https://doi.org/10.33263/BRIAC115.1306413088

Theoretical DFT Studies on Free Base, Cationic and Hydrochloride Species of Narcotic Tramadol Agent in Gas Phase and Aqueous Solution

José Ruiz Hidalgo¹, Silvia Antonia Brandán^{1,*}

¹ Cátedra de Química General, Instituto de Química Inorgánica, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, 4000, San Miguel de Tucumán, Tucumán, Argentina

* Correspondence: silvia.brandan@fbqf.unt.edu.ar; sbrandan@fbqf.unt.edu.ar;

Scopus Author ID 6602262428

Received: 4.01.2021; Revised: 27.01.2021; Accepted: 29.01.2021; Published: 7.02.2021

Abstract: Theoretical studies based on the density functional theory (DFT) have been performed to study structural and vibrational properties of the free base, cationic, and hydrochloride species of narcotic tramadol agent in the gas phase and aqueous solution. In both media, B3LYP/6-31G* calculations were used while in solution, the self-consistent reaction field (SCRF) method together with the integral equation formalism variant polarised continuum (IEFPCM) and universal solvation model density (SMD) models have been employed because these models consider the solvent effects. The vibrational studies have revealed that the species cationic is present in the solid phase because the most intense band predicted for the hydrochloride in infrared and Raman spectra is not observed in the experimental spectra. The harmonic force fields, together with the normal internal coordinates and scaling factors, have allowed the complete vibrational assignments of 126, 129, and 132 vibration modes expected for the free base, cationic, and hydrochloride species, respectively, by using the SQMFF methodology. The cationic species evidence the most negative solvation energy and higher hydration in solution in agreement with its lower stability, while the hydrochloride species is the most reactive in solution. MK charges and NBO and AIM studies support cationic species' instability due to the positive charge on N atom. Comparisons of the experimental UV spectrum of hydrochloride tramadol with the predicted for the three species suggest that the free base, cationic, and hydrochloride species can be present in solution. Comparisons of predicted infrared, Raman, ¹H, and ¹³C NMR and electronic spectra for the free base, cationic, and hydrochloride species of tramadol with the corresponding experimental ones have evidenced reasonable correlations for the cationic species showing that this species present in the solid phase and in solution.

Keywords: tramadol; molecular structure; DFT calculations; vibrational spectra.

 \odot 2021 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

In pharmacology, the hydrochloride species are highly used as medicaments because these structural forms allow the oral bioavailability of drugs as bioactive molecules and their incorporation quickly as therapeutic agents, as mentioned by Veber *et al.* [1]. Other important factors must be taken into account in the design of new drugs, such as the presence of hydrogen bond acceptors and donor groups, as reported by Lipinski *et al.* [2]. Theoretical studies combined with experimental results have evidenced that in some antiviral, alkaloids, and narcotic species as well as in antihistaminic and anti-hypertensive agents, the free base and cationic forms should be studied together with the hydrochloride one because, in aqueous solution, the hydrochloride species is in its cationic form while the free base as cationic one [3-23]. In this work, the free base, cationic, and hydrochloride forms of narcotic tramadol were studied from a theoretical point of view combining DFT calculations with experimental available infrared, Raman, ¹H- and ¹³C-NMR and ultraviolet spectra in order to predict structural, electronic, topological and vibrational properties of its three forms [24]. In the free base, the N atom is a tertiary amine with three organic substituents, while the cationic has four organic substituents and, for this reason, it is a quaternary ammonium cation with a charged nitrogen center, as can be seen in Figure 1. The Cl anion neutralizes the quaternary charged cation in the hydrochloride form, and its species is uncharged.

Figure 1. Structures of the free base, cationic, and hydrochloride forms of tramadol.

Then, complete vibrational assignments of those three forms of tramadol were performed by using the B3LYP/6-31G* method [25,26] with the scaled quantum mechanical force fields (SQMFF) methodology, normal internal coordinates, transferable scaling factors, and the Molvib program [27-29]. A systematic chemical name of tramadol is (1RS,2RS)-2-[(Dimethylamino)methyl]-1-(3-methoxyphenyl) cyclohexanol hydrochloride [30], while the experimental structure of tramadol hydrochloride was determined by X-ray diffraction by Kaduk et al. [31]. Other structures of Tramadol hydrochloride-benzoic acid (1/1) and of Tramadol hydrochloride and its acetonitrile solvate were also reported by Siddaraju *et al.* [32] and by Bag and Reddy [33], respectively. The physics and chemical properties of tramadol hydrochloride are known as well as its stability, pharmacokinetics, and metabolism, and, so far, only some vibration modes were published for this form of tramadol [24]. After optimizing three species in the gas phase and aqueous solution, the structural, electronic, topological, and vibrational properties were obtained together with their reactivities and behaviors in the two studied media. Later, the complete assignments of expected 126, 128, and 132 vibration modes of the free base, cationic, and hydrochloride forms of tramadol are reported together with the harmonic force fields the scaled force constants. The three forms of tramadol have the N-(CH₃)₂·group in its structures, as in antihistaminic promethazine and diphenydramine agents [10,15], while in some alkaloids an only N-CH₃ group is found [8-11,16]. Hence, these N-CH₃ groups' presence plays a very important role in the chemical properties and biological activities of these pharmacological species. Here, comparisons of predicted infrared, Raman, ¹H-, ¹³C-NMR, and ultraviolet-visible spectra of hydrochloride species of tramadol with the corresponding experimental ones show good correlations [24].

2. Materials and Methods

Firstly, the initial structure of the free base of tramadol was modeled with the GaussView program [34]. Then, to its structure was added an H atom to form the cationic later, to optimized cation was added a Cl atom to form the hydrochloride species. The three species were optimized in the gas and aqueous solutions with the Gaussian 09 program [35] and the B3LYP/6-31G* level of theory [25,26]. The self-consistent reaction force (SCRF) method was used to perform calculations in solution because this method, together with the integral equation formalism variant polarised continuum (IEFPCM) and universal solvation model density (SMD) models, consider the solvent effects [36-38]. The three structures of tramadol have two six member's rings, as shown in scheme 1. One of these rings is a methoxyphenyl, which is identified as R1, and the other one cyclohexanol, designed as R2. These identifications are important to perform the vibrational study by using the normal internal coordinates. The scaled quantum mechanical force fields (SQMFF) methodology and the Molvib program have allowed the determinations of harmonic force fields by using transferable scaling factors [27-29]. After that, three species of tramadol's complete vibrational assignments were performed considering normal vibration modes potential energy distribution (PED) contributions ≥ 10 %. Good correlations were observed between the infrared and Raman spectra, particularly in the latter spectrum, when recognized equations were used to correct intensities activities [39,40]. Here, atomic charges, bond orders, molecular electrostatic potentials, stabilization energies, and topological properties were evaluated for the three species of tramadol in the two media by using natural bond orbital (NBO), atoms in molecules (AIM) calculations, and the Merz-Kollman (MK) scheme [41-44]. The GaussView and Moldraw programs were used to obtain the mapped MEP surfaces and volume variations of those three tramadol species [34,45]. In order to evaluate reactivities and behaviors of three species of tramadol, the frontier orbitals were employed to calculate the energy gap values and the chemical potential (μ) , electronegativity (χ), global hardness (η), global softness (S), global electrophilicity index (ω) and global nucleophilicity index (E) descriptors [3-17.46]. The ¹H and ¹³C NMR and electronic spectra were predicted in aqueous solution by using the gauge-including atomic orbital (GIAO) method and the Time-dependent DFT calculations (TD-DFT) by using the same level of theory [35,47].

3. Results and Discussion

3.1. Geometrical parameters and properties in both media.

In Figure 2 are presented the optimized molecular structures of free base, cationic, and hydrochloride species of tramadol and atoms labeling while the R1 and R2 rings are shown in yellow and green colors. Some predicted properties for the tree species of tramadol in the gas phase and aqueous solution with the B3LYP/6-31G* method can be seen in Table 1. Thus, energy values, dipole moments, volumes, and variations are shown for each different media species. Note that in Table 1 the total E corrected by zero points vibrational energy (ZPVE) is also presented. The results show that the three species in solution increase the dipole moments values while only in the cationic species is observed a contraction of volume in this medium because the other two species evidence expansions in solution. The higher volume variation is observed in the hydrochloride species in solution. It shows a higher expansion of volume and

dipole moment value due to its higher hydration with water molecules. The size of Cl atom influences on those two properties.

Figure 2. Molecular structures of the free base, cationic, and hydrochloride species of tramadol and atoms labeling. The two rings are shown in different colors.

Table 1. Calculated total energies (*E*), dipole moments (μ) and volumes (V) of the free base, cationic, and hydrochloride species of tramadol in the gas phase and aqueous solution by using the B3LYP/6-31G* method.

B3LYP/6-31G* Method								
Medium	E (Hartrees)	V (Å ³)	$\Delta V (Å^3)$					
	Free Base							
GAS	-829.9342	-829.5432	2.48	306.1	0.2			
PCM/Water	-829.9462	-829.5547	3.85	306.4	0.5			
Cationic								
GAS	-833.3306	-829.9239	10.06	310.9	1.0			
PCM/Water	-830.4196	-830.0125	12.32	309.9	1.0			
	Hydrochloride							
GAS	-1290.7572	-1290.3523	10.06	333.2	75			
PCM/Water	-1290.7939	-1290.3871	16.38	340.7	7.5			

Suppose now the positions and orientations of dipole moment values for the three species of tramadol in the gas phase are analyzed from Figure 3. In that case, important differences are observed in the tree species. For instance, in the free base, the vector is oriented from the C4 atom belonging to R2 ring to C16 atom linked to O-CH₃ group, between the OH and O-CH₃ groups, while in the cationic form, its vector is oriented from the C11 atom belonging to R1 toward the positively charged N3 atom. As in the free base, the dipole moment vector of hydrochloride species is directed from the C4 atom belonging to R2 ring to C17 atom belonging to R1 ring, between the OH and O-CH3 groups, in opposition to Cl atom. In solution, only changes in the magnitudes of dipole moments for the tree species are observed. The different values of dipole moment values in solution indicate that the three species are hydrated in different ways in aqueous solution, as evidenced in the volume variations. Hence, these changes are attributed to the different solvation energies, as was observed in various structural studies on the free base, cationic and hydrochloride species of some alkaloids, antihistaminic, anti-hypertensive and antiviral agents the cationic species [3-5,7,9-19,22,23]. Hence, the determinations of corresponding solvation energies are important in these three species of tramadol.

Figure 3. Orientations and directions of dipole moment vectors for the free base, cationic and hydrochloride species of tramadol in the gas phase by using the B3LYP/6-31G* method.

Table 2 summarizes corrected solvation energies by the total non-electrostatic terms and by zero points vibrational energy (ZPVE) for the free base, cationic, and hydrochloride species tramadol in the gas phase and aqueous solution by using the B3LYP/6-31G* method. Here, the results show a high ΔG_c value for the cationic form of tramadol, in agreement with some alkaloids, antihistaminic, anti-hypertensive, and antiviral agents [3-5,7,9-19,22,23]. The positively charged cationic species evidence higher hydration in the solution.

by using the D5L1170-510 method.							
B3LYP/6-31G* method ^a							
Solvation energy (kJ/mol)							
Medium $\Delta G_{un}^{\#} = \Delta G_{ne} = \Delta G_{c}$							
Free Base							
PCM/Water -30.16 22.02 -52.18							
Cationic	:						
-232.39	34.90	-267.29					
Hydrochloride							
PCM/Water -91.28 32.18 -123.46							
	B3LYP/6-31G* π Solvation energy ΔGun# -30.16 Cationic -232.39 Hydrochlor -91.28	B3LYP/6-31G* methoda Solvation energy (kJ/mol) ΔGun# ΔGne Free Base -30.16 22.02 Cationic -232.39 34.90 Hydrochloride -91.28 32.18					

Table 2. Corrected solvation energies by the total non-electrostatic terms and by zero-point vibrational energy (ZPVE) of the free base, cationic, and hydrochloride species of Tramadol in the gas phase and aqueous solution by using the B31 XP/6-31G* method

 $\Delta G_{un}^{\#}$ = uncorrected solvation energy, ΔG_{ne} = total non electrostatic terms, ΔG_c = corrected solvation energies. ^aThis work

When the ΔG_c values for the three species of tramadol are compared in Table 3 with the values for other species with different biological activities such as alkaloids, antihistaminic and antiviral agents by using the B3LYP/6-31G* method, we observed that in all cases, the cationic species evidence higher ΔG_c values due to that the positive charges on N atoms produce higher hydrations in aqueous solution. The behaviors of ΔG_c of these species can be seen in Figure 4. Note that the species of tramadol are indicated as (Tra), amadantine or amantadine as (A) [23], naloxone (N) [16], R(+) forms of promethazine (P) [15], cyclizine (Cy) [11], morphine (M) [3], cocaine (Co) [5], scopolamine (S) [9], heroin (H) [7] and tropane (Tro) [4,23]. Figure 4 shows that the ΔG_c values for all free base and hydrochloride species follow approximately the same tendencies while the hydrochloride ones show different behavior.

