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Abstract: Necrotizing enterocolitis (NEC) is a serious disease of the gastrointestinal systems that 

primarily affects premature newborns' intestine in neonatal intensive care units. The present study aimed 

to detect NEC molecular signatures and pathways from comprehensive bioinformatics analysis of 

NEC's RNA-seq transcriptomics. We performed systems biology analysis of RNA-seq transcriptomics 

data (with accession GSE64801) of NEC from nine NEC and five healthy controls. Differential 

expression of gene expression was performed using a combination of three R packages "DESeq2", 

"edgeR", “edger robust”. Gene co-expression analysis was performed using a weighted WGCNA 

package to identify gene modules, Gene Ontology (GO), pathway analysis, protein-protein interaction, 

gene-transcription factor, and gene-microRNA interaction analysis was performed. The differential 

expression analysis identified 966 differentially expressed genes (DEGs) in NEC from the RNA-seq 

dataset related to corresponding controls. The WGCNA showed the presence of three key gene modules. 

The GO analysis showed genes are enriched in metabolic processes, regulation of immune response 

and immune systems, cell communication, and cellular process. The immune and complement pathways 

are related to co-expressed key modules that were detected. The protein-protein interactions analysis 

showed the presence of key hub genes related to the modules. Integration of these co-expressed gene 

modules with regulatory networks showed the presence of significant key transcription factors and 

microRNAs as hub molecules. The present study's findings suggested the immune systems and 

complement cascade are key mechanisms of NEC pathogenesis. The comprehensive network analysis 

showed several key hub molecules that might be potential biomarkers and drug targets in NEC.  

Keywords: necrotizing enterocolitis; RNA-seq; weighted gene co-expression network; systems 

biology; protein-protein interaction.  
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1. Introduction 

Necrotizing enterocolitis (NEC) is one of the prevalent life-threatening diseases of the 

gastrointestinal systems that primarily affects premature newborns' intestines in neonatal 

intensive care units [1,2]. NEC is characterized by inflammation and necrosis of the intestine 

and high morbidity [3,4]. Several complications such as the development of short bowel 

syndrome, cholestasis liver disease, and perturbed growth and neurodevelopmental outcomes 
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are evident in NEC survivors [5,6]. The major risk factor recommended for the NEC’s 

development is the pre-term birth, aberrant bacterial colonization and eternal feeding [7,8]. 

However, prematurity has been considered the established risk factor in NEC's development 

so far [9,10], but the precise mechanism has not been uncovered yet. Neonatologists face the 

most serious difficulty determining accurate early clinical signs and symptoms of NEC [9,11]. 

While there are numerous NEC diseases with different symptoms, the most common type of 

the disease is the inflammatory gut syndrome of prematurely born babies, referred to as "classic 

NEC" [1,3,9]. That being said, NEC is somewhat unspecific in its early clinical indications and 

may often be mischaracterized as other gastrointestinal issues  [1,9,12]. Due to its abrupt onset, 

NEC has often been detected at the advanced stage [13,14]. An early diagnosing method for 

recognizing pre-term babies at risk of developing NEC or the outbreak of symptoms to help 

diagnose the problem would be a technique to avoid or treat NEC.  

Several efforts were made to discover key genes with NEC [15–22] or distinguish them 

from related pathologies [23] though the suitable biomarker still needs to be established [24]. 

The gene expression profiling was done in NEC compared to controls via RNA-sequencing 

(RNA-Seq) and microarray gene expression profiling. Several deregulated genes and pathways 

contributing to NEC was identified [25–29]. Despite significant findings from these studies, 

there is an urgent need to uncover transcriptional landscape, associated biomolecules, and 

molecular pathways in NEC. Adopting gene co-expression profiling coupled with systems 

biology methodologies would identify significant co-expressed gene modules and pathways to 

shed light on NEC's mechanism. Thus, the weighted gene co-expression of RNA-seq 

transcriptomes in NEC would provide novel insights into NEC's molecular mechanism [30,31]. 

