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Abstract: Aspartate-semialdehyde dehydrogenase (ASADH) of DAP/lysine pathway plays a crucial 

role in sustainable growth and pathogenicity of Mycobacterium tuberculosis (Mtb) via reductive 

dephosphorylation of the β-aspartyl phosphate (AP). Inhibition of ASADH through different lead 

molecules has been gaining high impetus due to its indispensable role in the pathogen’s survival. In the 

present study, we aimed to decipher the novel lead molecule against Mtb. The AP, a substrate of the 

DAP/lysine pathway, was used as a template to design new lead molecules to advance the understanding 

of the molecular inhibition mechanism of Mtb-ASADH. Monodentate and bidentate groups at three 

different substitution sites of AP were considered to generate a virtual library of new molecules using 

the combinatorial approach of the LeadGrow module of the VLifeMDS package. These substrate 

analogs were sifted through ADRXWS drug-likeness descriptors of the module above. Multi-scoring 

docking was achieved using Biopredicta, Molecular Virtual Docker, and AutoDock Tools. The adopted 

combinatorial approach yielded 6000 new molecules that reduced to 4979 plausible hits after lead-like 

filtration. The post-analysis of ADMET and molecular docking exhibited two pro-lead molecules, 

namely AP0600 and AP0639. The study delineates the substantial understanding of the Mtb-ASADH 

inhibition mechanism that would undoubtedly accelerate the pace of antitubercular design, thereby 

gaining more in-depth knowledge to eradicate tuberculosis across the globe. 
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1. Introduction 

Tuberculosis (TB), one of the most infectious maladies caused by Mycobacterium 

tuberculosis (Mtb), is considered a vicious destroyer of public health worldwide. According to 

the Global Tuberculosis Report 2019, 10 million people got infected, in which 1.2 million 

deaths among HIV-negative and 251000 deaths among HIV-positive patients were observed in 

2018. The diminution of 27% in HIV-negative and 60% in HIV-infected TB population 

compared to incidents that happened in 2000 reflects a progressive sign towards the attainment 

of Sustainable Development Goals (SDGs) 3 by 2030 [1]. In the current digital technology era, 

identifying causes impeding any successful attainment goal is not a terra incognita to the 

trailblazers. The flagship initiative “Find. Treat. All. #EndTB” of three world leaders, including 

WHO, the Stop TB Partnership, and the Global Fund committed to defeating epidemics will 
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be a milestone towards providing effective diagnosis, treatment, and care to the patients. 

Despite this cumulative effort, the condition in India, Nigeria, Indonesia, and the Philippines, 

where a robust technological breakthrough is required to improve detection of TB incidents, 

their diagnosis, and treatment [1]. The sputum smear microscopy, rapid molecular tests, 

culture-based methods, and sequencing technologies are well known TB diagnostic tests [2-5]. 

However, in the past few years, no new robust method and technique were seen on development 

that produces accurate results. Albeit, more than 85% of drug-susceptible TB disease is 

successfully detected and treated through a 6-month regimen of isoniazid, rifampicin, 

ethambutol, and pyrazinamide [6]. Moreover, the Bacillus Calmette-Guerin (BCG) is a bit 

primitive but effective and widely used to prevent childhood TB-meningitis and miliary disease 

[7].   

With the advent of high-throughput technology, frequently new drug molecules are 

being designed and developed. Presently, 23 drug candidates are on the clinical trials’ positive 

note suitable to recuperate different forms of TB infections, viz. Drug-susceptible, multidrug-

resistant (MDR), and latent TB. Additionally, 14 vaccines, respectively 3, 8, & 3, are under 

different clinical trials phases [1]. Likewise, another experimental vaccine, M72/AS01E, is 

being developed by GlaxoSmithKline (GSK) and AERAS, which outcomes of phase II are 

quite promising [1, 8]. 

Notwithstanding the availability of significant measures, MDR, and extensively drug-

resistant (XDR), TB seems one of the most difficult conundrums for the SDGs and the End TB 

Strategy [1, 9]. Therefore, identifying new chemical entities and bioisosteres of relatively low 

molecular weight is of more significant concern to the pharmacopeia and traditional 

combinatorial design. It is either achieved by modifying the existing drugs through 

combinatorial approaches or manipulating inhibitors of well-known molecular targets to 

enhance efficacy, selectivity, and pharmacokinetic properties. Once the compound is 

identified, it undergoes ADMET filtration to ensure whether it has toxic and mutagenic 

properties or not; if the compound has negligible toxicity and mutagenicity, either is considered 

as a potential lead molecule.  