	B3LYP/6-31G* method									
Solvation energy (kJ/mol) ΔG_c										
N°	Species Free base Cationic Hydrochl									
1	Tramadol ^a	52.18	-267.29	-123.46						
2	Amantadine ^b	-23.07	-276.35	-115.03						
3	Naloxone ^c	-100.75	-302.45	-122.28						
4	R(+)-Promethazine ^d	-17.87	-262.81	-52.02						
5	Cyclizine ^e	-29.53	-244.36#	-105.06						
6	Morphine ^f	-60.91	-309.19	-144.74						
7	Cocaine ^g	-71.26	-255.24	-138.14						
8	Scopolamine ^h	-75.47	-310.34	-122.74						
9	Heroin ⁱ	-88.67	-323.14	-161.94						
10	Tropane ^{b,j}	-12.55	-244.33	-87.18						

 Table 3. Corrected solvation energies by the total non-electrostatic terms and zero-point vibrational energy (ZPVE) of different species in aqueous solution using the B3LYP/6-31G* method.

 ΔG_c = corrected solvation energies, ^aThis work, ^bFrom Ref [23], ^cFrom Ref [16], ^dFrom Ref [15], ^eFrom Ref [11], ^fFrom Ref [3], ^gFrom Ref [5], ^hFrom Ref [9], ⁱFrom Ref [7], ^jFrom Ref [4,23], [#]Cation cyclizine: 6-31+G*

Figure 4. Comparisons of corrected solvation energies of the free base, cationic, and hydrochloride species of tramadol corresponding to alkaloids, antihistaminic and antiviral agents by using the B3LYP/6-31G* method.

On the contrary, the cationic species are most hydrated in aqueous solution and, hence, the ΔG_c values are highly negative, evidencing the highest negative value of the species of heroin. Thus, the free base of naloxone and the cationic and hydrochloride species of heroin have the most negative values, while the free base and cationic species of tropane and the hydrochloride one of promethazine present the lowest values. On the other side, the cationic form of naloxone shows approximately a similar value to morphine and scopolamine species. Studies in a solution of antiviral agents have suggested that the presence of acceptors and donors groups in the structures play an important role in the ΔG_c values [23]. Hence, the lower ΔG_c values observed for the free base and cationic species of tropane, amantadine, or cyclicine probably could be attributed to the presence of only a tertiary and/or quaternary N atoms belong to >N-CH₃ groups while in the compared species, other acceptors and donors groups are present in its structures in addition to N atoms [4,8,11,23].

Comparisons of geometrical parameters for the three tramadol species using the B3LYP/6-31G* method with the corresponding experimental values determined for the crystal structure of tramadol hydrochloride by Kaduk *et al.* can be seen in Table 4 [31].

Note that the root-mean-square deviation (RMSD) values are used to compare bond lengths and angles. In general, good correlations between theoretical and experimental results were found for the three tramadol species with RMSD values of 0.017-0.010 Å for bond lengths and of 1.61-1.54 ° for bond angles.

B3LYP/6-31G* Method ^a							
	Free Base Cationic H				Hydroc	hloride	Experimental ^b
Parameters	Gas	РСМ	Gas	РСМ	Gas	РСМ	-
			Bond ler	ngths (Å)		•	
O1-C5	1.437	1.441	1.433	1.438	1.436	1.438	1.430
C5-C11	1.538	1.539	1.537	1.539	1.539	1.539	1.546
C5-C7	1.551	1.549	1.546	1.548	1.549	1.548	1.542
C5-C4	1.558	1.561	1.566	1.562	1.558	1.562	1.563
C7-C9	1.533	1.532	1.533	1.532	1.533	1.532	1.510
C9-C8	1.533	1.531	1.532	1.531	1.532	1.531	1.529
C8-C6	1.533	1.533	1.536	1.534	1.532	1.533	1.529
C6-C4	1.540	1.541	1.543	1.543	1.543	1.541	1.542
C4-C10	1.541	1.540	1.534	1.534	1.543	1.534	1.547
C10-N3	1.467	1.473	1.525	1.515	1.504	1.511	1.514
N3-C14	1.456	1.463	1.503	1.499	1.485	1.495	1.475
N3-C15	1.456	1.463	1.502	1.498	1.487	1.493	1.487
C11-C12	1.397	1.399	1.397	1.398	1.398	1.398	1.392
C11-C13	1.403	1.403	1.403	1.403	1.404	1.403	1.392
C13- C17	1.392	1.394	1.394	1.394	1.393	1.394	1.392
C17-C18	1.396	1.396	1.394	1.396	1.395	1.396	1.417
C18-C16	1.399	1.399	1.401	1.399	1.400	1.399	1.392
C16-C12	1.400	1.400	1.402	1.401	1.401	1.401	1.392
C16-O2	1.367	1.375	1.358	1.374	1.364	1.374	1.367
O2-C19	1.417	1.429	1.425	1.429	1.419	1.429	1.440
RMSD ^b	0.017	0.014	0.013	0.011	0.010	0.010	
			Bond a	ngles (°)	•	•	
01-C5-C11	110.62	110.50	111.39	110.74	110.58	110.68	109.7
01-C5-C7	108.80	108.76	109.65	109.19	109.43	109.19	110.8
O1-C5-C4	105.46	105.95	103.91	105.56	104.71	105.67	104.4
C5-C7-C9	113.03	113.03	113.01	113.04	113.15	113.07	111.9
C7-C9-C8	110.71	110.64	110.82	110.76	110.67	110.71	112.5
C7-C5-C11	109.73	109.31	110.82	109.71	110.07	109.62	109.0
C7-C5-C4	110.25	110.48	110.04	110.04	110.45	110.14	109.8
C9-C8-C6	110.85	111.26	110.99	111.21	111.00	111.12	108.5
C8-C6-C4	112.72	112.86	112.21	112.27	112.30	112.47	113.0
C6-C4-C5	111.39	111.42	111.68	111.52	112.00	111.56	110.1
C6-C4-C10	110.86	112.18	112.29	112.35	110.63	112.23	111.9
C5-C4-C10	111.85	110.93	107.91	109.40	110.92	109.64	109.5
C4-C10-N3	112.99	115.32	113.83	114.42	112.78	115.54	114.2
C10-N3-C14	111.58	108.67	111.18	110.52	112.44	109.58	111.7
C10-N3-C15	112.51	111.32	112.91	113.36	112.59	113.70	112.2
C14-N3-C15	110.51	109.24	111.21	110.72	111.01	110.42	113.2
C4-C5-C11	111.84	111.74	110.80	111.47	111.44	111.43	113.0
C5-C11-C12	120.58	120.20	120.21	120.18	120.55	120.18	120.1
C5-C11-C13	120.94	121.32	120.90	121.17	120.94	121.25	120.0
C11-C13-C17	120.26	120.26	119.90	120.15	120.23	120.18	121.2
C13-C17-C18	121.30	121.37	121.35	121.37	121.30	121.38	118.2
C17-C18-C16	118.69	118.51	119.00	118.59	118.75	118.54	120.6
C18-C16-C12	120.06	120.29	119.74	120.25	120.00	120.27	120.0
C16-C12-C11	121.20	121.07	121.11	120.99	121.18	121.03	120.0
C12-C11-C13	118.46	118.46	118.88	118.62	118.50	118.56	120.0
C16-O2-C19	118.20	117.87	118.63	117.88	118.40	117.96	116.4
O2-C16-C18	124.60	124.27	124.92	124.30	124.67	124.35	122.7
O2-C16-C12	115.32	115.42	115.33	115.43	115.31	115.37	112.2
RMSD ^b	1.59	1.77	1.59	1.54	1.57	1.62	
			Dihedral	angles (°)			
C19-O2-C16- C18	-0.06	-1.99	-3.74	-2.47	-0.78	3.27	
C19-O2-C16- C12	179.75	177.90	176.32	177.43	179.19	-176.80	
C14-N3-C10-C4	-158.43	-173.91	-166.88	-171.66	-151.75	-179.03	
N3-C10-C4-C5	-174.16	-178.27	179.31	-175.84	-146.12	-169.17	
01-C5-C7-C9	-61.29	-61.91	-59.73	-61.28	-61.79	-61.66	
01-C5-C11-C12	-176.16	-179.32	-178.70	-179.85	-177.09	179.38	

Table 4. Comparisons between calculated geometrical parameters for the three Tramadol species in the gas phase and aqueous solution with the corresponding experimental ones.

^aThis work, ^bRef [31]

The better correlations in bond lengths are observed for the hydrochloride species, as expected because the experimental data were determined for this species. The two N3-C14 and N3-C15 distances correspond to the $>N-(CH_3)_2$ groups are predicted with similar values in the three species and both media. Studies related to the behavior of bonds N-CH₃ lengths in some alkaloids, narcotics, and anti-histaminic agents in the gas phase and aqueous solution have evidenced that there are some correlations in their properties [8]. Hence, in Table 5 it is observed bond lengths between the N and C atoms of the N-CH₃ bonds belonging to the three tramadol species in the gas phase and aqueous solution by using B3LYP/6-31G* calculations. The results are compared in the same table with published for amadantine [23], naloxone [16], promethazine [15], cyclizine [11], cocaine [3], morphine [5], scopolamine [9], heroin [7] and tropane [4,23] at the same level of theory. The hydrochloride forms of all the species were studied, except for scopolamine that was studied in its hydrobromide form [9].

N-CH3 bond									
Encoing		Gas-pha	se	Aqueous solution					
Species	Free base	Cationic	Hydrochloride	ochloride Free base Cationic		Hydrochloride			
Tramadol ^a	1.456	1.503	1.486	1.463	1.498	1.494			
Amantadine ^b	1.469	1.550	1.501	1.476	1.516	1.510			
Naloxone ^c	1.459	1.468	1.523	1.517	1.513	1.521			
R(+)-promethazine ^d	1.460	1.508	1.487	1.468	1.501	1.496			
Cyclizine ^e	1.453	1.453	#	1.459	#	1.489			
Morphine ^f	1.453	1.500	1.483	1.460	1.497	1.493			
Cocaine ^g	1.459	1.493	1.487	1.467	1.492	1.494			
Scopolamine ^{h, γ}	1.462	1.492	1.491	1.466	1.491	1.493			
Heroin ⁱ	1.453	1.501	1.483	1.460	1.498	1.492			
Tropane ^j	1.458	1.496	1.478	1.467	1.491	1.486			

Table 5. Bonds lengths observed between the N and C atoms of the N-CH₃ bonds belonging to the three tramadol species in the gas phase and in aqueous solution by using B3LYP/6-31G* calculations.

^aThis work, ^bFrom Ref [23], ^cFrom Ref [16], ^dFrom Ref [15], ^eFrom Ref [11], ^fFrom Ref [3], ^gFrom Ref [5], ^hFrom Ref [9], ⁱFrom Ref [7], ^jFrom Ref [4,23], [#]Imaginary frequencies, ^γHydrobromide.

Figure 5. Bonds lengths observed between the N and C atoms of the N-CH₃ bonds belonging to the three tramadol species in the gas phase (a) and aqueous solution (b) by using B3LYP/6-31G* calculations compared with amadantine [23], naloxone [16], promethazine [15], cyclizine [11], cocaine [3], morphine [5], scopolamine [9], heroin [7] and tropane [4,23].

Figure 5 graphed the distances between N and C atoms of N-CH₃ groups for all compared species where their names have the same notation presented in Figure 4. The cyclizine species were not presented here because the cationic form in the gas phase and the hydrochloride one in solution present imaginary frequencies at the B3LYP/6-31G* level [11].