WGCNA is extensively used for candidate signatures identification in various diseases [32–

40], having a great prospect in NEC disease.  

In the present study, we used publicly available RNA-seq datasets (with accession no 

GSE64801) to identify differentially expressed genes (DEGs). The co-expression network was 

then constructed via the WGCNA algorithm and identified the NEC's highly correlated gene 

modules. The Gene Ontology (GO), pathway enrichment analysis, protein-protein interaction 

(PPI) network was conducted for these gene modules. The transcriptomics factors (TFs) and 

microRNAs (miRNAs) networks of co-expressed genes in each key module were conducted in 

this study. Our results provide novel insights into NEC's pathogenesis and the potential 

molecular targets for novel interventional approaches.  

2. Materials and Methods 

The workflow of this study is illustrated in Figure 1. 

2.1. Data collection. 

The RNA-Seq gene expression data with accession GSE64801, which was deposited 

by Trembly et al. from NEC compared to control based on the platform GPL11154 [Illumina 

HiSeq 2000] were collected from Gene Expression Omnibus (GEO) database [25]. A total of 

14 samples, with 5 healthy controls and 9 NEC diagnosed pre-term infant samples included in 

this dataset.   

2.2. Transcriptomic data processing and differential expression analysis.  
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The raw count data were normalized, and differential expression was performed to 

detect the differentially expressed genes (DEGs) NEC samples compared to healthy controls 

using edgeR [41], DESeq2 [42], and edgeR robust [43] algorithms through R packages. We 

take the common DEGs of these three algorithms for further analysis. For all the algorithms, 

the p-value < 0.05 and absolute [log2 (FC)]>=1 were used as the cutoff criteria for DEGs 

identification.  

 
Figure 1. Flowchart of the methodology of this paper. 

2.3. Weighted gene co-expression networks construction and key module selection. 

For the gene co-expression network construction, firstly, we remove the outlier samples 

(if there exist) by constructing the sample cluster dendrogram by hclust R function. We then 

used the WGCNA package [44] of R in this reduced dataset for constructing a gene co-

expression network. We used the pickSoftThreshold function for finding numerous soft 

thresholding powers β over R2 and pick the value of β for which the R2 value is being higher. 

Then, we constructed the adjacency matrix and Topological Overlap Matrix (TOM) by using 

the transformed gene expression matrix. The dissimilarity of TOM (dissTOM) was also 

conducted to construct a network heatmap plot and further analysis.  

For the module selection, the dendrogram of genes constructed with dissTOM matrix 

using hclust R function with different colors. The Dynamic Tree Cut technique is used to 

getting modules for branch cutting. The parameters deepSplit=2 and minClusterSize=30 are 

being used for avoiding the generation of small or large modules. We used MEDissThres = 

0.45 for merging similar modules.  

For the selection of key modules, we measured the module significance of all genes in 

the module. The absolute value for ascertaining a correlation-based gene significance measure 

was used for gene significance over each module. We considered the first three modules with 

the highest gene significance as the key modules.  

2.4. Gene Ontology and pathway analysis. 
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There is high connectivity of genes inside the co-expression modules. The genes 

perform similar roles within the same module. The functional enrichment analysis for the genes 

was studied in each selected key modules by GO and pathway analysis, for the GO analysis 

was identified and visualized by using clusterProfiler R package [45]. The pathway enrichment 

analysis was done via Enrichr [46] and identified significant pathways involved in gene co-

expressed modules. We considered KEGG and Reactome pathway as data annotation sources. 

A statistical threshold criterion with an adjusted p-value <0.05 was used to select for the GO 

and pathway analysis. 

2.5. PPI network analysis to detect hub genes in the key modules. 

The DEG from each key module was used to construct the Protein-Protein Interaction 

(PPI) networks with the widespread web-based tool STRING [47], and the networks were 

visualized with Cytoscape open-source platform [48]. Then, we identified the top-ranked genes 

known as hub genes. The Maximal Clique Centrality (MCC) measurement [49] was used for 

the detection of hub genes through the CytoHubba plugin [49] in Cytoscape. The higher the 

value of MCC of the nodes, the higher the number of edges connected in those hub proteins.  