The metabolic pathways of all living organisms in which numerous bio-catalytic 

reactions are occurring to produce molecules that are essentially needed to sustain their life. 

Due to significant differences, most microorganisms synthesize the required metabolic 

building blocks and nutrients, while mammals obtain most of these from different nutritive 

sources. These substantial differences provide various enzymes, which laid the foundation for 

promising drug targets [10]. Aspartate-semialdehyde dehydrogenase (ASADH) is an enzyme 

facilitating the biosynthesis of critical metabolites of the DAP/lysine pathway, viz. dipicolinate, 

UDP-MurNAc-pentapeptide, and an essential amino acid lysine [11, 12]. Former both 

metabolites are respectively essential for sporulation and peptidoglycan cross-linking via 

covalent interaction with D-alanyl moieties of vicinal chain to generate murein polymers 

providing stability and rigidity to the pathogen cell wall [10, 13-15]. Moreover, It is also well 

established experimentally that de novo biosynthesis of lysine is of the utmost importance to 

the survival of Mtb during infection, even though adequacy in the host. Therefore, inhibition 

of the DAP/lysine pathway through the ASADH enzyme is a promising drug target 

against Mtb [14-16].  

In the proposed work, in silico approach was adopted to identify novel leads 

against Mtb-ASADH through combinatorial design. The β-aspartyl phosphate (AP), a substrate 

of the DAP/lysine pathway, was selected as a template molecule to generate a virtual library of 
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AP-analogues through the LeadGrow module of the VLifeMDS package [17]. The top-ranked 

hits of new chemical entities were subjected to drug-likeness and ADMET filtration followed 

by comprehensive multi-scoring molecular interactions using three different computational 

tools, namely Biopredicta, Molecular Virtual Docker (MVD), and AutoDock Tools [18-20] to 

get consistent pro-lead molecules. Subsequently, the top 2 hits (AP0600and AP0639) along 

with AP and two known inhibitors (ZINC04203124, NSC51108) [21, 22] were simulated 

computationally. The post-docking simulation depicted AP0639 showing strong and stable 

molecular interactions to the target protein’s critical residues. Moreover, the lead molecule 

reported here may help design a novel AP-antagonist, thereby improving target inhibition 

competence. 

2. Materials and Methods 

 2.1. 3D structure retrieval of Mtb-ASADH. 

A high-resolution structure (1.95Å) of Mtb-ASADH complexed with ligand S-methyl-

L-cysteine sulfoxide (CID: 182092) and sulfate ion was extracted from RCSB PDB 

(https://www.rcsb.org/structure/3TZ6). The only apoprotein of the complex was carried 

forward to prepare 3D-files suitable for docking simulation by removing undesired ions and 

molecules. The coordinates of co-crystallized inhibitors were considered for molecular 

interactions of ligands [23]. The CHARMm force field was assigned to optimize the 

apoprotein, followed by energy minimization using steepest descent and conjugate gradient 

algorithm to remove the steric hindrances [24, 25]. 

2.2. Combinatorial design, drug-likeness, and ADMET prediction.  

All possible permutations and combinations of different monodentate and bidentate 

functional moieties of the LeadGrow module at three substitutional sites of AP were checked 

[17], and a combinatorial library of 6000 AP-analogues created. These nascent ligands were 

tested on ‘ADRXWS’ drug-like descriptors, which respectively stands for H-bond acceptors 

(<=10), H-bond donors (<=5), rotatable bond count ((<=10), lipophilicity (XlogP <= 5), 

molecular weight (<=500 Dalton), and polar surface area (<=60Å²) [26-28]. Further, the 

ADMET (absorption, distribution, metabolism, elimination, and toxicity) assessment of 

ADRXWS-satisfied compounds is accomplished through PreADMET online tool that predicts 

the pharmacological and toxicological properties [29-37]. The chemical structure of AP and its 

top 8 analogs are shown in Figure 1. 

2.3. Docking simulations. 

BioPredicta tool of VlifeMDS (https://www.vlifesciences.com/) [38, 39] MVD 

(http://www.clcbio.com) [40] and AutoDock Tools 4.0 (http://autodock.scripps.edu/) [20] were 

used for molecular interaction studies of ligands and protein. 

