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Abstract: In silico approach, the quantum chemical computations and molecular docking simulations 

have been used to investigate the formation of cubane assisted cytidine (B-Cyt) derivative for examining 

its interactions with the COVID-19 main protease. The obtained results indicated that the new B-Cyt 

derivative could be stabilized without any imaginary frequency. Its orbital orbital-based electronic 

properties indicated that the structure could have a better interaction with the target than the singular 

Cyt ligand. The docking process results approved the trend, in which the value of binding energy was 

very much favorable regarding the singular models, and the number of interaction amino acids was 

increased. The idea of forming a Cyt derivative with efficient activity against COVID-19 main protease 

was approved here, which is very much important for protecting the patients with cancer or HIV against 

the COVID-19 pandemic. 
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1. Introduction 

Nucleobase derivatives have been seen as pharmaceutical compounds for several years 

with good potency and efficacy against different diseases but still could be improved [1-3]. 

Cytidine (Cyt) is among such derivatives with initial activity against cancer by inhibiting 

overexpressed enzymes [4]. In addition to the original Cyt, several other functionalized models 

have been developed to explore further features of Cyt for other types of pharmacotherapy        

[5-8]. Cyt itself is a pharmaceutical compound for cancer treatments, and earlier works have 

indicated that Cyt-related compounds could also work against HIV [9-12]. Since the Cyt 

compounds have been introduced as enzyme inhibitors, it is an important task to examine their 

activity against newly arisen ones such as the main protease of corona virus disease 19 

(COVID-19) [13-15]. By the end of the year 2019, the COVID-19 pandemic has widely grown 

worldwide without and major therapeutic protocol yet, unfortunately. Therefore, it is an 

emergency case to innovate an efficient therapeutic protocol by drug design methodologies 

[16-18]. Several works have been dedicated to the topic in the last eight months, but further 

works are still required for the purpose [19-22]. The formation of a bi-cytidine (B-Cyt) 

compound with possible effects on the COVID-19 main protease was examined within this 

work. Cubane (Cub) trimer has been used as a molecular linker to make the possible formation 
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of B-Cyt compound. Cub is a cubic structure of eight carbon atoms with its characteristic 

properties as a small stable hydrocarbon structure [23]. Moreover, several other functionalized 

models of Cub have been developed [24]. Chains of Cub have been seen as stable structures, 

in which Cub trimers have been seen as good connecting linkers for electronic devices [25]. 

Therefore, the idea of B-Cyt formation has been developed using the Cub trimer liker to 

combine two Cyt molecules. The stabilities of molecular structures have been examined using 

the quantum chemical computations (Table 1 and Figure 1), and their corresponding effects on 

COVID-19 have been examined by molecular docking simulations (Table 2 and Figure 2) as 

advantages of working in silico [26-32].  
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Figure 1. Molecular representations and orbitals. 

Table 1. Molecular properties*. 

Property Cyt Cyt-Me Cub B-Cyt 

Formula C9H13N3O5 C10H15N3O5 C24H20 C44H46N6O10 

HOMO -6.32 -6.22 -6.49 -6.19 

LUMO -1.14 -1.11 -0.04 -1.08 

MV cm3/mol 186.87 168.532 249.569 502.981  

DM Debye 9.24 9.51 0.00 7.06 

*See Figure 1 for details. 

 

Table 2. Interaction properties*. 

Property Cyt Cyt-Me Cub B-Cyt 

BE eV -7.41 -7.13 -7.86 -10.26 

RMS 70.07 70.54 70.62 73.38 

AA HSD41, MET49, 

PHE140, LEU141, 

ASN142, GLY143, 

SER144, CYS145, 

HSD163, HSD164, 

MET165, GLU166, 

HSD172, GLN189 

HSD41, MET49, 

TYR54, PHE140, 

ASN142, LEU141, 

GLY143, SER144, 

CYS145, HSD163, 

HSD164, MET165, 

GLU166, ASP187, 

ARG188, GLN189 

THR24, THR25, 

THR26, LEU27, 

HSD41, MET49, 

ASN142, GLY143, 

CYS145, HSD164, 

MET165, GLU166, 

GLN189 

THR24, THR25, LEU27, 

HSD41, CYS44, THR45, 

SER46, MET49, LEU50, 

LEU141, ASN142, 

GLY143, SER144, , 

CYS145, HSD163, 

HSD164, MET165, 

GLU166, LEU167, 

PRO168, GLN189, 

THR190, ALA191, 

GLN192 

*See Figure 2 for graphical representations. 

https://doi.org/10.33263/BRIAC116.1396213967
https://biointerfaceresearch.com/


https://doi.org/10.33263/BRIAC116.1396213967  

 https://biointerfaceresearch.com/ 13964 

  

 

 
 

B-Cyt 

 
Figure 2. Representations of ligand-target interactions. 

