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Abstract: The lifespan of Drosophila melanogaster can last longer when consuming ethanol extract of 

Muntingia calabura leaves (EMCL) before starvation. Lifespan extension can be affected by several 

factors, including the increased expression of endogenous antioxidants. This study aimed to assess the 

level of endogenous antioxidants sod1 and sod2 in D. melanogaster upon ingestion of ethanol extract 

of M. calabura leaves (EMCL) before starvation. Fifty D. melanogaster were divided into five groups: 

healthy control group, starvation control group, and three groups of EMCL-treated: 0.2% group, 1% 

group, and 5% group. Each group was fed with fly food in the presence or absence of EMCL for seven 

days, and all groups, except the healthy control group, were subsequently subjected to a starvation 

procedure for seven hours. RNA extraction was performed on each group before sod1 and sod2 

measurements using the reverse-transcriptase quantitative PCR method. Our results revealed that the 

expression of sod2 was increased in response to starvation. On the contrary, reduced expression of sod1 

was observed in the starvation-treated group. Treatment of flies with EMCL at 1% and 5% increased 

the mRNA level of sod1, but did not affect the mRNA level of sod2. Taken together, our results 

demonstrated the potential effect of Muntingia calabura leaves in the modulation of Drosophila sod1 

and sod2 gene expression in Drosophila. Similar endogenous antioxidants are present in humans and 

have been associated with aging, implying that prospective pharmacological investigations are feasible 

to pursue in future studies. 
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1. Introduction 

Free radicals consist of one or more unpaired electrons as metabolic products of 

metabolism in the mitochondria [1, 2]. Production of free radicals in low concentrations has 

beneficial effects on the body. However, it can cause oxidative stress if they are overproduced 

[3-5]. Oxidative stress has been suggested to play an essential role in the induction of apoptosis, 

a programmed cell death [5, 6]. Apoptosis is essential for the normal function and survival of 

multi-cellular organisms, including host defense against pathogenic microbes [6-8]. However, 

excessive apoptosis can induce harmful host responses that may impair tissue functions and 

may lead to physiological abnormalities [9].  

In living things, cell death can be triggered by several factors: continuous starvation 

[10, 11]. Cells primarily respond to starvation via the autophagy pathway, but in the event of 

prolonged starvation, cells may undergo autophagic cell death in addition to apoptosis [11]. 
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Calorie restriction (CR) by controlled starvation has been shown to be associated with a 

prolonged duration of life, implying the anti-aging effect of such an approach [12]. However, 

at certain conditions, starvation may promote detrimental injuries to tissues [10]. Starvation-

induced modifications in physiological responses, for example, extended lifespan, have been 

demonstrated using different types of model animals [12, 13], including in the fruit fly 

Drosophila melanogaster [14]. 

Drosophila melanogaster has been widely applied as a model system to investigate 

various biological phenomena in metazoan species, including the supportive role of the virus 

in the defense against cancerous cells [15], the mechanistic basis of cell death [16], and aseptic 

inflammation [17], the impeccable role of innate immunity in the fight against bacterial [18], 

viral [19, 20], and fungal [21] infections, and even in the continuous global efforts to discover 

new drug entities from medicinal plants [22-26] and/or to repurpose old drugs for new 

pharmacological indications [27]. In fact, just recently, D. melanogaster has been proposed as 

a potential model organism to study SARS-CoV-2 virulence genes and host factors responsible 

for the pathogenesis of COVID-19 [28]. 

Extended lifespan is affected by several factors, including antioxidants both exogenous 

and endogenous that can inhibit free radicals [3, 4]. Normally, the human body produces 

intrinsic or endogenous antioxidants; one of them is superoxide dismutases (SODs), the first 

class and one of the most important enzymatic antioxidants to inhibit reactive oxygen species 

(ROS), especially superoxide anion radicals [3, 29, 30]. Two SODs, CuZn-SOD (SOD1) and 

Mn-SOD (SOD2) are important in humans [29]. In Drosophila itself, these two SODs have 

been described to be important in life extension [31]. Some studies using D. melanogaster as a 

model organism demonstrated the involvement of endogenous antioxidants SOD1 and/or 

SOD2 in regulating D. melanogaster lifespan [31, 32] and its improvement in the presence of 

a certain drug or plant extracts [3, 33, 34]. 

One of the natural resources proven to have antioxidant activity in vitro and in vivo is 

Muntingia calabura L. [35, 36]. Previous experiments using the mice model revealed that M. 

calabura leaves extract possessed anti-aging activity, possibly reducing the level of oxidative 

stress [35]. Indeed, we also found that Drosophila melanogaster experienced an extended 

lifespan upon ingestion of ethanol extracts of Muntingia calabura leaves (EMCL) before the 

starvation process was initiated [Unpublished data]. Based on the currently available data, there 

is an indication that EMCL can extend the lifespan of D. melanogaster in stress conditions. 

