxford’s EDX attachment connected to it. The highest peak is shown in the spectrum shown as 

zirconium with 6.68 Weight%. The titanium quantity is approximately half of zirconium, 

confirming the 1:2 molar ratio of titanium and zirconium. The quantity of oxygen (shown in 

table 1), is more because it contains oxygen in the thin film, substrate silicate oxygen, and film 

surface. The Quantitative representation of materials in the oxide layer is shown in Figure 3. 

EDX data is collected at a working distance of 10mm, a probe current of 8mA, and a maintained 

accelerating voltage of 10KV. The numerical representation of the available major elements is 

shown in table 1. 

 
Figure 2. EDX Spectrum of ZrTiO2 Thin film. 
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Figure 3. Bar-Chart of ZrTiO2 Thin film. 

Table 1. Elemental composition of ZrTiO2 

Element Weight% Atomic% 

O K 16.2 89.34 

Ti K 2.28 4.20 

Zr K 6.68 6.46 

Totals 25.16 - 

 

Figure 4 shows the FTIR spectrum of ZrTiO2 films. The X-axis represents the 

wavelength (cm-1), and Y-axis represents light absorbance passing through the sample. The 

band at 2744cm-1 indicating a vibration Zr-O bond. The bond at 3700 cm-1 corresponds to the 

vibration of the Si-O bond. The band stretching in the range 2060-3600 cm-1 was attributed to 

a surface hydroxyl group's symmetrical vibration. A broad absorption seen in the range 3100-

3700 cm-1 might be related to the stretching hydroxyl (O-H) group resulting from titanium 

isopropoxide hydrolysis. Carbon-based functionalization traces identified on pure Zr doped 

TiO2 surface may reflect between 1600-2100 cm-1. The band at 1640 cm-1representing the    O-

H bending mode of the absorbed water. The band at 2360 cm-1 is because of the absorbed water 

(H2O) molecules after sol-gel coating.  

The bands in the range 950-400 cm-1 can be assigned to different stretching modes 

associated with metal oxides. In our case, the band may be attributed to the Ti-O bands in Zr-

doped TiO2 samples. The bands at 1242 cm-1, 1111 cm-1, 1035 cm-1, and 860 cm-1 correspond 

to Ti-OH's vibration mode. The band around 665 cm-1 was attributed to the vibration mode of 

the Ti-O-Ti bond; the most apparent peaks were observed at 443 cm-1, referring to the Ti–O–

Ti stretching mode. FTIR spectrum of Figure 4 is enlarged and drawn in parts to show the low 

amplitude peaks clearly. 

A search of the ICDD (International Centre for Diffraction Data) database of X-ray 

diffraction patterns enables the phase identification of a large variety of crystalline samples. 

The θ-2θ scan maintains these angles with the sample, detector, and X-ray source. Only those 

planes of atoms that share this normal will be seen in the θ-2θ scan. The inter-planar distance 

can be calculated from Bragg‘s law substituting λ and θ values from the XRD results, 

Dp =0.94 λ/ ß cos θ 

Where   ß = Line broadening in radius 

λ= wavelength of characteristic X-rays (1.540A) 

θ = Bragg’s angle, 

Dp = Average crystal size 
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Figure 4. FTIR spectrum of ZrTiO2. 

The XRD pattern of titanium doped ZrO2 in Figure 5 shows a smooth line without any 

specific peaks. The absence of peaks indicates the amorphous nature of the material. The 

amorphous nature is more suitable for MOS capacitor applications. XRD patterns of ZrTiO2 

thin film are the same for 4000, 5000, and 6000 rpm, and crystalline size is 22 nm. 

C-V measurements carried out by using the Agilent (model:1500A) Semiconductor 

Device Analyzer taken at 100 kHz are plotted in Figure 6. Three regions of the C-V graph, 

namely accumulation, depletion, and inversion, formed due to variation in carrier 

concentrations at the interface with bias voltage, are distinctly visible. The maximum 

accumulated capacitance is found to be 511 pF at 4000 rpm, 132 pF at 5000 rpm, and 183 pF 

at 6000 rpm. The dielectric constant calculated from the C-V plot was 37.6, 32.1, and 29.1, 

respectively, for samples at spin rates of 4000 rpm, 5000 rpm, and 6000 rpm. 