Here, it is necessary to clarify that the distance values presented in Table 5 for promethazine and tramadol correspond to average values because these species have two N- $(CH_3)_2$ groups. When Fig.5a is analyzed, we observed the lower distances for all free base species in the gas phase, showing values between 1.47 and 1.45 Å while the presence of https://biointerfaceresearch.com/ 13071

positive charges on the N atoms in all cationic species increases the distances slightly to values between 1.47 and 1.55 Å. The cationic species of amantadine and naloxone evidence the highest and lowest values, respectively, while the remaining species present values between 1.49 and 1.51 Å. These differences are quickly justified because in amantadine, the group is N-CC₃ group, while in naxolone is an allyl >N-CH₂-CH=CH₂ group different from the N-CH₃ group. On the other side, the hydrochloride species of naloxone present a higher value in the gas phase, while the tropane species present a lower value. In solution, the situation change because the cationic and hydrochloride species of all compared compounds reveal approximately the same behaviors and, where the cationic species of amantadine and the hydrochloride one of naloxone have the higher values. The similar behaviors for the cationic and hydrochloride species could indicate that the hydrochloride forms are as cationic ones in aqueous solution, while the differences observed between amantadine and naloxone could be justified by the presence of groups linked to quaternary N atoms different from N-CH₃, which are present in the other species. The free base of naloxone has a higher distance in solution due to the size of the allyl >N-CH₂-CH=CH₂ group. For the other species, the distances are around 1.47 and 1.46 Å. These different values in the N-C distance evidence clearly that the groups linked to tertiary (free base species) or quaternary N atoms (cationic and hydrochloride species) affect the distances and, hence, on some properties of the compound.

3.2. Atomic charges, molecular electrostatic potentials, and bond orders in both media.

Previous structural and vibrational studies of pharmacological hydrochloride species with different biological activities have revealed that the hydrochloride species in aqueous solution are present in this medium as cationic ones [3-5,7,9-12,15-20,22,23] and, for these reasons, atomic charges, molecular electrostatic potentials (MEP), and bond orders (BO) are important properties that explain the behaviors of these species in different media.

	Free base										
	Gas Phase							PCM	PCM MEP BO 0.763 -22.318 1.793 0.525 -22.286 2.114		
Atoms	MK	Mulliken	NPA	MEP	BO	MK	Mulliken	NPA	MEP	BO	
10	-0.639	-0.655	-0.763	-22.318	1.795	-0.615	-0.655	-0.763	-22.318	1.793	
2 O	-0.335	-0.509	-0.523	-22.285	2.121	-0.339	-0.516	-0.525	-22.286	2.114	
3 N	-0.168	-0.370	-0.504	-18.368	3.116	-0.228	-0.376	-0.496	-18.368	3.110	
Cationic											
Atoms	MK	Mulliken	NPA	MEP	BO	MK	Mulliken	NPA	MEP	BO	
10	-0.620	-0.662	-0.387	-22.199	1.785	-0.597	-0.661	-0.772	-22.201	1.784	
2 O	-0.335	-0.506	-0.259	-22.195	2.135	-0.337	-0.513	-0.521	-22.197	2.124	
3 N	0.292	-0.492	-0.221	-18.061	3.470	0.251	-0.489	-0.440	-18.058	3.471	
				Ну	drochlor	ide					
Atoms	MK	Mulliken	NPA	MEP	BO	MK	Mulliken	NPA	MEP	BO	
10	-0.634	-0.656	-0.766	-22.301	1.792	-0.624	-0.654	-0.764	-22.295	1.793	
20	-0.311	-0.505	-0.519	-22.272	2.128	-0.327	-0.514	-0.524	-22.267	2.118	
3 N	0.539	-0.476	-0.487	-18.254	3.361	0.539	-0.476	-0.470	-18.229	3.397	

Table 6. Mulliken, Merz-Kollman, and NPA charges (a.u.), molecular electrostatic potentials (MEP) (a.u.) and
bond orders (BO), expressed as Wiberg indexes of three tramadol species in the gas phase and aqueous solution
by using B3LYP/6-31G* calculations.

For the three studies, the results only for the O1, O2, and N3 atoms corresponding to groups donor (OH) and acceptors (O-CH₃ and N-(CH₃)₂) H bonds, respectively, are presented in Table 6. Hence, atomic Merz-Kollman (MK), Mulliken, and natural population (NPA) charge for the three tramadol species in both media by using the B3LYP/6-31G* method are given in Table 6, while Figure 6 are shown the behaviors of three charges on those three atoms of free base, cationic and hydrochloride species of tramadol in both media. An exhaustive https://biointerfaceresearch.com/

inspection of graphic show different behaviors of three types of charges but the same in both media.

Thus, from the three different studied charges, only the MK ones evidence positive charges on N3 atoms of cationic and hydrochloride species in both media, as expected because these two species have four organic substituents and quaternary ammonium cations while the Mulliken and NPA charges on these atoms show negative values.

Figure 6. Behaviors of MK, Mulliken, and NPA charges on O1, O2 and N3 atoms of the free base, cationic, and hydrochloride species of tramadol in both media by using B3LYP/6-31G* calculations.

Negative MK charges are observed on N3 atoms of the free base in both media due to its pairs electrons available, while only the Mulliken charges on N3 of cationic and hydrochloride species have the same negative values. On the other hand, the behaviors of NPA charges for the three species of tramadol in the gas phase are different form in aqueous solution; thus, the three atoms of cationic species show values very high in the gas phase, as compared with the other two ones. In solution, the same NPA charges on the O1 and O2 atoms of three species are observed, while on N3 of cationic species, a slightly higher NPA charge is evidenced. Finally, the three types of charges reveal negative values on O1 and O2 atoms of three species in both media.

Regarding the molecular electrostatic potentials (MEP) on three O1, O2, and N3 atoms of three tramadol species from Table 6 carefully, we observed practically the same values for the free base in both media and, only slight changes are observed for the other two species,

evidencing few variations on O2 and N3 of hydrochloride species in solution (0.025-0.005 a.u.). However, when the mapped MEP surfaces are built for the three species in the gas phase with the *GaussView* program [34], different regions and colorations are observed, as shown in Figure 7. The free base shows strong blue colors on H31, which belongs to O1-H31 group, while red colorations are observed on O1, O2, and N3 atoms that belong to OH, O-CH₃, and N-(CH₃)₂ groups, respectively. The cationic species show strong blue color on the N-(CH₃)₂ groups due to the charge on N3, as expected because its species is positively charged, while the light blue color on the remaining atoms of a molecule. The hydrochloride species shows an extensive and strong red region around Cl atom and the other two orange regions on O1 and O2, while the strong blue color is observed on the H31 atom that belongs to OH group.

Hence, the nucleophilic and/or electrophilic sites are evidenced in the three species by the red and blue colors, respectively, and, also, by the different calculated MEPs values. These mapped MEP surfaces are completely different in the three tramadol species and reveal regions in which reactions with potential biological electrophiles or nucleophiles occur.

Other interesting properties predicted for the three tramadol species with the NBO program by using the B3LYP/6-31* level of theory are the bond orders (BOs) totals by atom, expressed as Wiberg indexes [25,26]. Table 6 shows that O2 and N3 of cationic species present higher BOs values than O1 of the other two species. Note that O1 in the three species have the lower values, as expected, because this atom belongs to OH group and, for these reasons, these are the most labile. In the cationic species, the N3 has a higher BO value due to its charge. In solution, the BOs for the three species evidencing a decrease due to donors and acceptors groups' hydrations. Nevertheless, when the Wiberg bond index matrix in the Natural Atomic Orbital (NAO) basis for the H45-Cl46 bond is investigated for the hydrochloride species of tramadol it is observed a value of 0.343 in gas phase indicating a covalent character for this bond but, in solution, the value change to 0.213 because the character of bond slightly changes to ionic (N3-H45… Cl46). A similar resulted was observed in the hydrochloride species of antiviral amantadine [23].

3.3. NBO and AIM studies.

The hydration in an aqueous solution of OH, O-CH₃, and N(CH₃)₂ groups in the three species of tramadol could generate different types of interactions, which can be important,

taking into account its stabilities and its use as a pharmacological drug [1,2]. Hence, the presence of a different type of interactions in those species has been studied with the NBO program using the second-order perturbation theory analyses of the Fock matrix in NBO Basis and with the AIM 2000 program by using the topological properties [41-43]. Therefore, the most important donor-acceptor interactions predicted for the three tramadol species in both media by using the B3LYP/6-31G* method and the NBO program are shown in Table 7.

			B3LY	P/6-31G *a						
Delocalization	F	ree base	C	ationic	Hydi	Hydrochloride Gas Water 30.75 125.23 30.75 125.23 30.75 125.23 30.75 125.23 0.39 70.14 5.38 95.22 0.30 70.60 99.84 70.26 66.26 95.42 996.38 497.23 3.97 58.23 3.17 62.49 4.17 58.64				
	Gas	Water	Gas	Water	Gas	Water				
$LP(2)O2 \rightarrow \sigma^*C16\text{-}C18$	127.03	123.64			130.75	125.23				
$\Delta E_{LP \rightarrow \sigma^*}$	127.03	123.64			130.75	125.23				
$LP(2)O2 \rightarrow \pi^*C12$ -C16			63.91							
$LP(2)O2 \rightarrow \pi^*C16\text{-}C18$				64.07						
$\Delta E_{LP \rightarrow \pi^*}$			63.91	64.07						
$\pi C11$ -C12 $\rightarrow \pi^*C13$ -C17	71.14	71.39		33.98	70.39	70.14				
$\pi C11$ -C12 $\rightarrow \pi^*C16$ -C18	97.14	97.78		44.47	95.38	95.22				
$\pi C11$ -C13 $\rightarrow \pi^*C17$ -C18			46.89							
$\pi C12$ -C16 $\rightarrow \pi^*C11$ -C13			50.36							
$\pi C13$ -C17 $\rightarrow \pi^*C11$ -C12	93.54	94.25		49.11	94.21	95.59				
$\pi C13$ -C17 $\rightarrow \pi^*C16$ -C18	70.97	70.85		35.07	70.30	70.60				
$\pi C16-C18 \rightarrow \pi^* C11-C12$	68.88	68.88		37.36	69.84	70.26				
<i>π</i> C16-C18→ <i>π</i> * C13-C17	94.42	94.71		48.27	96.26	95.42				
$\pi C16-C18 \rightarrow \pi^*C11-C12$	1089.68	1172.57								
$\pi C16\text{-}C18 \rightarrow \pi^*C13\text{-}C17$	1210.11									
$\pi C17-C18 \rightarrow \pi^*C12-C16$			49.57							
$\Delta E_{\pi \to \pi^*}$	2795.88	1670.43	146.82	248.26	496.38	497.23				
$\sigma N3-C10 \rightarrow LP*H45$					43.97	58.23				
$\sigma N3-C14 \rightarrow LP*H45$					53.17	62.49				
$\sigma N3-C15 \rightarrow LP*H45$					54.17	58.64				
ΔEσ→LP*					151.31	179.36				
$LP(1)N3 \rightarrow LP*H45$					1277.53	1531.72				
$LP(4)\overline{Cl46} \rightarrow LP*H45$					621.94	250.88				
$\Delta E_{LP \rightarrow LP^*}$					1899.47	1782.6				
<i>AE</i> total	2922.91	1794.07	210.73	312.33	2677.91	2584.42				

Table 7. Main delocalization energies (in kJ/mol) of free base, cationic, and hydrochloride species of Tramadol in the gas phase and aqueous solution by using B3LYP/6-31G* calculations.

^aThis work

A detailed analysis of results reveals that the free base ($\Delta E_{LP\to\sigma^*}$ and $\Delta E_{\pi\to\pi^*}$) and the cationic species ($\Delta E_{LP\to\pi^*}$ and $\Delta E_{\pi\to\pi^*}$) in both media present two interactions while in the hydrochloride species four interactions are observed in both media ($\Delta E_{LP\to\sigma^*}$, $\Delta E_{\pi\to\pi^*}$, $\Delta E_{\sigma\to LP^*}$ and $\Delta E_{LP\to LP^*}$). The free base and hydrochloride species evidence lower stabilities in an aqueous solution, while the cationic one increases its stability in this medium, probably due to the positive charge on N3. Thus, the charged species justify their higher instability than the free base and hydrochloride ones with a total energy of 312.33 kJ/mol. On the other hand, the gas phase's the free base is most stable than the hydrochloride one in both media. The hydrochloride form is most stable in solution compared with the free base with a total energy of 2584.42 kJ/mol. The low stability in a solution of cationic species can probably be attributed to its hydration, as supported by the higher solvation energy or most negative value predicted for this species (-267.29 kJ/mol).

