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Abstract: A simple and efficient catalytic synthesis of new 1H-pyrazole-1-carbothioamide derivatives 

through a one-pot reaction of hydrazine hydrate, arylidene malononitrile and isothiocyanates in the 

presence of HAp/ZnCl2 nano-flakes at 60-70°C has been described. The protocol's main advantages 

include high yields of products, a wide range of substrates, simple procedure, and short reaction time. 

Molecular docking studies of the designed compounds were accomplished as COX-2 inhibitors and 

showed that compounds 3d, 3e, 3h, and 3n give promising results compared with celecoxib as a 

reference drug. 
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1. Introduction 

In recent decades, inflammation treatment is considered one of the great challenges and 

has received significant attention [1, 2]. There are two ways for this, the first is through the use 

of steroidal anti-inflammatory agents, but they have serious side effects and need to withdraw 

gradually from the human body [3]. The second one uses non-steroidal anti-inflammatory drugs 

that block pro-inflammatory prostaglandins' production by inhibiting cyclooxygenase (COX), 

but has side effects like gastritis, ulcer, bleeding and renal impairment [4-6]. The study of the 

cyclooxygenase enzyme (COX) and its isozymes was a breakthrough in knowing the 

inflammation process [7]. At least two isoforms of COX are known, COX-1 and COX-2. Since 

COX-2 is considered responsible for the formation of inflammatory prostaglandins [8], 

selective COX-2 inhibitors are among the most commonly used drugs. However, many have 

undesirable side effects [9]. So the search for novel selective COX-2 inhibitors is urgently 

required. On the other hand, pyrazole derivatives are well established as an important class of 

heterocyclic compounds that have significant biological activities [10-12]. They are widely 

employed as potent anti-inflammatory agents and, in many cases, have good selectivity for 

COX-2 inhibition [13-15]. Some noteworthy examples of marketed selective COX-2 inhibitor 

drugs containing pyrazole as a central core are shown in Figure 1. Numerous catalytic syntheses 

of N-substituted pyrazole derivatives have been presented over the last decade. However, some 

often suffer from high coast, long reaction time, low availability, the narrow application scope 

of substrates, and drastic reaction conditions [16-21]. To the best of our knowledge, there have 
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been rare methods for the synthesis of 1H-pyrazole-1-carbothioamide derivatives. We have 

recently published the synthesis of hydroxyapatite/ZnCl2 nano-flakes and used them as a highly 

effective, cheap, reusable, and stable solid catalyst for the synthesis of 2-aryl benzothiazoles 

[22]. As part of our ongoing research on the development of organic catalytic synthesis [23-

26], we have described a simple and efficient one-pot procedure for synthesizing new 1H-

pyrazole-1-carbothioamide derivatives using HAp/ZnCl2 nano-flakes and study their biological 

importance as COX-2 inhibitors. 

 
Figure 1. Chemical structure of some pyrazole-containing anti-inflammatory drugs 

2. Materials and Methods 

 Melting points were determined on an electrothermal Gallenkamp apparatus (Germany) 

and are uncorrected. The IR spectra were measured on a Mattson 5000 FTIR Spectrometer 

(USA) in potassium bromide discs. The 1H-NMR and 13C-NMR spectra were measured on a 

Bruker Avance III spectrometer (Germany) at 400 and 100 MHz. The mass spectra were 

recorded on Kratos MS (Kratos Analytical Instrument, Ramsey, NJ) apparatus (USA) and the 

ionizing voltage was 70 eV. Elemental analyses have been achieved by the Micro-analytical 

unit of the Faculty of Science, Cairo University, Egypt. All reactions in the present 

consideration have been followed by TLC (silica gel, aluminum sheets 60 F254, Merck). 

General procedure for one-pot catalytic synthesis of new 1H-pyrazole-1-

carbothioamide derivatives 3a-n: A mixture of hydrazine hydrate (1 mmol), arylidene 

malononitrile (1 mmol), isothiocyanates (1 mmol), and a catalytic amount of HAp/ZnCl2 (10 

wt%) was stirred at 60-70°C for an appropriate time (Table 1). After completing the reaction 

(monitored by TLC), the pure organic products were extracted by chloroform and recrystallized 

from ethanol. 