 

Figure 2. Differential expression profiles of the GSE64801 dataset. (A) The volcano plot of the GSE64801 

dataset; (B) Venn diagram of DEGs identified using edgeR, DESeq2 and robust edgeR approach; (C) 

Heatmap of the identified differentially expressed genes (DEGs), which were mutually identified by three 

methods termed “common DEGs”. 

2.6. Identification of transcription factors and miRNAs that may regulate co-expressed gene 

modules. 

We sought to detect the transcription factors (TFs) and microRNAs (miRNAs) that may 

control the gene modules' genes. We used a freely accessible database, JASPAR [50], for 

executing TFs-DEGs interaction through NetworkAnalyst [51]. For the identification of the 

significant miRNAs, we used the freely accessible database for miRNAs-target interactions 

databases, namely, Tarbase [52] and mirTarbase [53], to build miRNAs-DEGs interaction 

network via NetworkAnalyst [51]. Then, we used Cytoscape for visualization and identification 
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of significant hub TFs and miRNAs identification. We used the CytoHubba plugin in 

Cytoscape based on the MCC cutoff >=15 to select the hubs.  

3. Results and Discussion 

3.1.Results. 

3.1.1. Differential expression analysis. 

The transcriptomics dataset GSE64801 contains gene expression of 58037 genes from 

nine NEC and five healthy control samples. We performed differential expression of gene 

expression of RNA-Seq data with three R packages, namely DESeq2 (robust version), edgeR, 

and edgeR (robust version), to identify differentially expressed genes (DEGs), each separately 

(Figure 2). Then, we considered common DEGs identified by these packages; these common 

DEGs are considered robust. Figure2A shows the expression with direction genes, including 

the up-regulated, down-regulated, and equally expressed genes. The statistical analysis 

revealed 1439, 1207 and 1763 DEGs through edgeR, DESeq2 and edgeR robust algorithms 

respectively (p-value < 0.05 and absolute [log2 (FC)]>=1 cutoff criteria). Then, we filtered 966 

DEGs, including 398 up-regulated and 568 down-regulated genes, which were commonly 

detected by these algorithms (Figure 2B).  The unsupervised clustering analysis demonstrated 

these 966 DEGs clustered into two major clusters (Figure 2C). Moreover, these DEGs clustered 

NEC samples and controls perfectly (Figure 2C). These robust 966 DEGs were considered for 

the construction of a gene co-expression network. 

Figure 3. Samples clustering and determination of soft-thresholding power: (A) the cluster dendrogram of 

the samples; (B) analysis of the scale-free fit index (left) and the median connectivity (right) for various 

soft-thresholding powers. 

3.1.2. Weighted gene co-expression networks construction and key module selection. 
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In this part, the gene co-expression network analysis had been executed with 966 

DEGs for the GSE46801 dataset. First of all, the cluster dendrogram of samples was 

visualized by hclust R function to detect outlier samples, and no outlier sample was 

detected (Figure 3A). To identify the modules through WGCNA, we found the optimized 

soft thresholding powers β=8 as the scale-free topology criteria (Figure 3B). Considering 

this soft threshold power value, we constructed the co-expression networks. The analyses 

revealed the presence of nine co-expressed gene modules through the dynamic tree cut 

technique using deepSplit=2 and minClusterSize=30 parameters. Then, we sought to 

detect the key modules using the module merging approach. We used MEDissThres = 0.45 

for merging similar modules and identified five key modules: black, blue, red, turquoise, 

and yellow (Figure 4A). We observed 403, 303, 127, 47, and 41 genes for blue, turquoise, 

yellow, red, and black modules, respectively, and the 45 non-co-expressed genes tied up 

in the grey module. The network heatmap of all genes with these 5 modules has been 

shown in Figure 4B. The interaction among these 5 modules has been shown in Figure 4C 

and Figure 4D. For the selection of key modules, we measured the module significance of 

all genes over the module. Figure 4E showed the barplot of gene significance of each 

module, and we chose blue, turquoise, and yellow modules as the key modules for their 

higher gene significance than the grey, black and red modules. 