According to Bader's theory, the characteristic or nature of intra-molecular, H bonds, ionic, and/or covalent, polar interactions can be studied with the topological properties by using the AIM 2000 program of atoms in molecules [42,43]. Hence, the electron density, $\rho(r)$, the Laplacian values, $\nabla^2 \rho(r)$, the eigenvalues ($\lambda 1$, $\lambda 2$, $\lambda 3$) of the Hessian matrix and, the $|\lambda 1|/\lambda 3$ https://biointerfaceresearch.com/

ratio calculated in the bond critical points (BCPs) and ring critical points (RCPs) for the free base and cationic species of tramadol and the hydrochloride one in both media with the B3LYP/6-31G* method are shown in Tables 8 and 9, respectively.

D		GAS P	HASE			РСМ	I	
Parameter	H20H37	RCPN1	RCP1	RCP2	H20H37	RCPN1	RCP1	RCP2
$\rho(\mathbf{r})$	0.0094	0.0092	0.0200	0.0171	0.0099	0.0099	0.0199	0.0171
$\nabla^2 \rho(\mathbf{r})$	0.0380	0.0428	0.1584	0.1084	0.0424	0.0452	0.1576	0.1080
λ1	-0.0092	-0.0077	-0.0147	-0.0136	-0.0087	-0.0081	-0.0147	-0.0136
λ2	-0.0039	0.0048	0.0816	0.0570	-0.0021	0.0023	0.0812	0.0571
λ3	0.0514	0.0459	0.0915	0.0651	0.0533	0.0510	0.0912	0.0647
$ \lambda 1 /\lambda 3$	0.1789	0.1677	0.1606	0.2089	0.1632	0.1588	0.1611	0.2102
Distances (Å)	2.162				2.178			
			С	ationic				
Dogomotor#		GAS P	PHASE		РСМ			
Parameter	H22H45	RCPN1	RCP1	RCP2	H22H45	RCPN1	RCP1	RCP2
$\rho(\mathbf{r})$	0.0118	0.0113	0.0200	0.0170	0.0100	0.0100	0.0200	0.0170
$\nabla^2 \rho(\mathbf{r})$	0.0480	0.0540	0.1576	0.1076	0.0420	0.0448	0.1580	0.1080
λ1	-0.0117	-0.0092	-0.0147	-0.0135	-0.0093	-0.0083	-0.0147	-0.0136
λ2	-0.0061	0.0077	0.0814	0.0575	-0.0029	0.0033	0.0815	0.0575
λ3	0.0660	0.0554	0.0912	0.0638	0.0546	0.0500	0.0913	0.0642
$ \lambda 1 /\lambda 3$	0.1772	0.1660	0.1611	0.2115	0.1703	0.1660	0.1610	0.2118
Distances (Å)	2.029				2.104			

 Table 8. Analysis of the Bond Critical Points (BCPs) and Ring critical point (RCPs) for the free base and cationic species of Tramadol in the gas phase and aqueous solution by using the B3LYP/6-31G* method.

 Free base

[#]Parameters in a.u.

Table 9. Analysis of the Bond Critical Points (BCPs) and Ring critical point (RCPs) for the hydrochloride species of tramadol in the gas phase and aqueous solution by using the B3LYP/6-31G* method.

Hydrochloride									
GAS PHASE									
Parameter#	С12Н37	Cl46H45	Cl46H22	RCPN1	RCPN2	RCP1	RCP2		
$\rho(\mathbf{r})$	0.0044	0.0696	0.0099	0.0061	0.0040	0.0200	0.0170		
$\nabla^2 \rho(\mathbf{r})$	0.0136	0.0968	0.0312	0.0252	0.0124	0.1580	0.1080		
λ1	-0.0027	-0.1106	-0.0081	-0.0030	-0.0014	-0.0147	-0.0136		
λ2	-0.0022	-0.1104	-0.0068	0.0059	0.0037	0.0815	0.0572		
λ3	0.0187	0.3179	0.0463	0.0224	0.0105	0.0914	0.0645		
$ \lambda 1 /\lambda 3$	0.1443	0.3479	0.1749	0.1339	0.1333	0.1608	0.2108		
Distances (Å)	2.980	1.778	2.764						
			PCM						
Parameter#	H20H37	Cl46H45	Cl46H22	RCPN1	RCPN2	RCP1	RCP2		
$\rho(\mathbf{r})$	0.0103	0.0376	0.0077	0.0069	0.0102	0.0200	0.0171		
$\nabla^2 \rho(\mathbf{r})$	0.0440	0.0732	0.0216	0.0244	0.0464	0.1576	0.1084		
λ1	-0.0084	-0.0465	-0.0057	-0.0056	-0.0078	-0.0147	-0.0136		
λ2	-0.0024	-0.0461	-0.0037	0.0014	0.0027	0.0814	0.0572		
λ3	0.0549	0.1659	0.0313	0.0287	0.0518	0.0912	0.0648		
$ \lambda 1 /\lambda 3$	0.1530	0.2802	0.1821	0.1951	0.1505	0.1611	0.2098		
Distances (Å)	2.164	2.080	2.944						

[#]Parameters in a.u.

A new H bond with different involved atoms is observed in both media's free base and cationic species.

Thus, each C4-H20···H37 and N3-H45···H22 interaction of the free base and cationic species, respectively, form a new RCPN1 while the RCPs of R1 (3-methoxyphenyl) and R2 (cyclohexanol) rings are named RCP1 and RCP2, respectively. In the hydrochloride species, three different interactions are observed (C15-H37···C12, C6-H22···Cl46 and N3-H45···Cl46) in both media which one of them change in the solution. The molecular graphics of different interactions for the three tramadol species in the gas phase using the B3LYP/6-31G* method

are shown in Figure 8. The topological properties of R1 rings in the free base, cationic, and hydrochloride species are higher than the other ones (BCPs and RCPN1). Note that the distances between two involved atoms in H bonds are shorter in gas phase than in aqueous solution due to the hydration, except for the C4-H20···H37 interaction of hydrochloride form in a solution that presents a shorter distance different from that observed in the gas phase (C15-H37···C12). Thus, these studies show that the hydrochloride form in both media is the most stable species due to the three interactions that confer to its higher stability.

3.4. Frontier orbitals and global descriptors.

The low stability evidenced by NBO calculations for the cationic species of tramadol in aqueous solution is probably related to its most negative solvation energy value, while the hydrochloride species in this medium is the most stable in agreement with the studies observed from AIM calculations. Hence, it is impossible to understand why the hydrochloride species is a cationic one in this medium when its form shows high stability in the solution. Perhaps, an explanation could be obtained from frontier orbitals with the predictions of reactivities of three tramadol species in both media by using gap values, as suggested by Paar and Pearson [46] and, also with the predictions of its behaviors in both media [9,15,18-23].

Figure 8. Molecular graphics of three species of tramadol in the gas phase showing their H bonds interactions by using the B3LYP/6-31G* method.

Thus, HOMO, LUMO, energy gaps and chemical potential (μ), electronegativity (χ), global hardness (η), global softness (S), global electrophilicity index (ω) and global nucleophilicity index (E) descriptors for the three species of tramadol in both media by using the B3LYP/6-31G* method are presented in Table 10 together with the corresponding equations [9,15,18-23].

	level of theory.								
	B3LYP/6-31G*Method								
Orbital		Gas Phase	e		PCM				
(eV)	Free base	Cationic	Hydrochloride	Free base	Cationic	Hydrochloride			
HOMO	-5.4201	-8.4813	-5.5243	-5.5398	-8.5026	-4.7987			
LUMO	-0.0057	-3.0746	-0.4910	-0.0245	-3.1777	-0.6282			
GAP	5.4144	5.4067	5.0332	5.5152	5.3250	4.1705			
			Descrip	tors					
(eV)	Free base	Cationic	Hydrochloride	Free base	Cationic	Hydrochloride			
χ	-2.7072	-2.7034	-2.5166	-2.7576	-2.6625	-2.0853			
μ	-2.7129	-5.7780	-3.0077	-2.7822	-5.8402	-2.7134			
η	2.7072	2.7034	2.5166	2.7576	2.6625	2.0853			
S	0.1847	0.1850	0.1987	0.1813	0.1878	0.2398			
ω	1.3593	6.1747	1.7972	1.4035	6.4052	1.7654			
Е	-7.344	-15.620	-7.569	-7.672	-15.549	-5.658			

Table 10. Frontier molecular HOMO and LUMO orbitals, gap and chemical potential (μ), electronegativity (χ), global hardness (η), global softness (S), global electrophilicity index (ω) and global nucleophilicity index (E) descriptors for the three species of Tramadol in the gas phase and aqueous solution by using the B3LYP/6-31G*

^aThis work. $\chi = - [E(LUMO) - E(HOMO)]/2$; $\mu = [E(LUMO) + E(HOMO)]/2$; $\eta = [E(LUMO) - E(HOMO)]/2$; $S = \frac{1}{2}\eta$; $\omega = \frac{\mu^2}{2\eta}$; $E = \mu x \eta$

The low gap value (4.1705 eV) of the hydrochloride species in solution reveals that this is the most reactive species in solution because its form has less negative E_{HOMO} (-4.7987 eV), as compared with the free base and cationic species. However, despite in the gas phase, the free base has less negative E_{HOMO} (-5.4201 eV); the hydrochloride form is also the most reactive species in this medium. Suppose now the hydrochloride forms of tramadol and antiviral amantadine are compared. In that case, it is observed that the species of an antiviral agent is most reactive (Egap= 4.1116 eV) than the corresponding to tramadol despite its most negative E_{HOMO} (-6.4736 eV) [23]. The cationic species of tramadol in both media are less reactive than the hydrochloride ones, probably due to the higher hydration, most negative solvation energy, and the high electrophilicity and nucleophilicity indexes predicted for this species in both media, as was also observed in the cationic species de amantadine [23]. These studies have evidenced that the hydrochloride species in both media are the most reactive in the two media while the free base species have higher gap values and, for these reasons, they are the less reactive in both media. Energetically, the hydrochloride species is the most stable one in solution due to higher stabilization E, as observed from NBO studies, while the AIM analyses for this species evidence higher number of interactions in solution, but one of these interactions change the character from covalent in the gas phase to ionic in solution, justifying this way the higher reactivity observed for this species in solution. Thus, the hydrochloride species is present in solution as cationic ones because the covalent character of the H45-Cl46 bond slightly changes to ionic (N3-H45... Cl46) in this medium, as revealed by bond orders studies. In the hydrochloride species of antiviral amantadine, a similar resulted was observed [23].

3.5. Vibrational study.

Optimizations of tramadol species in both media using hybrid B3LYP/6-31G* calculations have shown C_1 symmetries for the three forms. The numbers of normal vibration modes expected for a free base, cationic, and hydrochloride forms of tramadol are 126, 129, and 132. All modes present activity in both infrared and Raman spectra. Experimental Attenuated Total Reflectance Infrared (ATR-IR) and Raman spectra of hydrochloride form of tramadol available from the literature can be seen in Figures 9 and 10 compared with the corresponding predicted for the three species by using the B3LYP/6-31G* method [48]. Better

correlations were obtained when the Raman spectra were corrected from activities to intensities using well-known equations [39,40]. The harmonic force fields for those three species were calculated using the scaled quantum mechanical force field (SQMFF) methodology using normal internal coordinates and the Molvib program [27-29].

Scaling factors were employed in this procedure together with potential energy distribution (PED) contributions $\geq 10 \%$ [28]. In Table 11 are presented observed and calculated wavenumbers for the three species of tramadol. Comparing and analyzing all spectra all spectra exhaustively, we observed that the intense IR band predicted the hydrochloride species at 1944 cm-1 using B3LYP/6-31G* calculations observed with lower intensity in the Raman spectrum, are not observed in both experimental spectra.