5-Amino-4-cyano-N-cyclohexyl-3-phenyl-1H-pyrazole-1-carbothioamide (3a): brown 

crystals; IR (KBr, cm-1) νmax: 3344, 3290 (NH2), 3150 (NH), 2928, 2853 (C-H, aliphatic), 2211 

(CN), 1631 (C=N), 1529 (C=C), 1159 (C=S); 1H-NMR (DMSO) δ (ppm): 11.45 (s, 1H, NH), 

8.08 (s, 2H, NH2), 7.95-7.35 (m, 5H, Ar-H), 4.44-1.23 (m, 11H, cyclohexyl-H); 13C-NMR 

(DMSO) δ (ppm): 173.85 (C=S), 169.73, 160.12, 133.28, 129.50, 128.71, 127.15, 114.00 (CN), 

111.77 (Ar-C), 57.18, 32.51, 26.88, 26.66 (cyclohexyl-C); MS (m/z, %): 325 (M+, 67). Anal. 

Calcd for C17H19N5S (325.43): C, 62.74; H, 5.89; N, 21.52; S, 9.85%. Found: C, 62.70; H, 5.82; 

N, 21.47; S, 9.79%. 

5-Amino-4-cyano-N-cyclohexyl-3-(4-fluorophenyl)-1H-pyrazole-1-carbothioamide 

(3b): brown crystals; IR (KBr, cm-1) νmax: 3352, 3299 (NH2), 3151 (NH), 2972, 2854 (C-H, 

aliphatic), 2213 (CN), 1627 (C=N), 1534 (C=C), 1170 (C=S); 1H-NMR (DMSO) δ (ppm): 

11.49 (s, 1H, NH), 8.06 (s, 2H, NH2), 7.96 (d, 2H, J = 8 Hz, Ar-H), 7.26 (d, 2H, J = 8 Hz, Ar-

H), 4.46-1.12 (m, 11H, cyclohexyl-H); 13C-NMR (DMSO) δ (ppm): 176.14 (C=S), 165.63, 

160.95, 141.44, 131.22, 129.96, 116.66, 116.44 (CN), 116.05 (Ar-C), 51.87, 32.80, 25.63, 
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25.17 (cyclohexyl-C); MS (m/z, %): 343 (M+, 81). Anal. Calcd for C17H18FN5S (343.42): C, 

59.46; H, 5.28; N, 20.39; S, 9.34%. Found: C, 59.39; H, 5.18; N, 20.31; S, 9.28%. 

5-Amino-3-(3-chlorophenyl)-4-cyano-N-cyclohexyl-1H-pyrazole-1-carbothioamide 

(3c): brown crystals; IR (KBr, cm-1) νmax: 3366, 3290 (NH2), 3148 (NH), 2927, 2852 (C-H, 

aliphatic), 2209 (CN), 1625 (C=N), 1533 (C=C), 1156 (C=S); 1H-NMR (DMSO) δ (ppm): 

11.49 (s, 1H, NH), 8.70-7.43 (m, 4H, Ar-H), 8.01 (s, 2H, NH2), 4.44-1.23 (m, 11H, cyclohexyl-

H); 13C-NMR (DMSO) δ (ppm): 176.00 (C=S), 161.14, 139.28, 136.41, 136.24, 134.19, 

133.83, 128.34, 127.28, 114.77 (CN), 114.10 (Ar-C), 52.98, 31.41, 25.18, 24.87 (cyclohexyl-

C); MS (m/z, %): 361 (M++2, 27). Anal. Calcd for C17H18ClN5S (359.88): C, 56.74; H, 5.04; 

N, 19.46; S, 8.91%. Found: C, 56.67; H, 4.99; N, 19.39; S, 8.85%. 

5-Amino-4-cyano-N-cyclohexyl-3-(p-tolyl)-1H-pyrazole-1-carbothioamide (3d): 

brown crystals; IR (KBr, cm-1) νmax: 3353, 3297 (NH2), 3149 (NH), 2928, 2853 (C-H, 

aliphatic), 2210 (CN), 1622 (C=N), 1532 (C=C), 1176 (C=S); 1H-NMR (DMSO) δ (ppm): 

11.29 (s, 1H, NH), 7.99 (s, 2H, NH2), 7.05 (d, 2H, J = 8 Hz, Ar-H), 6.97 (d, 2H, J =8 Hz, Ar-

H), 4.43-1.21 (m, 11H, cyclohexyl-H), 2.40 (s, 3H, CH3); 13C-NMR (DMSO) δ (ppm): 173.84 

(C=S), 168.73, 160.41, 130.12, 129.93, 128.00, 125.73, 116.04 (CN), 111.14 (Ar-C), 54.96, 

32.51, 26.87, 26.41 (cyclohexyl-C), 21.87 (CH3); MS (m/z, %): 339 (M+, 48). Anal. Calcd for 

C18H21N5S (339.46): C, 63.69; H, 6.24; N, 20.63; S, 9.44%. Found: C, 63.60; H, 6.19; N, 20.57; 

S, 9.38%. 