2.3.1. BioPredicta. 

It employs a cascaded approach of genetic algorithm and piecewise linear pairwise 

potential (PLP). The Merck molecular force field (MMFF) was used to compute the ligand’s 

best pose into the active site of protein molecule with the least docking score, including various 

energy terms viz. hydrogen bonding der Waals interactions, hydrophobic effects, and 
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deformation penalty [41]. The other parameters were kept as default to execute molecular 

docking. 

2.3.2. MVD. 

It is based on the MolDock scoring function that employs heuristic search techniques 

to find out the most stable and energetically minimized ligand conformation. The MolDock 

scoring function is a sort of PLP dealing with the electrostatic potential and H-bonding as 

energy attributes. Further, a MolDock-rerank score was applied to hone molecular interactions’ 

accuracy [42, 43].   

2.3.3. AutoDock tools. 

Docking simulation of virtually designed ligands with Mtb-ASADH was performed 

using AutoDock Tools 4.0 to obtain the most promising binding poses among them. The pdbqt 

files for protein and ligands, grid parameter file (gpf), and a docking parameter file were 

generated to run the program. A grid-box with enough space was created wherein ligand can 

move amenably. The grid points of 60 Å in each x, y, and z axes were drawn, having a distance 

of 0.357 Å between two consecutive grids. The Lamarckian Genetic Algorithm (LGA) 

performs better than the genetic algorithm alone. Simulated annealing was set to rigid-protein 

docking. Ten search attempts were made for ligand molecules. 250000 energy evaluations and 

27000 generations before the termination of the LGA run were considered. For other 

constraints, software default values were taken. During the docking process, a maximum of 20 

different conformations of ligand was considered. The ligand’s best pose in terms of lowest 

free energy of binding (ΔG) and inhibition constant was carried forward for further interactions 

analysis [20, 44-47]. The flow chart of the adopted methodology is shown in Figure 2. 

 

 
Figure 1. Chemical strucrure of ligands (a) AP (b) AP0592 (c) AP0600 (d) AP0609 (e) AP0611 (f) AP0617 (g) 

AP0638 (h) AP0639 (i) AP0861. 
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Figure 2.  Flow chart of methodology. *ADRXWS respectively stands for H-bond acceptor, H-bond donor, 

rotatable bond count, lipophilicity, molecular weight, and polar surface area. 

3. Results and Discussion 

A combinatorial library was created to design and identify substrate analog with 

antitubercular potential, considering β-aspartyl phosphate (AP) as a template. Initially, AP-like 

6000 compounds were designed. These molecules were subjected to RO5 filtration (4979), 

followed by ADMET screening (1187) before docking studies. Molecular docking studies of 

1187 AP- analogs were performed for the best binding orientation prediction into the active 

site of Mtb-ASADH using the same docking procedure and parameters as a template molecule. 

The stepwise result of the study is shown in Figure 3. 

 
Figure 3. Flow chart of the stepwise result. AP0600 and AP0639 were compared with ZINC04203124 and 

NSC51108 [21, 22]. 
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Figure 4. Docking comparison of top AP- analogs with AP and known inhibitors. 

Out of 1187, only eight analogs exhibited better binding than AP and H-bond formation 

with the active site residue Lys171 of Mtb-ASADH. Furthermore, out of 8, only two 

compounds (ap0861 and ap0639) were depicted as more potent inhibitors in comparison to 

ZINC04203124 and NSC51108 [21,22] as shown by scoring functions of adopted docking 

tools (Figure 4).  

Binding affinity of  Mtb-ASADH with different ligands were predicted as follows- 

AP0639 > AP0600 > NSC51108 > ZINC4203124 > AP0617 > AP0861 > AP0638 > AP0611 

> AP0609 > AP0592 > AP. The details of docking analysis of AP, AP-analogs, and known 

inhibitors are summarized in Table 1.  

Table 1. Molecular interactions of top ap-analogs and their comparison with known inhibitors. 