Here we reported a study to examine the effect of EMCL on the expression of endogenous 

antioxidants CuZn-SOD (sod1) and Mn-SOD (sod2) using the starved Drosophila model. 

2. Materials and Methods 

 2.1. Plant extract preparation. 

Ethanol extract of M. calabura leaves (EMCL) samples was obtained from Makassar, 

South Sulawesi, Indonesia. This sample was prepared by maceration method with a ratio 1:10 

of simplistic and 70% ethanol for three days in a place protected from direct sunlight with 

occasional stirring was performed during the process. After that, the macerated mixture was 

filtered then the residue was re-macerated again for three more days. Later, the filtrate was 

evaporated using a rotary evaporator until a thicken extract was obtained. 
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2.2. Fly stocks. 

The w1118 Drosophila melanogaster line used in this study was generously provided by 

the Host and Response Laboratory of the University of Kanazawa, Japan. Flies’ maintenance 

were carried out in standard conditions (25°C, 12 hours light and 12 hours dark cycles, and 

standard corn-meal food). In this study, adult male flies were anesthetized in a refrigerator at -

20°C for ±5 minutes before RNA extraction and gene expression analysis.  

2.3. Fly treatment and starvation induction.  

Adult male flies at the age of 10 days were prepared, assigned into five different groups, 

treated according to their groups, and then induced into the starvation condition (10 flies per 

vial, 3 vials in each group). Flies were maintained in an incubator with a steady temperature at 

25°C. Fly feeding was carried out for seven days. A group fed with standard fly food was used 

as the healthy control group in this experiment. Flies in the starvation control group were given 

standard fly food for seven days and then transferred in an empty vial for seven hours. Other 

groups were similarly treated as the negative control group but fed with standard fly food 

containing EMCL at a concentration of either 0.2 %, 1%, or 5%.  

2.4. Gene Expression analysis. 

Isolation of total RNA was conducted on all treatment groups. Ten live flies from each 

group were transferred into a Treff tube then anesthetized in a freezer at -20°C for ±5 minutes 

prior to crushing using a micropestle. Total RNA was extracted using the RNA Isolation 

System (Promega) reagent. The level of sod1 and sod2 were quantitatively examined by using 

the reverse transcriptase quantitative PCR (RT-qPCR) method. A set of sod1 primer (sequence 

of sod1 forward primer: 5’–AGGTCAACATCACCGACTCC–3’ and sequence of sod1 reverse 

primer: 5’–GTTGACTTGCTC AGCTCGTG–3’) and a set of sod2 primer (sequence of sod2 

forward primer: 5’–TGGCCACATCAACCA CAC–3’and sequence of sod2  reverse primer: 

5’–TTCCACTGCGACTCGATG–3’) in a total volume of 20 µl using GoTaq® 1-Step RT-

qPCR System (Promega) were used, as per manufacturer’s instruction. Verification of whether 

the expected product had been amplified was carried out based on the assigned samples' 

standard melt curve profile. As an internal control in the RTqPCR assay, the level of rp49, a 

host gene responsible for the expression of ribosomal protein, was examined by using a set of 

rp49 primer (rp49 forward primer: 5’–AGATCGTGAAGAAGCGCACCAAG–3’ and rp49 

reverse primer: 5’–CACCAGGA ACTTCTTGAATCCGG–3’). A real time thermal cycler 

(Rotor Gene Q, Qiagen, Germany) was used with a running profile: 37°C for 15 minutes, 95°C 

for 10 minutes, and a set of 95°C for 10 seconds, 60°C for 30 seconds, and 72°C for 30 seconds 

for 40 cycle repeat following by melt curve analysis from 60°C to 95°C. Data were analyzed 

using the relative quantification method. 

2.5. Data processing and statistical analysis. 

Data obtained in all experiments were processed and statistically analyzed by a One-

Way Anova approach using GraphPad Prism® 8. For all statistical analyses, data were presented 

as mean ± S.D and p values of less than 0.05 were considered significant. 
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3. Results and Discussion 

3.1. Expression of sod1 and sod2 in response to starvation. 

Starvation is one of the approaches that can be used to increase the number of free 

radicals in cells [37, 38]. The excessive free radicals can further promote the occurrence of 

oxidative stress, which will eventually affect the quality of life [3, 39]. To encounter such stress 

conditions, cells are programmed to produce endogenous antioxidants, for example, the SOD1 

and SOD2 that are available from an invertebrate D. melanogaster to a more complex eukaryote 

such as a human. 

 
Figure 1. Timeline of the experimental design. Three groups of adult flies were subjected to treatment with food 

containing ethanol extract of M. calabura leaves (EMCL) at three different concentrations: 0.2, 1, or 5% for seven 

days prior to starvation for seven hours. For control groups, flies were given standard fly food in the presence 

(negative control) or absence (healthy control) of starvation at length, similar to treatment groups. RNA extraction 

was carried out at 175 hours after treatment initiation, followed by an amplification process using RT-qPCR 

method. 