5-Amino-4-cyano-N-ethyl-3-phenyl-1H-pyrazole-1-carbothioamide (3e): brown 

crystals; IR (KBr, cm-1) νmax: 3364, 3310 (NH2), 3188 (NH), 2973, 2868 (C-H, aliphatic), 2215 

(CN), 1623 (C=N), 1542 (C=C), 1156 (C=S); 1H-NMR (DMSO) δ (ppm): 11.43 (s, 1H, NH), 

8.56-7.38 (m, 5H, Ar-H), 8.06 (s, 2H, NH2), 3.51 (q, 2H, CH2), 1.18 (t, 3H, CH3); 13C-NMR 

(DMSO) δ (ppm): 177.19 (C=S), 142.25, 134.70, 130.21, 129.10, 128.18, 127.68, 118.22 (CN), 

111.83 (Ar-C), 39.76 (CH2), 15.35 (CH3); MS (m/z, %): 271 (M+, 45). Anal. Calcd for 

C13H13N5S (271.34): C, 57.54; H, 4.83; N, 25.81; S, 11.82%. Found: C, 57.49; H, 4.77; N, 

25.76; S, 11.76%. 

5-Amino-4-cyano-N-ethyl-3-(4-fluorophenyl)-1H-pyrazole-1-carbothioamide (3f): 

brown crystals; IR (KBr, cm-1) νmax: 3363, 3306 (NH2), 3193 (NH), 2975, 2875 (C-H, 

aliphatic), 2214 (CN), 1633 (C=N), 1547 (C=C), 1147 (C=S); 1H-NMR (DMSO) δ (ppm): 

11.42 (s, 1H, NH), 8.04 (s, 2H, NH2), 7.97 (d, 2H, J =8 Hz, Ar-H), 7.28 (d, 2H, J = 8 Hz, Ar-

H), 3.54 (q, 2H, CH2), 1.17 (t, 3H, CH3); 13C-NMR (DMSO) δ (ppm): 177.17 (C=S), 164.65, 

162.19, 141.07, 131.35, 129.90, 116.64, 116.24 (CN), 116.03 (Ar-C), 39.47 (CH2), 15.34 

(CH3); MS (m/z, %): 289 (M+, 54). Anal. Calcd for C13H12FN5S (289.33): C, 53.97; H, 4.18; 

N, 24.21; S, 11.08%. Found: C, 53.87; H, 4.11; N, 24.18, S, 11.00%. 

5-Amino-3-(3-chlorophenyl)-4-cyano-N-ethyl-1H-pyrazole-1-carbothioamide (3g): 

brown crystals; IR (KBr, cm-1) νmax: 3346, 3304 (NH2), 3185 (NH), 2994, 2885 (C-H, 

aliphatic), 2211 (CN), 1634 (C=N), 1567 (C=C), 1141 (C=S); 1H-NMR (DMSO) δ (ppm): 

11.51 (s, 1H, NH), 8.52-7.51 (m, 4H, Ar-H), 8.03 (s, 2H, NH2), 3.50 (q, 2H, CH2), 1.18 (t, 3H, 

CH3); 13C-NMR (DMSO) δ (ppm): 175.18 (C=S), 166.65, 160.40, 134.18, 134.14, 129.22, 

129.13, 128.20, 125.11, 115.69 (CN), 112.81 (Ar-C), 39.06 (CH2), 16.34 (CH3); MS (m/z, %): 

307 (M++2, 21). Anal. Calcd for C13H12ClN5S (305.78): C, 51.06; H, 3.96; N, 22.90; S, 10.48%. 

Found: C, 51.00; H, 3.89; N, 22.83; S, 10.39%. 