 
Figure 4. Gene co-expression modules construction with WGCNA: (A) the cluster dendrogram of the most 

connected genes furnished into gene co-expression modules based on dissimilarity matrix; (B) interaction 

relationship analysis co-expressed genes. Different colors of the horizontal axis and vertical axis represent 

different modules; (C) clustering dendrogram of module eigengene summarizes the modules yielded in the 

clustering analysis. (D) Module eigengene adjacencies network heatmap that summarizes the modules yielded in 

the clustering analysis. (E) The barplot of the gene significance across the modules. 
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3.1.3. Functional annotation analysis of gene modules. 

   The GO and pathway analyses have been conducted to obtain further biological insight 

into each key module's genes. For the blue module, the genes are significantly enriched in the 

‘catabolic process’, ‘small molecules metabolic process’, ‘cellular localization’, ‘cytoplasm’, 

‘catalytic activity’, ‘drug binding’, ‘ion binding’ (Figure 5A). 

 

Figure 5. GO analyses of the selected three key modules: (A) GO analysis of all genes in the blue module; (B) 

GO analysis of all genes in the turquoise module; (C) GO analysis of all genes in the yellow module. 
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Figure 6. Pathway enrichment analyses of the selected three key modules (blue, turquoise and yellow): (A) 

KEGG pathway analysis of three modules; (B) Reactome pathway analysis of three modules. 

 The ‘regulation of immune response’, ‘leukocyte mediated immunity’, ‘regulation of 

cellular process’, ‘endomembrane system’, ‘antigen-binding’ and ‘immunoglobulin receptor 

binding’ are the significantly enriched terms of a turquoise module (Figure 5B). The significant 

enriched terms for the yellow module are the ‘cell communication’, ‘signal transduction’, 

‘cellular process’, ‘cellular anatomical entry’, ‘protein binding’ and ‘molecular function’  

(Figure 5C). 

The genes of the blue module showed significant KEGG and Reactome pathways 

enrichment in “mineral absorption”, “malaria”, “african trypanosomiasis”, “erythrocytes take 

up oxygen and release carbon dioxide”, “response to metal ions’ and “metallothioneins bind 

metals”. For the turquoise module, the “pancreatic secretion”, “fat digestion and absorption”, 

“intestinal immune network for IgA production”, “classical antibody-mediated complement 

activation”, “FCGR activation and creation of C4 and C2 activators”, “initial triggering of 

component” were the mainly enriched pathways. The yellow module demonstrated significant 

pathways, namely “the olfactory transduction”, “olfactory signaling pathway”, “NGF-

independent TRKA activation”, and “Activation of TRKA receptors” (Figure 6A and 6B and 

Table 1). 

 
Figure 7. PPI analysis of the hub genes of (A) blue module; (B) turquoise module; (C) Yellow module. 

3.1.4. PPI network analysis with hub genes detection in three key modules. 

The DEGs for the three key modules were used to construct the PPI networks with the 

STRING database. The networks were visualized with Cytoscape software. The hub genes for 
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each module was detected with the MCC measurement criteria (MCC>=15). For the blue 

module, we construct a sub-network and identified 10 hub genes, namely, HBB, HBM, HBZ, 

ALAS2, HBA1, HBG1, HBA2, ASHP, HBQ1, and HBD (Figure 7A). We constructed a sub-

network and identified IGJ, REG3A, POU2AF1, and DEFA5 hub genes for the turquoise 

module (Figure 7B). For the yellow module showed NEB, TNNT3, TNNI1, TNNT1, and 

MYL1 hub genes (Figure 7C).   