Figure 9. Experimental ATR-IR spectra of hydrochloride species of tramadol in solid phase [48] compared with the predicted for the three species in the gas phase by using the hybrid B3LYP/6-31G* method.

Figure 10. Experimental Raman spectra of hydrochloride species of tramadol in solid phase [48] compared with the predicted for the three species in the gas phase by using the hybrid B3LYP/6-31G* method.

Evenovimental			B3LYP/6-31G* Method ^a								
Exper	imentai	Hydrochhhloride			Cationic	Free base					
ATR ^c	Raman ^c	SQM ^b	Assignments ^a	SQM ^b	Assignments ^a	SQM ^b	Assignments ^a				
3403sh		3573	vO1-H31	3580	vO1-H31	3570	vO1-H31				
3304s	3297w			3283	vN3-H45						
3109sh	3204vw	3096	vC18-H41	3102	vC18-H41	3095	vC18-H41				
	3153vw	3091	vC13-H33	3092	vC13-H33	3092	vC13-H33				
3067vw	3068w	3073	vC12-H32	3079	$v_aCH_3(C15)$	3074	vC12-H32				
	3059w	3062	$v_aCH_3(C15)$	3068	vC12-H32	3054	vC17-H40				
3052vw	3049sh	3056	vC17-H40	3068	$v_aCH_3(C14)$	3025	$v_aCH_3(C19)$				
		3054	$v_aCH_3(C14)$	3066	vC17-H40	2997	$v_aCH_3(C15)$				
		3040	v _a CH ₃ (C15)	3065	v _a CH ₃ (C15)	2990	$v_aCH_3(C14)$				
		3036	v _a CH ₃ (C14)	3062	v _a CH ₃ (C14)	2980	$v_aCH_2(6)$				
3019vw	3030w	3031	v _a CH ₃ (C19)	3044	$v_{a}CH_{2}(10)$	2971	$v_{a}CH_{2}(10)$				
3003vw	3013w	3013	$v_a CH_2(10)$	3042	v _a CH ₃ (C19)	2961	$v_aCH_2(9)$				
2979sh	2997w	2976	$v_a CH_2(6)$	2986	$v_{s}CH_{2}(10)$	2954	v _a CH ₃ (C15), v _s CH ₃ (C15)				
	2975sh	2966	$v_{s}CH_{2}(10)$	2980	$v_a CH_2(9)$	2954	v _a CH ₃ (C19)				
		2965	$v_a CH_2(7)$	2977	v _s CH ₃ (C15)	2946	$v_a CH_2(7)$				
		2959	v _a CH ₃ (C19)	2976	v _a CH ₃ (C19)	2945	$v_aCH_3(C14)$				
	2956w	2956	v _s CH ₃ (C15)	2971	$v_a CH_2(8)$	2943	$v_a CH_2(8)$				
		2956	$v_a CH_2(8)$	2971	vsCH3(C14)	2926	$v_sCH_2(6)$				
		2950	v _s CH ₃ (C14)	2963	$v_a CH_2(7)$						
2940sh		2949	$v_aCH_2(9)$	2952	$v_a CH_2(6)$						
2931s	2937sh	2937	vC4-H20	2935	$v_s CH_2(9)$	2918	$v_s CH_2(9)$				
	2925s	2920	$v_s CH_2(9)$	2932	vC4-H20	2903	vC4-H20				
2912sh		2917	$v_s CH_2(6)$	2924	$v_{s}CH_{2}(7)$	2899	v _s CH ₃ (C19)				
	2904sh	2908	$v_s CH_2(8)$	2913	v _s CH ₃ (C19)	2898	$v_s CH_2(7)$				
2863w	2863sh	2902	v _s CH ₃ (C19)	2909	$v_{s}CH_{2}(8)$	2890	v _s CH ₂ (8)				

 Table 11. Observed and calculated wavenumbers (cm⁻¹) and assignments of free base, cationic, and hydrochloride species of Tramadol in the gas phase.

Ermon	Imantal				B3LYP/6-31G* Method ^a		
Experi	imentai		Hydrochhhloride		Cationic		Free base
2842w	2854m	2901	$v_s CH_2(7)$	2856	$v_s CH_2(6)$	2839	$v_{s}CH_{2}(10)$
	2836w	1868	vN3-H45			2813	v _a CH ₃ (C15), v _s CH ₃ (C15)
	2809w					2805	v _s CH ₃ (C14)
1600-	1000-	1(00	vC12-C16,vC13-C17	1.000	vC12-C16,vC11-C12	1611	vC12-C16,vC13-C17
16088	16065	1609	vC11-C12,vC17-C18	1609	vC13-C17,vC17-C18	1011	vC11-C12,vC17-C18
1582s	1577s	1583	vC16-C18vC11-C13	1583	vC16-C18,vC11-C13	1584	vC16-C18,vC11-C13
1484vs		1489	βC12-H32	1491	βC12-H32	1489	βC17-H40,βC12-H32
1484vs		1481	δ _a CH ₃ (C15)ρ'N3-H45	1475	$\delta_a CH_3(C15)$	1477	$\delta_a CH_3(C14), \delta_a CH_3(C15)$
						1471	$\delta_a CH_3(C19)$
		1470	δ _a CH ₃ (C19)	1467	$\delta_a CH_3(C19)$	1470	δCH ₂ (C10)
1464s	1461s	1466	δCH ₂ (C10) δ _a CH ₃ (C14)	1465	$\delta_a CH_3(C14)$	1466	δCH ₂ (C9), δCH ₂ (C6)
		1463	δCH ₂ (C9)δCH ₂ (C8)	1463	$\delta_a CH_3(C15), \delta_a CH_3(C14)$	1464	$\delta_a CH_3(C15)$
		1462	$\delta_a CH_3(C15)$	1460	δCH ₂ (C8)	1455	δ _a CH ₃ (C19),δCH ₂ (C10)
		1458	$\delta CH_2(C10) \delta_a CH_3(C15)$	1456	δCH ₂ (C10)	1454	$\delta_a CH_3(C19)$
		1455	$\delta_a CH_3(C19)$	1456	$\delta_a CH_3(C19)$	1453	δCH ₂ (C8)
		1452	δCH ₂ (C8) δCH ₂ (C6)	1450	δCH ₂ (C9)	1449	$\delta_a CH_3(C14)$
1449s	1446sh	1447	$\delta CH_2(C9)$	1444	$\delta CH_2(C7)$	1447	δCH ₂ (C9), δCH ₂ (C6)
		1444	$\delta_a CH_3(C14)$	1441	δ _s CH ₃ (C19) vC11-C12	1442	$\delta CH_2(C7)$
		1444	$\delta CH_2(C7)$	1441	δCH ₂ (C7), δCH ₂ (C6)	1441	δCH ₂ (C7), δ _s CH ₃ (C19)
		1440	δ _s CH ₃ (C19)	1420	SCIL (CE)		
		1440	vC11-C12	1439	0CH ₂ (C0)		
1435s	1439s	1439	δCH ₂ (C10)ρ'N3-H45	1430	δ _s CH ₃ (C19), βC18-H41	1433	$\delta_s CH_3(C15)$ $\delta_s CH_3(C14)$
			δ _s CH ₃ (C19)		δ _s CH ₃ (C14)		
1431sh	1430sh	1430	βC18-H41	1425	$\delta_{s}CH_{3}(C15)$	1431	δ _s CH ₃ (C19) βC18-H41
1416s	1411w	1425	ρN3-H45	1413	ρ'N3-H45,ρN3-H45		
	1401sh	1406	wagCH ₂ (C10)	1401	$\delta_{s}CH_{3}(C15)$	1407	$\delta_s CH_3(C15)$ wagCH ₂ (C10)
1389m	1389sh	1394	$\delta_{s}CH_{3}(C14)$	1396	$\delta_{s}CH_{3}(C14)$	1399	δ _s CH ₃ (C14)
		1390	wagCH ₂ (C6)	1386	wagCH ₂ (C8)	1377	wagCH ₂ (C9)
		1390	$\delta_{c}CH_{2}(C15)$	1376	wagCH ₂ (C7).wagCH ₂ (C8)	1375	wagCH ₂ (C8),wagCH ₂ (C7)
	1383w	1379	$wagCH_2(C8)$	1372	wagCH ₂ (C9).wagCH ₂ (C10)	1368	wagCH ₂ (C7)
		1372	wagCH ₂ (C9)	1372	wagCH ₂ (C6)o'C4-H20	1362	wagCH ₂ (C8)
1361w		1363	wagCH ₂ (C7)	1363	wagCH ₂ (C7)		
1342w	1342w	1338	$_{0}CH_{2}(C10)$ $_{0}C4-H20$	1332	oC4-H20	1341	oCH ₂ (C10)
1319m	1312w	1322	vC13-C17 vC12-C16	1322	vC13-C17	1374	oC4-H20
151711	1510₩	1316	o'C4-H20	1318	oC4-H20	1310	yC13 C17
		1211	pCH(C7) aCH(C6)	1206	pC+-1120	1206	2CH (C7)
	1201m	1200	$pCH_2(C7), pCH_2(C0)$	1200	$pCH_2(C7)$	1204	$pCH_2(C7)$
1202	1207	1202	рСH ₂ (С10)	1298	VC10-02	1294	VC10-02,pC12-H32
1293VS	128/m	1293	ρCH ₂ (C10)	1288	ρCH ₂ (C10)	1292	ρC4-H20
12/6W	12/1m	10.00		10.65		12/4	$\rho'CH_3(C14), VN3-C10$
1258sh	1253sh	1263	ρ C4-H20, ρ CH ₂ (C9)	1265	$\rho CH_2(C9), \rho CH_2(C6)$	1260	$\rho CH_2(C9), \rho CH_2(C6)$
1247s	1242w	1259	vC16-O2	1265	vC16-O2	1255	vC16-O2
		1244	ρ'CH ₃ (C14)	1240	ρCH ₂ (C8)	1243	ρCH ₂ (C8)
1223w	1235sh	1237	ρCH ₂ (C8) ρ'CH ₃ (C15)	1220	ρ'CH ₃ (C15),ρ'CH ₃ (C14)		
1199m	1218w	1199	δC5O1H31	1195	8C501H31	1193	ρCH ₂ (C9)
1181s	1192w	1190	ρCH ₃ (C19)	1189	ρCH ₃ (C19)	1190	ρCH ₃ (C19)
1166s	1173sh	1174	βС17-Н40,βС13-Н33	1176	βС17-H40,βС13-H33	1176	δC5O1H31
		1173	ρCH ₃ (C14) ρCH ₃ (C15)	1174	ρCH ₂ (C9)	1173	βC13-H33
	1168s	1162	vC5-C11	1158	vC5-C11	1165	ρCH ₃ (C14), ρCH ₃ (C15)
1140m	1160sh	1154	ρ'CH ₃ (C19)	1151	ρ'CH ₃ (C19)	1155	vC5-C11
	1148w	1154	vC5-C11	1146	ρ'CH ₃ (C15)	1154	ρ'CH ₃ (C19)
1118w	1134w	1126	ρCH ₂ (C8)	1120	ρCH ₂ (C8)	1129	ρCH ₂ (C6),ρCH ₂ (C9)
1112sh	1109w	1102	vC13-C17	T		1105	ρCH ₃ (C14), ρCH ₃ (C15)
	1101sh			1099	vC13-C17.vC17-C18	1099	vC17-C18
1092w	1087s	1085	vC5-O1	1083	vC5-O1	1083	vC5-O1
1077w	1073w	1071	vC4-C10 vC4-C6	1070	vC4-C10	1071	vC4-C10
1056	1053m	1062	vC7 C9 vC6 C8	1060	VC4 C10	1060	VC7 C9
10560	1052m	1052	CH(C14) + CH(C15)	1000	VC7-C9,VC5-C7	1054	vC10.02
10308	1035III 1044m	1050	pc11 ₃ (C14) pc11 ₃ (C15)	1045		1034	VC19-02
104878	1044111	1055	VC19-02	1045	VC19-02	1049	VC4-C10,VC0-C8
1048vs	1044m	1046	vC4-C10	1036	ρCH ₃ (C14)	1040	ρ'CH ₃ (C14),vN3-C15 ρ'CH ₃ (C15),vN3-C14
1013s	1006vs	1023	vC5-C4,vC5-C7	1030	ρCH ₃ (C15)	1021	vC5-C4,vC5-C7
987vs	991vs	1002	vN3-C14,vN3-C15	1014	vC5-C4	1014	vN3-C10
987vs	982sh	992	$\beta R_1(A1)$	991	$\beta R_1(A1)$	993	$\beta R_1(A1)$
	1	1		974	γC17-H40		
976m	970w	976	vN3-C10 BR (A2)	971	vN3-C15	965	vC17-H40 vC13-H33
960m	210	967	vC17_H/0 vC12 U22	964	vC7-C9 vC5 O1	96/	vC5-01
700III	<u> </u>	907	γC17-H40,γC13-H33	904	vC7-C7,vC3-O1	904	VC3-01
042	054	904	γC1/-Π40VC0-C8	737	vc0-co	900	vco-co
9438	9548	931	VN3-C10	929	VC5-01	930	VC3-01
908w	93/m	932	vC5-01	907	vN3-C14		
	902w	899	$\tau WCH_2(C6)$	895	vN3-C10	900	τwCH ₂ (C6), τwCH ₂ (C7)