5-Amino-4-cyano-N-ethyl-3-(p-tolyl)-1H-pyrazole-1-carbothioamide (3h): brown 

crystals; IR (KBr, cm-1) νmax: 3354, 3294 (NH2), 3153 (NH), 2991, 2936 (C-H, aliphatic), 2212 

(CN), 1631 (C=N), 1548 (C=C), 1159 (C=S); 1H-NMR (DMSO) δ (ppm): 11.31 (s, 1H, NH), 
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8.00 (s, 2H, NH2), 7.76 (d, 2H, J = 8 Hz, Ar-H), 6.99 (d, 2H, J = 8 Hz, Ar-H), 3.63 (q, 2H, 

CH2), 2.51 (s, 3H, CH3), 1.17 (t, 3H, CH3); 13C-NMR (DMSO) δ (ppm): 177.68 (C=S), 166.15, 

159.08, 131.70, 129.14, 128.80, 125.02, 116.89 (CN), 113.01 (Ar-C), 38.96 (CH2), 21.20 

(CH3), 15.34 (CH3); MS (m/z, %): 285 (M+, 59). Anal. Calcd for C14H15N5S (285.37): C, 58.93; 

H, 5.30; N, 24.54; S, 11.23%. Found: C, 58.85; H, 5.22; N, 24.51; S, 11.17%. 

5-Amino-4-cyano-N-methyl-3-phenyl-1H-pyrazole-1-carbothioamide (3i): yellow 

crystals; IR (KBr, cm-1) νmax: 3336, 3274 (NH2), 3151 (NH), 2991 (C-H, aliphatic), 2211 (CN), 

1620 (C=N), 1549 (C=C), 1177 (C=S); 1H-NMR (DMSO) δ (ppm): 11.49 (s, 1H, NH), 8.52-

7.52 (m, 5H, Ar-H), 8.05 (s, 2H, NH2), 2.76 (s, 3H, CH3); 13C-NMR (DMSO) δ (ppm): 178.23 

(C=S), 142.14, 134.75, 130.20, 129.11, 128.94, 127.65, 115.59 (CN), 101.91 (Ar-C), 31.31 

(CH3); MS (m/z, %): 257 (M+, 33). Anal. Calcd for C12H11N5S (257.32): C, 56.01; H, 4.31; N, 

27.22; S, 12.46%. Found: C, 56.08; H, 4.27; N, 27.12; S, 12.40%. 

5-Amino-4-cyano-3-(4-fluorophenyl)-N-methyl-1H-pyrazole-1-carbothioamide (3j): 

brown crystals; IR (KBr, cm-1) νmax: 3288, 3235 (NH2), 3150 (NH), 2927 (C-H, aliphatic), 2210 

(CN), 1631 (C=N), 1559 (C=C), 1171 (C=S); 1H-NMR (DMSO) δ (ppm): 11.51 (s, 1H, NH), 

8.04 (s, 2H, NH2), 7.96 (d, 2H, J = 8 Hz, Ar-H), 7.29 (d, 2H, J = 8 Hz, Ar-H), 2.89 (s, 3H, 

CH3); 13C-NMR (DMSO) δ (ppm): 178.19 (C=S), 165.63, 160.96, 140.96, 130.88, 127.32, 

116.67, 115.98 (CN), 115.76 (Ar-C), 31.29 (CH3); MS (m/z, %): 275 (M+, 61). Anal. Calcd for 

C12H10FN5S (275.31): C, 52.35; H, 3.66; N, 25.44; S, 11.65%. Found: C, 52.30; H, 3.58; N, 

25.39; S, 11.58%. 

5-Amino-3-(3-chlorophenyl)-4-cyano-N-methyl-1H-pyrazole-1-carbothioamide (3k): 

yellow crystals; IR (KBr, cm-1) νmax: 3344, 3289 (NH2), 3146 (NH), 2929 (C-H, aliphatic), 

2204 (CN), 1624 (C=N), 1563 (C=C), 1164 (C=S); 1H-NMR (DMSO) δ (ppm): 11.53 (s, 1H, 

NH), 8.43-7.44 (m, 4H, Ar-H), 8.04 (s, 2H, NH2), 2.80 (s, 3H, CH3); 13C-NMR (DMSO) δ 

(ppm): 178.28 (C=S), 161.13, 140.45, 136.54, 136.25, 134.22, 134.19, 131.66, 129.79, 124.77 

(CN), 124.12 (Ar-C), 31.34 (CH3); MS (m/z, %): 293 (M++2, 16). Anal. Calcd for C12H10ClN5S 

(291.76): C, 49.40; H, 3.45; N, 24.00; S, 10.99%. Found: C, 49.32; H, 3.38; N, 23.94; S, 

10.90%. 