3.1.5. Transcription factor and miRNAs identification for the three key modules. 

To identify the transcriptomics factors and miRNAs of each key module of NEC 

disease, we analyzed the TFs-Genes and miRNAs-Gene network interaction in this section. 

The top 5 hub TFs and miRNAs were taken through MCC's raking values on CytoHubba in 

Cytoscape from the networks. The most significant TFs for the blue module are FOXC1, 

GATA2, YY1, TFAP2A, and FOXL1 (Figure 8A). The most significant TFs for the turquoise 

module are namely, REXO1L1P, FOXC1, CCL28, YY1, GATA2 (Figure 8B), and for the 

yellow module FOXC1, CECR1, OTX2, GATA2, and TMPRSS15 (Figure 8C). The most 

significant miRNAs detected for the blue module are namely, mir-27a-3p, mir-146a-5p, mir-

335-5p, mir-124-3p and mir-129-2-3p (Figure 9A). The most significant miRNAs identified 

for the turquoise module are namely, mir-27a-3p, mir-335-5p, mir-124-3p, mir-334a-5p, mir-

146a-5p (Figure 9B) and for the yellow module mir-27a-3p, mir-124-3p, mir-146a-5p, mir-

34a-5p and mir-372-3p (Figure 9C).   

3.2. Discussion 

Despite much research to understand NEC's transcriptional changes to identify 

significant genes and pathways, a system biology approach to decode the NEC's molecular 

signature is not available yet. In this study, we employed gene co-expression analysis to decode 

the critical genes and pathways of NEC. The NEC RNA-seq transcriptomes were analyzed with 

integrative bioinformatics methods and revealed dynamic changes in transcription termed 966 

DEGs as significant gene signature. The gene co-expression analysis demonstrated five 

significant key gene modules. These findings suggest dynamic transcriptional signatures of 

NECs. The GO and pathway annotation highlight the catabolic processes, catalytic process, 

dysregulated immune systems. The complement systems pathways, initial triggering of 

complement pathways, complement cascade, passive transport of aquaporin, etc., pathways 

were identified as novel therapeutic targets. These findings suggest the involvement of 

inflammation in NEC pathogenesis consistent with previous findings [23].  

The hub genes identified by topological analysis of the PPI analysis are considered 

potential biomarkers and therapeutic targets. Therefore, we performed a PPI network analysis 

of the identified genes of three key modules. The topological assessment of the PPI network 

showed the presence of hub genes (HBB, HBM, HBZ, ALAS2, HBA1, HBG1, HBA2, ASHP, 

HBQ1, and HBD) in the blue module. Mutation in the hub gene HBB was identified by 

previous studies implicated in hemoglobinopathies such as thalassemia [54]. The hub HBZ 

plays a crucial role in the oncogenesis [55]. The hub genes HBM and ALAS2 were 

demonstrated down-regulated in NEC pigs [56]. The hub HBG1 is typically expressed in 

neonatal liver, spleen tissues and participates in various hemoglobinopathies (GeneCard 

database).  
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Figure 8. TFs-Genes interactions analysis with hub TFs of (A) blue module; (B) turquoise module; (C) yellow 

module. 

 
Figure 9. Gene-microRNA interactions analysis key gene co-expressed modules: (A) blue module; (B) 

turquoise module; (C) yellow module. 

Table 1. Molecular pathways associated with co-expressed gene modules. 