Evnovimental		B3LYP/6-31G* Method ^a							
Experi	imentai	Hydrochhhloride			Cationic	Free base			
886m	882w	888	үС12-Н32,үС18-Н41	891	γC18-H41,γC13-H33	885	γC18-H41		
872s		881	γC12-H32	874	γC12-H32	879	γC12-H32		
853w	866w	867	τwCH ₂ (C10)	844	vC8-C9	852	vN3-C15,vN3-C14		
842w	849s	839	vC8-C9	835	τwCH ₂ (C9), vC8-C9	838	vC8-C9		
812sh	837s	825	$\beta R_3(A1)$	822	τwCH ₂ (C10)	823	τwCH ₂ (C10) τwCH ₂ (C8)		
798m	809m	813	τwCH ₂ (C10) τwCH ₂ (C8)	801	vN3-C15,vN3-C10	820	vN3-C15		
785s	792m	789	γC18-H41	794	γC18-H41,γC13-H33	787	γC18-H41γC17-H40		
783vs	777w	772	vC4-C6, twCH2(C8)	764	vC4-C6, twCH2(C8)	770	vC4-C6		
765sh	754vw	750	τ wCH ₂ (C7) τ wCH ₂ (C9)	742	τwCH ₂ (C7),τwCH ₂ (C9) τwCH ₂ (C6)	745	τwCH ₂ (C7) τwCH ₂ (C9),τwCH ₂ (C6)		
724w	718s	702	$\tau R_1(A1)$	697	$\tau R_1(A1)$	700	$\beta R_2(A1), \tau w CH_2(C6)$		
706vs	703vw	698	γC11-C5	691	βR ₂ (A1),vC5-C4	697	$\tau R_1(A1)$		
650s	644s	650	$\beta R_2(A1)$	643	$\beta R_2(A1)$	649	$\beta R_2(A1)$		
625s	624w	625	τR ₂ (A1), γC16-O2	624	γC16-O2	624	γC16-O2		
586m	582w	574	δC16O2C19,βC16-O2	574	δC16O2C19,βC16-O2	574	δC16O2C19,βC16-O2		
572m	568w	566	δC14N3C10, ρC5-O1	555	δC10C4C5, δC14N3C10	556	ρC5-O1, δC14N3C10		
551w	548s	527	$\beta R_2(A2)$	526	$\beta R_2(A2)$	533	$\beta R_2(A2)$		
516w	512w	510	$\beta R_3(A1)$	507	$\beta R_3(A1)$	509	$\beta R_3(A1)$		
481w	477w	474	$\beta R_1(A2)$	466	$\beta R_1(A2)$	466	$\beta R_1(A2)$		
470m	465vw	465	$\tau R_3(A1)$	462	$\tau R_3(A1)$	462	$\tau R_3(A1)$		
444w	439s	437	δC14N3C15	440	δC15N3C10	453	δC14N3C15		
423w	420s	428	δC15N3C10	430	δC14N3C15	406	$\beta R_2(A2)$		
416sh	389s	406	δC15N3C10	403	$\delta C15N3C10,\beta R_2(A2)$	390	δC15N3C10		
	377s	384	δC14N3C10	366	δC7C5C11	370	δC7C5C11		
	366sh	360	δC10C4C6,δC7C5C11	355	δC10C4C6	350	δC10C4C6		
	337s	337	$\tau R_1(A2)$	328	ρ'C5-O1	331	ρ'C5-O1		
	325sh	332	ρ'C5-O1	322	$\tau R_1(A2)$	326	δC14N3C10		
	320sh	315	τO1-H31	311	τO1-H31	310	τO1-H31		
	308vw	296	βR ₃ (A2)	288	βR ₃ (A2)	293	βR ₃ (A2)		
	280s	277	ρC5-O1	268	ρC5-O1	269	ρC5-O1		
	256sh	257	τR ₂ (A1), τwCH ₃ (C19)			258	τwCH ₃ (C19)		
	256sh			253	$\tau R_2(A1), \tau R_3(A1)$	250	τwCH ₃ (C14),δC16O2C19		
	244vs	243	δC4C5C11	244	τR ₂ (A1), τwCH ₃ (C19)	235	τwCH ₃ (C14)		
	237sh	238	δC10C4C5			231	τwCH ₃ (C14)		
	225sh	227	vH45-Cl46	228	$\delta C4C10N3, \tau R_1(A1)$	224	τwCH ₃ (C15)		
	218w	211	$\tau R_3(A2)$	215	τwCH ₃ (C14), τwCH ₃ (C15)	199	$\tau R_2(A1)$		
	191sh	199	τwCH ₃ (C19)	193	τR ₃ (A2)	194	$\tau R_3(A2), \tau R_2(A2)$		
	186s	193	τwCH ₃ (C15)	192	τR ₂ (A1), τwCH ₃ (C19)				
	174sh	182	τwCH ₃ (C14)	184	$\tau R_2(A2)$				
	165sh	166	βC11-C5, δC4C10N3	146	βC11-C5	155	βC11-C5		
		118	τwCH ₃ (C15)	120	δC4C10N3	113	δC10C4C5, δC4C10N3		
		107	τN3-H45						
		97	τ02-C16,τC10-C4	99	τO2-C16,τwCH ₃ (C19)	101	τO2-C16,τwCH ₃ (C19)		
		90	$\tau R_2(A2)$						
		1	· · · ·	76	δC4C5C11	75	δC4C5C11		
		69	τO2-C16	72	τΟ2-C16	68	τΟ2-C16		
		59	δN3H45Cl46	45	τN3-C10,γC11-C5	45	τC5-C11,γC11-C5		
		34	τC5-C11	37	τC10-C4	32	τN3-C10		
		31	τN3-C10	27	τC5-C11	26	τC10-C4		
		16	τC10-C4.τN3-C10			1			

Abbreviations: v, stretching; β , deformation in the plane; γ , deformation out of plane; wag, wagging; τ , torsion; β_R , deformation ring τ_R , torsion ring; ρ , rocking; τw , twisting; δ , deformation; a, antisymmetric; s, symmetric; (A₁), Ring 1; (A₂), Ring 2. ^aThis work, ^bFrom scaled quantum mechanics force field, ^cFrom Ref [48].

For these reasons, the hydrochloride form of tramadol is a cationic one in the solid phase, in agreement with all studied hydrochloride species of different pharmacological drugs by using vibrational spectroscopy [3-5,7,9-23]. That strong IR band calculated at 1944 cm⁻¹ is predicted by SQM calculations at 1868 cm^{-1. I}t is assigned to the vN3-H45 stretching mode of hydrochloride form.

Probably, the numerous IR bands observed in the 1700-400 cm⁻¹ region in the ATR spectrum could indicate the presence of a free base in the solid phase. Obviously, the differences observed between experimental and theoretical spectra can be attributed to the calculations. These were performed in the gas phase, where the packing forces existent in the

solid phase were not considered. Thus, the group of bands between 2758 and 2368 cm⁻¹, centered in the IR spectrum at 2605 cm⁻¹ and 2621 cm⁻¹ in the Raman one, could be associated with dimeric species not considered in this work. Brief discussions of some assignments are presented below.

3.5.1. Band Assignments.

4000-2000 cm⁻¹ region. In this region are expected characteristic bands related to stretching modes of OH, NH, CH₃, CH₂, and aromatic and aliphatic C-H groups [3-5,7,9-23]. The OH stretching modes in the three species are predicted in the same regions; hence, the shoulder at 3403 cm⁻¹ is assigned to these stretching modes. The strong IR band at 3304 cm⁻¹ is quickly assigned to NH stretching of cationic species. The aromatic CH stretching mode is assigned as predicted by calculations between 3102 and 3054 cm⁻¹, while the only aliphatic mode in the three species is assigned between 2937 and 2903 cm⁻¹. The antisymmetric and symmetric modes of CH₃ groups are assigned from 3068 cm⁻¹ up to 2805 cm⁻¹, while these modes for CH₂ groups between 3044 and 2839 cm⁻¹, as detailed in Table 11 and, as observed in similar compounds [3-5,7,9-23]. The group of bands between 2758 and 2368 cm⁻¹ can be attributed to dimeric hydrochloride species, as reported for anti-hypertensive agent tolazoline hydrochloride [18,19].

1800-1000 cm⁻¹ region. Characteristic bands associated with deformation, wagging, and rocking modes of CH₂, CH₃, OH, NH and C-H groups and C-C, N-C, and C-O stretching modes are expected in this region [3-5,7,9-23]. The strong pairs of IR/Raman band at 1608/1582, and 1606/1577 cm⁻¹ are assigned to C=C stretching modes of R1 rings, while the very strong IR band at 1484 cm⁻¹ is associated with in-plane CH deformations of three species. The three antisymmetric and symmetric CH₃ deformations and CH₂ deformations modes are assigned between 1481 cm⁻¹ and 1390 cm⁻¹, while the IR bands at 1199 and 1166 cm⁻¹ are assigned to OH deformations, as predicted by SQM calculations. The strong IR band at 1416 cm⁻¹ is assigned to N-H rocking modes of cationic and hydrochloride species, while the band of medium intensity at 1319 cm⁻¹ and the intense IR band at 1247 cm⁻¹ are assigned to C-C and C16-O2 stretching modes, respectively. The intense Raman band at 1087 cm⁻¹ can be assigned to C5-O1 stretching modes of three tramadol species, while other C-C stretching modes can also be assigned to IR and Raman bands between 1077 and 987 cm⁻¹.

1000-10 cm⁻¹ region. In this region, the SQM calculations predict C-C, N-C, and C-O stretching, OH, CH₃, and CH₂ twisting and skeletal modes of both rings. The strong band at 783 cm⁻¹ is assigned to C4-C6 stretching modes of the three species because the SQM calculations predict these modes between 772 and 764 cm⁻¹ while the intense band located at 987 cm⁻¹ is associated with one of three deformations rings R1 of three species (β R₁(A1)). The IR at 798 cm⁻¹ can be assigned to stretching modes of N3-C15 and N3-C10 bonds or the twisting mode of CH₂ groups, while the strong Raman bands at 389, 377, and 280 cm⁻¹ are associated with C15N3C10, C14N3C10, C7C5C11 deformations, and C5-O1 rocking modes.

Deformations and torsions of methoxyphenyl rings (R1 or A1) and cyclohexanol (R2 or A2) are predicted by SQM calculations in the 1000-60 cm⁻¹ region, as was observed in species containing six members rings [3-5,7,9-23]. Note that practically in all regions, the SQM calculations predict some vibration modes' coupling, as was detailed in Table 11.

3.6. Force constants.

The determinations of harmonic force fields for the three tramadol species in both media with the SQMFF methodology and Molvib program by using the B3LYP/6-31G* level of the theory have allowed computing scaled force constants for those species in the two media [27-29]. The results for the three species of tramadol in both media are presented in Table 12.