5-Amino-4-cyano-N-methyl-3-(p-tolyl)-1H-pyrazole-1-carbothioamide (3l): brown 

crystals; IR (KBr, cm-1) νmax: 3409, 3320 (NH2), 3158 (NH), 2968 (C-H, aliphatic), 2208 (CN), 

1632 (C=N), 1552 (C=C), 1167 (C=S); 1H-NMR (DMSO) δ (ppm): 11.37 (s, 1H, NH), 8.00 (s, 

2H, NH2), 7.76 (d, 2H, J = 8 Hz, Ar-H), 6.99 (d, 2H, J = 8 Hz, Ar-H), 3.01 (s, 3H, CH3), 2.51 

(s, 3H, CH3); 13C-NMR (DMSO) δ (ppm): 176.98 (C=S), 163.93, 148.33, 131.18, 129.32, 

128.02, 125.55, 114.08 (CN), 109.19 (Ar-C), 33.34 (CH3), 21.54 (CH3); MS (m/z, %): 271 (M+, 

37). Anal. Calcd for C13H13N5S (271.34): C, 57.54; H, 4.83; N, 25.81; S, 11.82%. Found: C, 

57.49; H, 4.75; N, 25.75; S, 11.77%. 

5-Amino-4-cyano-N-(4-methoxybenzyl)-3-phenyl-1H-pyrazole-1-carbothioamide 

(3m): brown crystals; IR (KBr, cm-1) νmax: 3344, 3306 (NH2), 3157 (NH), 2985 (C-H, 

aliphatic), 2211 (CN), 1620 (C=N), 1583 (C=C), 1180 (C=S); 1H-NMR (DMSO) δ (ppm): 

11.78 (s, 1H, NH), 8.16 (s, 2H, NH2), 7.92-6.93 (m, 9H Ar-H), 3.40 (s, 3H, OCH3), 2.94 (s, 

2H, CH2); 13C-NMR (DMSO) δ (ppm): 176.86 (C=S), 162.03, 157.44, 143.13, 134.53, 132.40, 

131.90, 130.46, 129.43, 128.05, 125.61, 113.73 (CN), 111.81 (Ar-C), 55.70 (OCH3), 40.28 

(CH2); MS (m/z, %): 363 (M+, 43). Anal. Calcd for C19H17N5OS (363.44): C, 62.79; H, 4.71; 

N, 19.27; S, 8.82%. Found: C, 62.70; H, 4.66; N, 19.19; S, 8.75%. 

5-Amino-4-cyano-3-(4-fluorophenyl)-N-(4-methoxybenzyl)-1H-pyrazole-1-

carbothioamide (3n): brown crystals; IR (KBr, cm-1) νmax: 3354, 3307 (NH2), 3156 (NH), 2924 
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(C-H, aliphatic), 2210 (CN), 1631 (C=N), 1580 (C=C), 1176 (C=S); 1H-NMR (DMSO) δ 

(ppm): 11.48 (s, 1H, NH), 8.01 (s, 2H, NH2), 7.50 (d, 2H, J = 8 Hz, Ar-H), 7.38 (d, 2H, J = 8 

Hz, Ar-H), 7.33-6.32 (m, 4H, Ar-H), 3.34 (s, 3H, OCH3), 2.89 (s, 2H, CH2); 13C-NMR (DMSO) 

δ (ppm): 179.91 (C=S), 160.67, 158.64, 148.66, 138.03, 132.60, 130.76, 130.06, 126.03, 

116.95, 116.01 (CN), 114.83, 114.11 (Ar-C), 52.93 (OCH3), 39.50 (CH2); MS (m/z, %): 381 

(M+, 29). Anal. Calcd for C19H16FN5OS (381.43): C, 59.83; H, 4.23; N, 18.36; S, 8.41%. 

Found: C, 59.75; H, 4.17; N, 18.30; S, 8.35%. 