In this study, we designed an experimental approach (Fig. 1) to assess the effect of 

ethanol extract of M. calabura leaves (EMCL) on the expression of sod1 and sod2, two 

important endogenous antioxidants in Drosophila that are also available in humans.  

 
Figure 2. Levels of sod1 and sod2 gene expression in the healthy control and the starvation control groups. Adult 

flies were maintained and fed with standard fly food for seven days prior to starvation. After seven days, flies 

were transferred to either vial containing standard fly food (healthy control group) or to an empty vial (starvation 

control group) and incubated at 25°C for seven hours, followed by RNA isolation. The levels of sod1 (A) and 

sod2 (B) were calculated compared to rp49 after amplification by RT-qPCR method. 

As can be seen in Fig. 2A, it appears that the starvation control group showed reduced 

expression of sod1 compared to the healthy control group. Surprisingly, a different result was 
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obtained in the expression of sod2 (Fig. 2B). Starved Drosophila expressed a higher level of 

sod2 than its healthy counterpart. This might be caused by the autophagy process that can 

increase energy production in the mitochondria.  

However, such a process also forms free radicals that can intensify sod2 production as 

feedback response of free radicals due to starvation condition, as has been shown previously in 

freshwater shrimp Neocaridina davidi [40]. Nevertheless, increased expression of sod2 gene 

upon starvation induction would be a beneficial response to the host because sod2 has been 

shown to be important to counteract the free radicals that first formed in the mitochondria [41]. 

3.2. Effect of Muntingia calabura L. on the expression of sod1 and sod2. 

Lifespan extension is affected by several factors, including the use of endogenous 

antioxidants to inhibit the excessive formation of free radicals [3]. Humans and Drosophila 

express some endogenous antioxidants, including superoxide dismutase 1 (CuZn-SOD, SOD1) 

and superoxide dismutase 2 (Mn-SOD, SOD2). Based on the results displayed in Fig. 3, it 

seems that the ingestion of EMCL by D. melanogaster before starvation-induced condition 

showed contrast effects on the level of expression of sod1 gene (Fig. 3A) and sod2 gene (Fig. 

3B). While the expression of sod1 was increased in response to EMCL treatment, the 

expression of sod2 remains unaltered. 

Increased expression of sod1 in response to EMCL treatment at concentrations of 1% 

and 5% but not at 0.2% under starvation condition may occur due to the activity of unidentified 

EMCL compound(s) that can activate the production of sod1 in D. melanogaster in a dose-

dependent manner that was optimally reached at 1%. Naturally, SOD1 can be found in the 

cytoplasm of human and D. melanogaster. This enzyme is very stable because it has non-

covalent bonds formed by disulfide in each subunit [42, 43]. Also, there is a possibility of this 

high expression related to the amount of SOD1 as the dominant enzymatic antioxidant in some 

cells and tissues, which is an account for 70-80% of the total cellular activity of SODs, as has 

been shown in mice and human cells [44-46].  

Surprisingly, while the induction of sod2 expression was observed in response to 

starvation (Fig. 2B), EMCL treatment demonstrated no stimulatory effect on the expression 

level of sod2 in starved D. melanogaster (Fig. 3B).  

 
Figure 3. Levels of sod1 and sod2 gene expression in the starvation control and ethanol extract of Muntingia 

calabura (EMCL)-treated groups. Adult flies were maintained and fed with standard fly food for seven days 

before starvation. After seven days, flies were transferred to empty vials and incubated at 25°C for seven hours, 

followed by RNA isolation. The levels of sod1 (A) and sod2 (B) were calculated compared to rp49 after 

amplification by RT-qPCR method. 
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The reason(s) why these unexpected results have occurred remains unknown. 

Nevertheless, taken together, our results implied that starvation could induce the expression of 

sod2 but not sod1, and this expression profile was reversed under EMCL treatment at certain 

concentrations (1% and 5%). 

In addition to the sod genes, a thorough investigation on the effect of EMCL on the 

expression of some genes known to express endogenous antioxidants (for example, cat gene 

that expresses catalase) will provide additional information on the prospective use of EMCL in 

the modulation of endogenous antioxidants. In the long run, follow-up research is urgently 

required to elucidate the responsible compound(s) in the modulation of sod1 and sod2 

expression and also to unveil the detailed mechanisms on how such compound(s) can yield the 

demonstrated effects.  

4. Conclusions 

 In the current study, we provided initial evidence that the expression of endogenous 

antioxidants sod1 and sod2 in D. melanogaster was modulated by starvation. The 

administration of ethanol extract of Muntingia calabura L. leaves (EMCL) was able to induce 

the expression of sod1 but not sod2 in starved D. melanogaster. Here, we reported the potential 

in vivo anti-aging effect of EMCL in a Drosophila platform system that shall warrant future 

research in higher model animals or even human subjects. 
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