	1	1	U							
	B3LYP/6-31G* method									
Force	Tramadol ^a									
constant	Free	base	C	ationic	Hydrochloride					
	Gas	PCM	Gas	PCM	Gas	PCM				
f(vO-H)	7.13	7.09	7.17	7.09	7.14	7.11				
f(vN-H)			5.98	6.03	2.82	4.78				
f(vC-O) _{0H}	4.48	4.33	4.57	4.41	4.52	4.41				
f(vC-O) _{0CH3}	5.45	5.05	5.50	5.05	5.48	5.03				
f(vC-N)	4.72	4.59	3.86	4.04	4.27	4.13				
$f(vC-H)_{RI}$	5.21	5.23	5.21	5.23	5.21	5.23				
$f(vC-H)_{R2}$	4.66	4.75	4.76	4.83	4.76	4.82				
$f(\nu C - C)_R$	6.45	6.43	6.43	6.43	6.43	6.43				
$f(vCH_2)$	4.73	4.73	4.80	4.81	4.79	4.80				
f(vCH ₃)	4.75	4.80	5.02	5.04	4.96	5.03				
$f(\delta CH_2)$	0.75	0.74	0.74	0.73	0.75	0.73				
$f(\delta CH_3)$	0.58	0.57	0.57	0.56	0.57	0.56				

 Table 12. Scaled internal force constants for the free base, cationic, and hydrochloride tramadol species in gas and aqueous solution phases using the B3LYP/6-31G* method.

Units are mdyn Å⁻¹ for stretching and mdyn Å rad⁻² for angle deformations. ^aThis work.

The f(vO-H) force constants of the three species show a decrease in solution due to the hydrations of these groups with water molecules, as also was observed in the $f(vC-O)_{OH}$ and $f(vC-O)_{OCH3}$ force constants. However, the f(vN-H) force constants of hydrochloride species increase in solution while remains practically constant in the cationic species. In the hydrochloride form, the presence of Cl atom justifies that observation because the N3-H45 bond is shortened of 1.128 Å in the gas phase to 1.056 Å in solution while the H45·····Cl46 bond increases from 1.778 Å in the gas phase to 2.080 Å in solution. The remaining force constants do not show changes in the three species or with the medium and show values approximately similar to reported for other pharmacological species [3-5,7,9-23].

3.7. NMR study.

The GIAO method was used to predict the ¹H and ¹³C NMR chemical shifts of three species of tramadol in an aqueous solution with the hybrid B3LYP/6-31G* level of theory [47]. These results were compared with the corresponding experimental spectra available from the literature for tramadol hydrochloride solution in DMSO-_{d6} [24]. Comparisons between experimental and theoretical ¹H and ¹³C NMR chemical shifts are presented in Tables 13 and 14, respectively, using the RMSDs values [24].

Table 13. Observed and calculated ¹H chemical shifts (δ in ppm) for the three Tramadol species in aqueous solution by using the B3LYP/6-31G* method.

Tramadol ^a								
H atom	Base		Cationic		Hydrochloride		T. h	
	Gas	РСМ	Gas	PCM	Gas	РСМ	Exp	
20-Н	2.37	2.49	2.61	1.89	1.80	2.30	2.27	
21-Н	2.22	2.29	2.47	1.78	1.38	2.37	2.22	
22-H	2.67	2.46	1.54	0.71	3.00	3.28	2.27	
23-H	2 49	2.45	2.67	1.93	1.83	2.43	2.22	

https://biointerfaceresearch.com/

	I ramador"								
II adam		Base	Ca	tionic	Hydro	Hydrochloride			
H atom	Gas	PCM	Gas	PCM	Gas	PCM	Exp		
24-H	1.66	1.64	2.12	1.38	0.98	1.74	2.27		
25-Н	2.20	2.22	2.57	1.90	1.47	2.46	2.22		
26-H	1.91	1.89	2.13	1.38	1.49	1.84	2.27		
27-Н	1.86	1.83	2.24	1.54	1.19	1.90	2.22		
28-Н	2.41	2.39	2.56	1.87	1.62	2.42	2.27		
29-Н	2.87	3.04	3.98	3.05	2.03	3.43	2.81		
30-Н	2.24	1.92	3.25	2.45	2.24	2.38	2.55		
31-H	0.32	0.43	1.14	0.46	0.33	0.64	5.12		
32-Н	6.98	7.00	6.91	6.17	6.37	6.95	7.09		
33-Н	7.34	7.27	7.21	6.52	6.55	7.22	7.07		
34-H	2.57	2.50	3.29	2.56	1.85	2.80	2.41		
35-Н	2.30	1.90	3.13	2.39	1.35	1.90	2.41		
36-H	2.53	2.48	3.29	2.55	2.08	3.20	2.41		
37-Н	2.72	2.78	3.50	2.86	1.70	3.08	2.55		
38-H	2.30	2.31	3.07	2.33	1.99	2.83	2.55		
39-H	1.66	1.50	2.63	1.93	0.54	1.70	2.55		
40-H	7.50	7.49	7.81	7.12	6.81	7.57	7.28		
41-H	6.70	6.72	7.09	6.43	6.05	6.80	7.07		
42-H	4.27	4.27	4.53	3.82	3.64	4.33	3.76		
43-H	3.95	3.97	4.07	3.31	3.21	3.87	3.76		
44-H	3.93	3.89	4.08	3.37	3.23	4.01	3.76		
RMSD	1.01	1.00	0.96	1.08	1.24	0.99			

^aThis work GIAO/B3LYP/6-31G* Ref. to TMS, ^bFrom Ref [24].

In this study, the values in the gas phase were also included in the tables. Analyzing the RMSDs for the ¹H nucleus of all species, we observed that in good general correlations are observed for the three species with values between 1.24 and 0.96 ppm and, in particular, the hydrochloride species in solution shows a low value because it is the compared species. The free base values in both media, closer than the corresponding cationic species, suggest that the free base could be protonated in solution. Suppose now the results for the 13C nucleus are compared. In that case, it is observed that the free base and hydrochloride species present similar correlations in the RMSDs (9.96-9.54 ppm), while lower concordances are observed in the cationic species in both media (10.36-10.03 ppm). Such differences could be associated with the different media recorded and calculated the spectra and calculations because better correlations are observed when the species are optimized using the B3LYP/6-311++G** method and, especially, the chemical shifts for the ¹H nucleus.

Fable 14 . Observed and calculate	ed ¹³ C chemical shifts (δ	in ppm) for the three	Tramadol species	in aqueous
SC	lution by using the B3LY	YP/6-31G* method.		

Tramadol ^a							
C atoms		Base		Cationic		Hydrochloride	
	Gas	РСМ	Gas	PCM	Gas	PCM	Exp
4-C	38.4	37.8	36.6	35.8	36.8	36.8	40.21
5-C	69.3	69.8	68.7	69.4	69.7	69.7	73.87
6-C	20.6	19.6	18.4	18.1	23.4	19.6	26.16
7-C	36.7	37.4	34.1	36.2	35.7	36.9	40.39
8-C	20.4	20.2	18.6	18.7	19.2	19.1	24.47
9-C	17.1	16.7	15.2	15.4	16.5	16.2	21.16
10-C	50.6	51.7	56.6	55.5	52.4	51.4	59.33
11-C	136.7	137.3	129.7	130.5	136.0	135.6	150.0
12-C	100.7	100.8	99.3	98.9	101.0	100.1	111.52
13-C	103.1	102.9	100.7	101.3	102.9	102.5	117.22
14-C	39.2	40.1	37.5	37.9	35.5	37.6	44.77
15-C	33.8	34.5	32.8	32.7	32.0	30.7	40.60
16-C	143.8	144.6	145.6	146.3	144.4	144.9	159.1
17-C	114.9	115.3	117.7	118.0	115.5	116.1	129.06

Tramadol ^a								
C atoms	Base		Cationic		Hydrochloride		Eb	
	Gas	РСМ	Gas	PCM	Gas	PCM	Exp-	
18-C	94.5	94.9	98.4	99.0	95.3	95.9	111.12	
19-C	45.1	45.8	45.9	46.4	45.1	45.9	54.96	
RMSD	9.86	9.54	10.36	10.03	9.92	9.96		

^aThis work GIAO/B3LYP/6-31G* Ref. to TMS, ^bFrom Ref [24].

3.8. Electronic spectrum.

The electronic spectra for the three tramadol species were also predicted in an aqueous solution because tramadol hydrochloride is freely soluble in water, as reported in the literature [24]. These theoretical spectra were obtained using the Time-dependent DFT calculations (TD-DFT) with the Gaussian program and the B3LYP/6-31G* method [35]. The experimental spectrum was recorded for tramadol hydrochloride in methanol from 200 to 400 nm [24]. All spectra are compared in Figure 11. It is possible to observe that the experimental UV spectrum shows absorption maxima at 217 nm and 272 nm while the predicted spectrum for the free base present maxima at 180 and 245 nm and a shoulder at 212 nm. In the cationic species, only two maxima are observed at 212 and 250 nm. In the UV spectrum of hydrochloride form, they are observed two maxima at 245 and 290 nm.

Figure 11. Experimental electronic spectrum of hydrochloride tramadol in methanol [24] compared with the corresponding predicted for the three species in aqueous solution using the B3LYP/6-31G* method.

These results show that part of the free base is protonated in solution because the shoulder and the maximum respectively at 212 and 245 nm correspond to bands of cation while part of hydrochloride species is as cationic one because the two experimental bands at 217 nm and 272 nm are in agreement with a band of the cation (212 nm) and other of free base protonated (290 nm). The band at 180 nm observed for the free base cannot be seen experimentally because the experimental spectrum was recorded between 200 and 400 nm. These studies show that the three species can be present in a solution of hydrochloride tramadol https://biointerfaceresearch.com/

and that the bands can be attributed to $\pi \rightarrow \pi^*$ transitions due to the C=C double bonds, as predicted by the NBO analysis and in agreement with literature data [49,50].

4. Conclusions

In this research, three species of narcotic tramadol agent's theoretical structures were studied in the gas phase and aqueous solution by using the functional hybrid B3LYP with the 6-31G* basis set. Comparisons of predicted infrared, Raman, ¹H, and ¹³C NMR and electronic spectra for the free base, cationic, and hydrochloride species of tramadol with the corresponding experimental ones have evidenced reasonable correlations for the cationic species showing that this species present in the solid phase and in solution. The vibrational studies have revealed that the species cationic is present in the solid phase because the most intense band predicted for the hydrochloride in infrared and Raman spectra is not observed in the experimental spectra. The harmonic force fields, together with the normal internal coordinates and scaling factors, have allowed the complete vibrational assignments of 126, 129, and 132 vibration modes expected for a free base, cationic, and hydrochloride species, respectively, by using the SQMFF methodology. The cationic species evidence the most negative solvation energy and higher hydration in solution in agreement with its lower stability, while the hydrochloride species is the most reactive in solution. MK charges and NBO and AIM studies support cationic species' instability due to the positive charge on N atom. Comparisons of the experimental UV spectrum of hydrochloride tramadol with the predicted for the three species suggest that the free base, cationic, and hydrochloride species can be present in solution.

Funding

This research received no external funding.

Acknowledgments

This work was supported with grants from CIUNT Project N° 26/D608 (Consejo de Investigaciones, Universidad Nacional de Tucumán). The author would like to thank Prof. Tom Sundius for his permission to use MOLVIB.

Conflicts of Interest

The authors declare no conflict of interest.

References

- 1. Veber. D.F.; Johnson, S.R.; Cheng, H.-Y; Brian, R.; Ward, K.W.; Kopple, K.D. Molecular Properties that influence the oral bioavailability of drug candidates. *J. Med. Chem.* **2002**, *45*, 2615-2623, https://doi.org/10.1021/jm020017n.
- 2. Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development setting. *Advanced Drug Delivery Reviews* **2001**, *46*, 3-26, https://doi.org/10.1016/s0169-409x(00)00129-0.
- 3. Brandán, S.A. Why morphine is a molecule chemically powerful. Their comparison with cocaine. *Indian Journal of Applied Research* **2017**, *7*, 511-528.
- 4. Rudyk, R.A.; Brandán, S.A. Force field, internal coordinates and vibrational study of alkaloid tropane hydrochloride by using their infrared spectrum and DFT calculations. *Paripex A Indian Journal of Research* **2017**, *6*, 616-623.