S. No. Compound ID Biopredicta 

(Docking Score) 

AutoDock Tools 4.0 

(ΔG kcal/mol) 

MVD 5.5 

(MolDock Score) 

No. of H-bonds 

1. AP0592 -6.448392 -7.22 -141.725 1 

2. AP0600 -7.800266 -10.73 -156.244 5 

3. AP0609 -6.736073 -7.77 -141.983 2 

4. AP0611 -6.871995 -7.82 -142.490 1 

5. AP0617 -7.133096 -9.65 -149.056 3 

6. AP0638 -6.965838 -7.95 -143.733 3 

7. AP0639 -7.905518 -10.97 -162.140 4 

8. AP0861 -6.973931 -7.98 -143.882 4 

9. AP -6.199562 -6.17 -134.992 5 

10. NSC51108 -7.219866 -9.89 -150.917 5 

11. ZINC4203124 -7.197657 -9.78 -149.878 4 

Moreover, GLN13, VAL14, SER71, ASN94, SER95, ARG99, ASN129, CYS130, 

SER160, GLY163, and LYS227 residues of Mtb-ASADH interacted with AP0639 along with 

four H-bond formations stabilizing the complex (Figure 5). Likewise, GLY212, GLY261, 

CYS130, ARG249, ASN139, LYS227, CYS247, ALA211, ASP223, and ASP225 residues of 

target protein played a crucial role in molecular interaction with AP0600 with five H-bonds 

supporting the stability of the complex (Figure 6). The known inhibitor NSC51108 interacted 

with ARG249, ASP223, THR131, ASN129, CYS247, LYS227, ASP225 GLN157 residues 

of Mtb-ASADH along with five H-bonds (Figure 7). Similarly, other reference inhibitor 

ZINC4203124 engaged in molecular interaction with VAL14, GLY163, ASN94, SER95, 

GLY73, ARG99, LYS227, ASN129, GLY161, and GLN13 residues with four H-bonds (Figure 

8). Substrate AP exhibited interaction with SER71, GLY73, ASN94, SER95, ARG99, 

ASN129, and LYS227 residues with five H-bonds (Figure 9). 
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The collapse of antitubercular lead molecules due to MDR, XDR, and several other 

reasons prompts the scientific community to decipher new potential lead molecules 

against Mtb that could effectively prevent tuberculosis. Towards this direction, the 

combinatorial approach was utilized to predict new lead compounds. AP was chosen as a 

reference molecule to design 6000 new compounds using the LeadGrow module of VLifeMDS. 

These analogs were additionally sifted through ADRXWS descriptors that curtailed to 4979 

molecules. Subsequently, ADMET forecast 1187 hits satisfying pharmacokinetic parameters 

that were further reduced to 8 potential hits thorough multi-scoring docking analysis through 

Biopredicta, MVD, and ADT. Further, the ligand AP0639 depicted more excellent stability 

than substrate molecules AP and known inhibitors that might be used as an inhibitor against 

Mtb-ASADH. 

 
Figure 5. The Ligplot of Mtb-ASADH-AP0639 complex. Dashed lines and arcs show hydrophobic contacts and 

H-bonds, respectively. 

 
Figure 6. The Ligplot of Mtb-ASADH-AP0600 complex. Dashed lines and arcs show hydrophobic contacts and 

H-bonds, respectively. 
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Figure 7. The Ligplot of Mtb-ASADH-NSC51108 complex. Dashed lines and arcs show hydrophobic contacts 

and H-bonds, respectively. 

 

Figure 8. The Ligplot of Mtb-ASADH-ZINC4203124 complex. Dashed lines and arcs show hydrophobic 

contacts and H-bonds, respectively. 
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Figure 9. The Ligplot of Mtb-ASADH-AP complex. Dashed lines and arcs show hydrophobic contacts and H-

bonds, respectively. 

4. Conclusions 

 Tuberculosis has been considered one of the oldest diseases for centuries and remains 

a significant health issue worldwide. It affects a million individuals every year and is 

accountable as one of the top ninth leading cause of death worldwide. It has been the primary 

cause of death from a single infectious disease for over five years, positioning above 

HIV/AIDS. It is a curable disease, but many people suffer every year. A number of them do 

not survive, resulting in devastating social and economic impacts. Various programs worldwide 

have been running to eradicate the disease by various means, whether implementing policies 

or designing new drugs. Adding a bit to this direction, we predicted a new lead compound 

AP0639 that could be considered a potential inhibitor against the DAP/Lysine pathway. The 

wet-lab experiments are required to validate the study’s in silico findings; however, anticipated 

leads would undoubtedly help explore more specific and selective drug candidates against Mtb. 
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