2.1. Molecular docking part.  

The standard docking protocol using MOE 2015.10 software was used to study the 

interaction between the designed compounds 3a-n and TPP, the binding site of COX-2 enzyme 

(pdb code:3LN1), compared with celecoxib as a reference drug. 

3. Results and Discussion 

3.1. Chemistry. 

Recently, we have established the interaction between ZnCl2 nano-flakes and 

nanocrystalline hydroxyapatite (HAp) using both Fourier-transform infrared spectroscopy 

(FTIR) and X-ray diffraction (XRD). FTIR spectral data revealed a physical interaction 

between them without any evidence of chemical interaction, while XRD revealed sharp peaks 

attributed to HAp in their position without any indication for the presence of secondary phases. 

The idea of ZnCl2 nano-flakes adsorbed on the surface of the nano-HAp was also supported by 

scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) [22]. All presented 

data show a homogeneous distribution of the catalyst.  

 

 

 

Figure 2. TEM of hydroxyapatite loaded with ZnCl2 

In the present study, additional support was included, in particular, the transmission 

electron microscopy (TEM) supported by electron diffraction, which shows a variation of the 

geometrical shape of HAp (nano-rods) with ZnCl2, adsorbed on the surface, to give a flake-like 

structure (Figure 2). The target compounds, 5-amino-3-aryl-4-cyano-N-cyclohexyl-1H-

pyrazole-1-carbothioamide derivatives 3a-d, were synthesized via a one-pot multicomponent 

reaction of hydrazine hydrate, arylidene malononitrile, cyclohexyl isothiocyanate, and 

HAp/ZnCl2 as a catalyst. The reaction conditions were optimized, and excellent results were 

obtained without solvent at 60-70°C, with high yields of the products (80-90%) in shorter 

reaction times (30-40 min). The structure of products 3a-d was confirmed by elemental 

analyses and spectral studies. As exemplified for product 3a as follows: the IR spectrum 

showed absorption bands due to NH2, NH, CN, and C=S groups at 3344-3290, 3150, 2211, and 

1159 cm-1, respectively. In the 1H NMR spectrum, we observed aromatic signals at δ 7.95-7.35 

ppm and two broad singlet signals at δ 11.45 and 8.08 ppm due to NH and NH2 protons (D2O 
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exchangeable), respectively. Besides, the cyclohexyl protons presented a set of signals centered 

at δ 4.44-1.23 ppm. The cyano and C=S groups appeared at δ 114.00 and 173.85 ppm, 

respectively, in the 13C NMR spectrum. Finally, the mass spectrum supported the structural 

assignment m/z 325 [M]+. Encouraged by the above results and under the same optimized 

conditions, we have successfully applied this new methodology to synthesize new 1H-

pyrazole-1-carbothioamide derivatives 3e-n using various substituted isothiocyanate and 

arylidene malononitrile. The reaction proceeds very smoothly and gives yields up to 95% in 

short reaction times without the formation of any byproducts, as monitored by TLC (Scheme 

1 and Table 1). 

 
Scheme 1. Synthesis of 1H-pyrazole-1-carbothioamide derivatives 3a-n. 

A plausible mechanism for the formation of 1H-pyrazole-1-carbothioamide derivatives 

3a-n is proposed in Scheme 2. Initially, the nucleophilic attack of hydrazine hydrate to 

isothiocyanates gives the thiosemicarbazides I. Then, the nucleophilic addition of the amino 

group in I to the activated double bond in arylidene malononitrile II results in acyclic 

intermediates III, which subsequently undergo intramolecular cyclization, tautomerization and 

aerial oxidation to afford the target compounds. 

 
Scheme 2. A proposed reaction mechanism for the formation of 1H-pyrazole-1-carbothioamide derivatives 3a-

n. 
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Table 1. Synthesis of 1H-pyrazole-1-carbothioamide derivatives 3a-n using HAp/ZnCl2 nano-flakes at 60-70°C 

without solvent. 