Database Pathways P-values Related Genes 

Blue Module 

KEGG 

Mineral absorption 0.003557 SLC46A1;MT1F;MT1G;MT1H;MT1HL1 

African trypanosomiasis 0.006345 HBB;HBA2;HBA1;KNG1 

Malaria 0.016866 GYPA;HBB;HBA2;HBA1 
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Database Pathways P-values Related Genes 

Blue Module 

Reactome 

Erythrocytes take up oxygen and 

release carbon dioxide  

4.22E-04 HBB;SLC4A1;HBA1 

Metallothioneins bind metals  0.001188 MT1F;MT1G;MT1H 

Response to metal ions  0.001188 MT1F;MT1G;MT1H 

O2/CO2 exchange in erythrocytes  0.00156 HBB;SLC4A1;HBA1 

Erythrocytes take up carbon dioxide 

and release oxygen  

0.00156 HBB;SLC4A1;HBA1 

Terminal pathway of complement  0.010465 C8G;C8A 

Passive transport by Aquaporins  0.02339 AQP10;AQP8 

Fatty acids  0.035766 CYP2D6;CYP4F2 

Turquoise 

Module KEGG 

Pancreatic secretion 0.016717 PRSS1;PLA2G2D;PLA2G2A;PRSS2;CLCA4 

Fat digestion and absorption 0.024021 PLA2G2D;DGAT2;PLA2G2A 

Intestinal immune network for IgA 

production 

0.036096 CCL25;TNFRSF17;CCL28 

alpha-Linolenic acid metabolism 0.054599 PLA2G2D;PLA2G2A 

Turquoise 

Module 

Reactome 

Classical antibody-mediated 

complement activation  

3.72E-17 IGHV3-23;IGLC6;IGKV1-5;IGKV1D-16;IGLV4-60; 

IGHG3;IGLV4-69;IGHG1;IGLV1-40;IGHG2; 

IGLV7-46;IGLV2-23;IGKV4-1;IGLV2-18;IGLC1 

Creation of C4 and C2 activators  3.56E-16 IGHV3-23;IGKV1-5;IGLC6;IGKV1D-16;IGLV4-60; 

IGHG3;IGLV4-69;IGHG1;IGHG2;IGLV1-40; 

IGLV7-46;IGLV2-23;IGKV4-1;IGLV2-18;IGLC1 

FCGR activation  3.56E-16 IGHV3-23;IGKV1-5;IGLC6;IGKV1D-16;IGLV4-60; 

IGHG3;IGLV4-69;IGHG1;IGHG2;IGLV1-40; 

IGLV7-46;IGLV2-23;IGKV4-1;IGLV2-18;IGLC1 

Initial triggering of complement  5.95E-15 IGHV3-23;IGKV1-5;IGLC6;IGKV1D-16;IGLV4-60;I 

GHG3;IGLV4-69;IGHG1;IGHG2;IGLV1-40; 

IGLV7-46;IGLV2-23;IGKV4-1;IGLV2-18;IGLC1 

Role of phospholipids in phagocytosis  1.04E-14 IGHV3-23;IGKV1-5;IGLC6;IGKV1D-16;IGLV4-60 

;IGHG3;IGLV4-69;IGHG1;IGHG2;IGLV1-40; 

IGLV7-46;IGLV2-23;IGKV4-1;IGLV2-18;IGLC1 

Complement cascade  5.84E-14 IGHV3-23;IGKV1-5;IGLC6;C4BPB;IGKV1D-16 

;IGLV4-60;IGHG3;IGLV4-69;IGHG1;IGHG2;IGLV1-40 

;IGLV7-46;IGLV2-23;IGKV4-1;IGLV2-18;IGLC1 

Scavenging of heme from plasma  2.89E-12 IGLV4-69;IGLV1-40;IGLV7-46;IGHV3-23;IGLC6 

;IGKV1-5;IGLV2-23;IGKV4-1;IGLV2-18 

;IGLC1;IGKV1D-16;IGLV4-60 

 FCERI mediated Ca+2 mobilization  7.32E-12 IGHV3-23;IGKV1-5;IGLC6;IGKV1D-16;IGLV4-60; 

IGLV4-69;IGLV1-40;IGLV7-46;IGLV2-23;IGKV4-1 

;IGHE;IGLV2-18;IGLC1  
Regulation of actin dynamics for 

phagocytic cup formation 

1.82E-11 IGHV3-23;IGKV1-5;IGLC6;IGKV1D-16;IGLV4-60 

;IGHG3;IGLV4-69;IGHG1;IGHG2;IGLV1-40; 