- 5. Romani, D.; Brandán, S.A. Vibrational analyses of alkaloid cocaine as free base, cationic and hydrochloride species based on their internal coordinates and force fields. *Paripex A Indian Journal of Research* **2017**, *6*, 587-602.
- 6. Iramain, M.A.; Ledesma, A.E.; Brandán, S.A. Analyzing the effects of halogen on properties of a halogenated series of R and S enantiomers analogues alkaloid cocaine-X, X=F, Cl, Br, I. *Paripex A Indian Journal of Research*, **2017**, *6*, 454-463.
- 7. Brandán, S.A. Understanding the potency of heroin against to morphine and cocaine. *IJSRM, International Journal of Science and Research Methodology* **2018**, *12*, 97-140.
- 8. Rudyk, R.A.; Checa, M.A.; Guzzetti, K.A.; Iramain, M.A.; Brandán, S.A. Behaviour of N-CH₃ Group in Tropane Alkaloids and correlations in their Properties. *IJSRM*, *International Journal of Science And Research Methodology* **2018**, *10*, 70-97.
- Rudyk, R.A.; Checa, M.A.; Catalán, C.A.N.; Brandán, S.A. Structural, FT-IR, FT-Raman and ECD spectroscopic studies of free base, cationic and hydrobromide species of scopolamine alkaloid. *J. Mol. Struct.* 2019, *1180*, 603-617, https://doi.org/10.1016/j.molstruc.2018.12.040.
- 10. Iramain, M.A.; Brandán, S.A. Structural and vibrational properties of three species of anti-histaminic diphenhydramine by using DFT calculations and the SQM approach. *Journal: To Chemistry Journal* **2018**, *1*, 105-130.
- 11. Márquez, M.J.; Iramain, M.A.; Brandán, S.A. *Ab-initio* and Vibrational studies on Free Base, Cationic and Hydrochloride Species Derived from Antihistaminic Cyclizine agent. *International Journal of Science and Research Methodology* **2019**, *11*, 53-87.
- 12. Manzur, M.E.; Rudyk, R.A.; Brandán, S.A. Evaluating properties of free base, cationic and hydrochloride Species of potent psychotropic 4-Bromo-2,5-dimethoxyphenethylamine drug. *International Journal of Current Advanced Research* **2019**, *8*, 17166-17170.
- 13. Iramain, M.A.; Ruiz Hidalgo, J.; Brandán, S.A. Predicting properties of species derived from N-(1H-indol-3-ylmethyl)-N,N-dimethylamine, Gramine, a indol alkaloid. *International Journal of Current Advanced Research* **2019**, 8, 18113-18124.
- 14. Romani, D.; Ruiz Hidalgo, J.; Iramain, M.A.; Brandán, S.A. Structures, Reactivities and Vibrational Study of Species Derived from the Adrenergic α₂ Receptor Agonist Guanfacine. *International Journal of Science And Research Methodology* **2019**, *12*, 74-98.
- 15. Manzur, M.E.; Brandán, S.A. S(-) and R(+) Species Derived from Antihistaminic Promethazine Agent: Structural and Vibrational Studies. *Heliyon* **2019**, *5*, https://doi.org/10.1016/j.heliyon.2019.e02322.
- 16. Márquez, M.J.; Brandán, S.A. DFT study of Species Derived from the Narcotic Antagonist Naloxone, *Biointerface Research in Applied Chemistry* **2020**, *10*, 8096-8116, https://doi.org/10.33263/BRIAC102.096116.
- 17. Ruiz Hidalgo, J.; Iramain, M.A.; Brandán, S.A. Structural Studies and Spectroscopic properties of Quinolizidine Alkaloids (+) and (-)-Lupinine in different media. *J. Mater. Environ. Sci.* **2019**, *10*, 854-871.
- 18. Contreras, C.D.; Ledesma, A E.; Zinczuk, J.; Brandán, S.A. Vibrational study of tolazoline hydrochloride by using FTIR-Raman and DFT calculations. *Spectrochim. Acta A* **2011**, *79*, 1710-1714, https://doi.org/10.1016/j.saa.2011.05.041.
- 19. Romano, E.; Brizuela, A.B.; Guzzetti, K.; Brandán, S.A. An experimental and theoretical study on the hydration in aqueous medium of the anti-hypertensive agent tolazoline hydrochloride. *J. Mol. Struct.* **2013**, *1037*, 393-401, http://dx.doi.org/10.1016/j.molstruc.2013.01.028.
- 20. Romano, E.; Davies, L.; Brandán, S.A. Structural properties and FTIR-Raman spectra of the antihypertensive, clonidine hydrochloride agent and their dimeric species. *J. Mol. Struct.* **2017**, *1133*, 226-235, http://dx.doi.org/10.1016/j.molstruc.2016.12.008.
- 21. Brandán, S.A. Correlations in hydrochloride drugs with diverse pharmacological activities. Role of N-H…Cl bonds. *Biointerface Research in Applied Chemistry* **2020**, *10*, 5536-5547, https://doi.org/10.33263/BRIAC103.536547.
- 22. Guzzetti, K.A.; Iramain, M.A.; Rudyk, R.A.; Manzur, M.E.; Brandán, S.A., Vibrational Studies of Species Derived from Potent S(+) and R(-) Ecstasy Stimulant by Using *Ab-initio* Calculations and the SQM Approach. *Biointerface Research in Applied Chemistry* **2020**, *10*, 6783-6809, https://doi.org/10.33263/BRIAC106.67836809.
- 23. Brandán, S.A. Normal internal coordinates, Force fields and vibrational study of Species Derived from Antiviral amantadine. *Int. J. Quantum Chem.* **2021**, *121*, https://doi.org/10.1002/qua.26425.
- 24. Smyj, R.; Wang, X-P.; Han, F. Chapter 11-Tramadol Hydrochloride. In: *Profiles of Drug Substances, Excipients, and Related Methodology*. Elsevier Inc.ISSN 1871-5125, Volume 38, **2013**; http://dx.doi.org/10.1016/B978-0-12-407691-4.00011-3.
- 25. Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. *Phys. Rev.* **1988**, *A38*, 3098-3100, https://doi.org/10.1103/PhysRevA.38.3098.
- 26. Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. *Phys. Rev.* **1988**, *B37*, 785-789, https://doi.org/10.1103/PhysRevB.37.785.
- 27. Pulay, P.; Fogarasi, G.; Pongor, G.; Boggs, J.E.; Vargha, A. Combination of theoretical ab initio and experimental information to obtain reliable harmonic force constants. Scaled quantum mechanical (QM)

force fields for glyoxal, acrolein, butadiene, formaldehyde, and ethylene. *Journal of the American Chemical Society* **1983**, *105*, 7037-7047, https://doi.org/10.1021/ja00362a005

- Rauhut, G.; Pulay, P. Transferable Scaling Factors for Density Functional Derived Vibrational Force Fields. J. Phys. Chem. 1995, 99, 3093-3100, https://doi.org/10.1021/j100010a019
- 29. Sundius, T. Scaling of ab-initio force fields by MOLVIB. *Vib. Spectrosc.* **2002**, *29*, 89-95, https://doi.org/10.1016/S0924-2031(01)00189-8.
- Tramadol Hydrochloride, European Pharmacopoeia. seventh ed., European Directorate for the Quality of Medicines & Healthcare (EDQM), Council of Europe, Strasbourg, 2010; pp. 3118–3119.
- 31. Kaduk, J.A.; Zhong, K.; Gindhart, A.M.; Blanton, T.N. Crystal structure of tramadol hydrochloride, C16H26NO2Cl. *Powder Diffraction* **2015**, *30*, 242-249, https://doi.org/10.1017/S088571561500041X.
- 32. Siddaraju, B.P.; Jasinski, J.P.; Golen, J.A.; Yathirajan, H.S.; Raju, C.R. Tramadol hydro-chloride-benzoic acid (1/1). Acta Crystallogr Sect E Struct Rep Online **2011**, 67, o2351-o2351, https://doi.org/10.1107/S1600536811032181.
- 33. Bag, P.P.; Reddy, C.M. Tramadol Hydrochloride and its Acetonitrile Solvate: Crystal Structure Analysis and Thermal Studies. *Proceedings of the National Academy of Sciences, India Section A: Physical Sciences* **2014**, 84, 235-242, https://doi.org/10.1007/s40010-013-0118-0.
- 34. Nielsen, A.B.; Holder, A.J. Gauss View 5.0, User's Reference, GAUSSIAN Inc., Pittsburgh, PA, 2008.
- 35. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.A.; Peralta, J.E.; Ogliaro, F.; Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, K.N.; Staroverov, V.N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J.M.; Klene, M.; Knox, J.E.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Dapprich, S.; Daniels, A.D.; Farkas, O.; Foresman, J.B.; Ortiz, J.; Cioslowski, J.; Fox, D.J. Gaussian, Inc., Wallingford CT, **2009**.
- 36. Miertus, S.; Scrocco, E.; Tomasi, J. Electrostatic interaction of a solute with a continuum. *Chem. Phys.* **1981**, 55, 117–129, https://doi.org/10.1016/0301-0104(81)85090-2.
- 37. Tomasi, J.; Persico, J. Molecular Interactions in Solution: An Overview of Methods Based on Continous Distributions of the Solvent. *Chem. Rev.* **1994**, *94*, 2027-2094, https://doi.org/10.1021/cr00031a013.
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. 2009, B113, 6378-6396, https://doi.org/10.1021/jp810292n.
- Keresztury, G.; Holly, S.; Besenyei, G.; Varga, J.; Wang, A.; Durig, J.R. Vibrational spectra of monothiocarbamates-II. IR and Raman spectra, vibrational assignment, conformational analysis and ab initio calculations of S-methyl-N,N-dimethylthiocarbamate. *Spectrochimica Acta Part A: Molecular Spectroscopy* 1993, 49, 2007-2026, https://doi.org/10.1016/S0584-8539(09)91012-1.
- Michalska, D.; Wysokiński, R. The prediction of Raman spectra of platinum(II) anticancer drugs by density functional theory. *Chemical Physics Letters* 2005, 403, 211-217, https://doi.org/10.1016/j.cplett.2004.12.096.
- 41. Glendening, E.; Badenhoop, J.K.; Reed, A.D.; Carpenter, J.E.; Weinhold, F. NBO 3.1; *Theoretical Chemistry Institute*. University of Wisconsin; Madison, WI, **1996**.
- 42. Bader, R.F.W. Atoms in Molecules, A Quantum Theory. Oxford University Press, Oxford, 1990.
- Biegler-Köning, F.; Schönbohm, J.; Bayles, D. AIM2000; A Program to Analyze and Visualize Atoms in Molecules. J. Comput. Chem. 2001, 22, http://dx.doi.org/10.1002/1096-987X(20010415)22:5%3C545::AID-JCC1027%3E3.0.CO;2-Y.
- 44. Besler, B.H.; Merz, Jr. K.M.; Kollman, P.A. Atomic charges derived from semiempirical methods. *J. Comp. Chem.* **1990**, *11*, 431-439, https://doi.org/10.1002/jcc.540110404.
- 45. Ugliengo, P. MOLDRAW Program. University of Torino, Dipartimento Chimica IFM, Torino, Italy, 1998.
- 46. Parr, R.G.; Pearson, R.G. Absolute hardness: companion parameter to absolute electronegativity. *Journal of the American Chemical Society* **1983**, *105*, 7512-7516, https://doi.org/10.1021/ja00364a005.
- 47. Ditchfield, R. Self-consistent perturbation theory of diamagnetism. *Molecular Physics* **1974**, *27*, 789-807, https://doi.org/10.1080/00268977400100711.
- 48. Experimental available ATR and Raman spectra of topiramate from: https://spectrabase.com/spectrum/.
- 49. Minteguiaga, M.; Dellacassa, E.; Iramain, M.A.; Catalán, C.A.N.; Brandán, S.A. Synthesis, spectroscopic characterization and structural study of 2-isopropenyl-3-methylphenol, carquejiphenol, a carquejol derivative with potential medicinal use. *Journal of Molecular Structure* **2018**, *1165*, 332-343, https://doi.org/10.1016/j.molstruc.2018.04.001.
- 50. Minteguiaga, M.; Dellacassa, E.; Iramain, M.A.; Catalán, C.A.N.; Brandán, S.A. FT-IR, FT-Raman, UV– Vis, NMR and structural studies of carquejyl acetate, a distinctive component of the essential oil from Baccharis trimera (less.) DC. (Asteraceae). *Journal of Molecular Structure* **2019**, *1177*, 499-510, https://doi.org/10.1016/j.molstruc.2018.10.010.