Entry Product Ar R 
Time 

(min) 
Mp (oC) 

Yield 

(%) 

1 3a C6H5 C6H11 40 138 85 

2 3b 4-FC6H4 C6H11 30 108 90 

3 3c 3-ClC6H4 C6H11 35 120 88 

4 3d 4-CH3C6H4 C6H11 40 126 80 

5 3e C6H5 C2H5 30 128 82 

6 3f 4-FC6H4 C2H5 40 175 90 

7 3g 3-ClC6H4 C2H5 50 100 92 

8 3h 4- CH3C6H4 C2H5 35 150 80 

9 3i C6H5 CH3 30 130 80 

10 3j 4-FC6H4 CH3 40 140 95 

11 3k 3-ClC6H4 CH3 35 118 88 

12 3l 4- CH3C6H4 CH3 50 158 76 

13 3m C6H5 4-(CH3O)C6H4CH2 50 150 78 

14 3n 4-FC6H4 4-(CH3O)C6H4CH2 40 148 79 

3.2. Molecular docking study. 

The binding site of the COX-2 enzyme has two additional pockets, which are absent in 

the COX-1 enzyme [27]. The two additional binding pockets are believed to be responsible for 

the selectivity of COX-2 inhibitors. The molecular docking validation [28] explains that 

compounds 3d, 3e, 3h, and 3n show the highest selectivity when dock into the binding site of 

the COX-2 enzyme compared with celecoxib as a reference drug. Figure 3 explains the docking 

validation by calculating the energy score (E-score), which reflects the ability of drug-receptor 

interaction and calculating the root mean square deviation (RMSD), reflecting the stereo 

suitability of drug with the selective receptor pocket, low values refer to better results. The 

active site analysis of the COX-2 protein receptor was performed from a database similar to 

amino acid residues using the MOE2015.10 software, Leu338, Gln178, Gly512, Ala502, 

Ala513, Leu370, Ser516, Tyr371, Vel102, Phe367, Trp373, Arg106, Leu345, Leu517, Gly340, 

Met99, Ile503, Tir341, Met503, Val509, Arg499, Phe504, Val335, His75, and Ser339.  

3a 3b 3c 3d 3e 3f 3g 3h 3i 3j 3k 3l 3m 3n --
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Figure 3. E-score and rmsd values for the prepared compounds compared with celecoxib. 

The 2D pocket in the COX-2 receptor complex with celecoxib explains that the 

interaction between them is potent with good E-score values through the formation of hydrogen 
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bonds, but the "rmsd" value is very high, and this decreases the suitability of this drug towards 

COX-2. The four prepared compounds (3d, 3e, 3h, and 3n) exhibit more potent interaction with 

the COX-2 receptor than the reference drug with very good E-score and low "rmsd" values, 

which reflects the ability of our prepared compounds to interact with the active site of the COX-

2 receptor. The computational docking study was explained by 2D and 3D interaction for the 

four prepared compounds, as exemplified for product 3h compared with the reference drug 

(Figures 4 and 5). 

 

Celecoxib 

 

compound 3h 

Figure 4. The 2D interaction of the COX-2 receptor with celecoxib and compound 3h. 

 
Figure 5. The 3D interaction of the COX-2 receptor with compound 3h with the two-hydrogen bond length. 

The concept of pharmacophore has been widely applied in the rational design of new 

drugs. A pharmacophore is known as a set of steric and electronic characteristics needful to 

ensure optimal supramolecular interactions with a particular biological target and prevent or 

trigger its biological activity [29]. The most potent compounds (3d, 3e, 3h, and 3n) were 

selected and examined to build a pharmacophore for potential COX-2 inhibitors and showed 

promising results. As exemplified for product 3n (Figure 6), generated a pharmacophore with 

H-bond acceptor (Acc, Acc2), H-bond donor (Don), aromatic (Aro), and hydrophobic (hyd) 

centers. 
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Figure 6. 3D pharmacophore structure of 3n simulated to the active site of COX-2. 

4. Conclusions 

 We have described an efficient and straightforward catalytic synthesis of new 1H-

pyrazole-1-carbothioamide derivatives through a one-pot reaction of hydrazine hydrate, 

arylidene malononitrile, and isothiocyanates in the presence of HAp/ZnCl2 nano-flakes at 60-

70 οC. The whole reaction process has the advantages of mild condition, simple operation, high 

yield, short reaction time, and at the same time, HAp/ZnCl2 nano-flakes demonstrated an 

excellent tolerance in the synthesis of target compounds. It is suitable for the industrial 

production of high efficient green synthesis technology. The molecular docking study as COX-

2 inhibitors explained that compounds 3d, 3e, 3h, and 3n show promising results compared 

with celecoxib as a reference drug. 
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