 
Figure 5. XRD image of ZrTiO2 Thin Film. 
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Figure 6. C-V analysis of ZrTiO2 thin film. 

This dielectric constant variation is attributed to the variations of oxide layer thickness 

because of different spin rates adopted. Oxide layer thickness varies from 44 nm to 40 nm. The 

maximum gate leakage current is 152 nA for 4000 rpm, 26.7 nA for 5000 rpm, and 369 nA for 

6000 rpm, which is lower than that of the existing literature and consistent for the use in MIS 

structures. All the parameters are shown in table number 2. Overshoot in the CV graph is 

observed against the 6000 rpm curve because of the excessive trap charges available at the 

interface. 

The conductivity of the prepared ZrTiO2 solution is measured using an electrical 

conductivity meter. We aim to prepare a solution, which is a purely insulating material. 

Generally, the insulating material's conductivity value is greater than or equal to 10-8 s/cm. The 

conductivity value of the prepared ZrTiO2 solution is 10-8 S/cm. Electrical Conductivity Meter 

gives only the magnitude and not a graph. Table 2 shows a summary of the results. 

Table 2. Result summary. 

 
Thickness 

(tox) 

Refractive 

Index (n) 

Maximum 

Accumulation 

Capacitance Cmax 

Dielectric 

constant (k) 
EOT 

Flatband 

Voltage 

(Vfb) 

Bandgap 

Maximum 

Leakage 

Current at +2V 

4000 rpm 44nm 1.86562 1.52E-10 37.6 4.5nm 0.375V 4.2 152nA 

5000 rpm 41.203nm 1.77468 1.32E-10 32.1 5nm 0.1V 4.3 26.7nA 

6000 rpm 40.381nm 1.27867 1.83E-10 29.1 5.4nm -0.3V 4.4 369nA 

4. Conclusions 

 The primary focus of this work is to study the electrical characteristics of the high-k 

dielectric layer of Zirconium Titanate (ZrTiO2) prepared using Sol-Gel based spin coating 

technique. Initially, titanium doped zirconium dioxide solution is prepared using the Sol-Gel 

method; after preparation of the solution, it is tested for conductivity, which is 10-8 siemens/cm. 

This confirms the prepared material's suitability to be used as a dielectric material. The solution 

is then deposited on glass substrates and p-Si(100) using the spin coating method at varying 

speeds of 4000, 5000, and 6000 rpm. The films are characterized for their chemical, structural 

and electrical properties. From the XRD graph, it is known that the prepared films are purely 

amorphous. From the FESEM results, the thin film morphology is found to be smooth, and a  

uniform deposition had taken place. From the EDX results, the Zr:Ti ratio is shown as 1:2. The 

thickness of the thin film is obtained by characterizing the film using a spectroscopic 

ellipsometer. 

Film thicknesses were 44, 41, and 40 nm respectively for 4000, 5000, and 6000 rpm 

spin rates. Thus it satisfies the relation, i.e., the spin speed is inversely proportional to the film 
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thickness. Obtained Leakage currents are much lower than the reported gate leakage current 

density. The values obtained from Agilent 1500A Semiconductor Device Analyzer are 152 nA, 

26.7 nA, and 369 nA, respectively, for different spin rates. Maximum accumulation capacitance 

(Cmax) values are 15.2 nF, 13.2 nF and 18.3 nF. Calculated dielectric constant(k) values from 

the accumulation capacitance are 37.6, 32.1, and 29.1, respectively, for three different spin 

rates. These values are greater than the reported values. 

5. Future Scope 

The deposited films can be annealed at various temperatures like 400oC, 500oC, and 

600oC to analyze the MOSCAP device properties like dielectric constant, leakage current, and 

equivalent oxide thickness based on the changes in crystal orientation of the material (phase 

formation). 
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