IGLV7-46;IGLV2-23;IGKV4-1;IGLV2-18;IGLC1 

Fcgamma receptor (FCGR) dependent 

phagocytosis  

4.08E-10 IGHV3-23;IGKV1-5;IGLC6;IGKV1D-16;IGLV4-60; 

IGHG3;IGLV4-69;IGHG1;IGHG2;IGLV1-40; 

IGLV7-46;IGLV2-23;IGKV4-1;IGLV2-18;IGLC1 

Yellow Module 

KEGG 

Olfactory transduction 0.023333 OR10K1 

Yellow Module 

Reactome 

Olfactory Signaling Pathway  0.017423 OR10K1;OR4D1;OR52J3;OR1S1;OR11H1;OR10AG1; 

OR4C3 

NGF-independant TRKA activation  0.031352 NTRK1 

Activation of TRKA receptors  0.037505 NTRK1 

The hub HBA2 was identified as a critical gene involved in NEC's inflammatory 

process [25]. The PPI analysis demonstrated IGJ, REG3A, POU2AF1, and DEFA5 hub genes 

for the turquoise module. The hub REG3A was identified as a critical gene involved in NEC's 

inflammatory process [25]. The hub POU2AF1 was previously identified as deregulated in ileal 

Peyer's small intestine patches [57]. The hub DEFA5 was identified as a critical gene involved 
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in NEC's inflammatory process [25]. The yellow module showed that NEB, TNNT3, TNNI1, 

TNNT1, and MYL1 are the hub genes. The hub NEB is involved in acute pancreatitis of 

leukemia patients [58]. Genetic variation of TNNT3 is involved in breast cancer [59]. Genetic 

variation in TNNT1 is associated with bodyweight [60]. A genetic variant of MYL1 is 

implicated in metabolic traits [61]. The transcriptomics factors (TFs) identified by topological 

analysis of the TFs-Gene interaction analysis are considered potential TFs in NEC. We 

performed the TFs-Gene interaction analysis for the selected three key modules. The most 

significant TFs detected for the blue module are FOXC1, GATA2, YY1, TFAP2A, and 

FOXL1. The most significant TFs detected for the turquoise module are REXO1L1P, FOXC1, 

CCL28, YY1, and GATA2 and the yellow module FOXC1, CECR1, OTX2, GATA2, and 

TMPRSS15. The identified microRNAs may control the co-expressed genes. The identified 

hub genes, TFs, miRNAs, and pathways may be considered for NEC's drug targets and 

potential biomarkers. Despite the crucial findings obtained from this co-expression study, we 

acknowledge the limitations of wet-lab experimental validation of these identified molecules 

should be performed before establishing them for clinical use.  

4. Conclusions 

The NEC is a severe disease of gastrointestinal systems with high morbidity. The 

present study employed gene co-expression bioinformatics methods to analyze RNA-Seq 

transcriptomes of NEC matched with controls to identify significant co-expressed gene 

modules and pathways. The WGCNA gene co-expression analysis demonstrated three key co-

expressed gene modules. Further, the PPI analysis showed the presence of several hub genes 

(HBB, HBM, HBZ, ALAS2, HBA1, HBG1, HBA2, ASHP, HBQ1, and HBD) in the blue 

module; IGJ, REG3A, POU2AF1, DEFA5 hub genes for the turquoise module; the yellow 

module showed NEB, TNNT3, TNNI1, TNNT1 and MYL1 hub genes. The GO and pathway 

analysis highlights the inflammation process in the development and progression of NEC. We 

also detected TFs and miRNAs that may regulate the identified co-expressed gene modules.  

The identified hub genes, regulators, and pathways shed new light on the pathogenesis of NEC. 

Despite these candidate biomarkers' computational significance, we now propose a wet-lab 

experiment to establish them as biomarkers for clinical use.  
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