2. Materials and Methods 

 3D models of singular molecules of Cyt and Cub have been first obtained from 

ChemSpider Structural Bank [33]. To make the B-Cyt compound's possible formation, the 

methylated form of Cyt (Cyt-Me) and Cub trimer have been modeled and used to make the B-

Cyt compound. Geometries of all molecular structures have been optimized using the 

B3LYP/6-31G* density functional theory (DFT) method implemented in the Gaussian program 

[34]. To examine the global minimization status, frequency calculations have been performed 

for the optimized structures avoiding the existence of imaginary frequencies for the structures. 

In the next step, electronic properties of molecular orbitals and electronic distribution have 

been calculated using the B3LYP/6-31+G* method for the optimized structures in addition to 

calculating their molar volumes (MV). Dipole moment (DM), the highest occupied, and the 

lowest unoccupied molecular orbitals (HOMO and LUMO) and electrostatic potentials (ESP) 

have been obtained for the investigated molecular systems to clarify their original electronic 

states. In the role of ligand, effects of such molecules were examined on COVID-19 main 

protease, in the role of a target, by performing molecular docking simulations using the 

SwissDock web server [35]. In such a process, the best ligand configuration against the target 

could be detected. The 3D file of COVID-19 main protease has been obtained from Protein 

Data Bank [36] (ID: 6LU7), and it has been assigned as the target to examine the possibility of 

ligand…target complex formation. The results of binding energy (BE) and root-mean-square 

(RMS) have been evaluated for the ligand…target complexes in addition to the interacting 

amino acids (AA). The idea of forming B-Cyt ligand with possible activity against COVID-19 

main protease has been investigated here in silico, and the obtained results were summarized 

in Tables 1 and 2 and Figures 1 and 2 to be discussed to achieve the purpose of this work.  
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3. Results and Discussion 

Within this in silico work, a new derivative of Cyt has been designed employing the 

methylated form of original Cyt and a trimer of Cub as linker (Figure 1). The B-Cyt structure 

has been optimized, and the stabilized model has been obtained, and its verification has been 

done by frequency calculations avoiding the existence of any imaginary frequencies. 

Comparing the obtained electronic results (Table 1) for the investigated models of this work 

could show that the models detect different electronic states, which is very important for 

determining their activity features. As indicated by HOMO and LUMO, the molecular orbital 

levels undergo changes, which could yield different electronic behavior for the structures. We 

expected to have a Cyt derivative with better activity for COVID-19 main protease; here, with 

the results of Figure 1, the localization of HOMO and LUMO could be seen in different parts 

of B-Cyt. This trend could mean that the new B-Cyt ligand could play an important role in 

interactions with enzymes. The HOMO part as the part of electron donor and the LUMO part 

as the part of electron acceptor is freely localized to have the best chance of interacting with 

the target. Moreover, ESP could very well approve the dual activity of B-Cyt in comparison 

with singular Cyt. In this case, the results indicated that the B-Cyt ligand could be expected to 

work better than the singular Cyt against the target. 

The results of docking processes indicated the quantitative values and qualitative 

interacting AA counterparts. Comparing the values of BE could very well approve the idea of 

forming a Cyt derivative with more efficient interaction with the target. The values of BE are 

very much better for B-Cyt compared with each of singular molecules. Since the B-Cyt volume 

is larger than each of the singular molecules, it is reasonable that the RMS should be larger 

than each of the smaller molecules. More interestingly, RMS's value for B-Cyt is slightly larger 

than each of singular molecules, meaning than B-Cyt is still a good competitor in time to reach 

the target in competition with the small molecules. The schematic results of Figure 2 indicate 

that the number of interacting AA were significantly increased in the B-Cyt regarding the 

singular Cyt ligand. More interestingly, common AA is seen in both complexes meaning that 

the B-Cyt could interact as the original Cyt site but with better efficacy against the target. The 

role of Cub is very much important, in which it helped the Cyt to have better interactions with 

the target. It is important to note that Cyt is used as an anticancer or anti-HIV for the patients, 

and they could be protected against the COVID-19 by consuming a B-Cyt. Although the drugs 

should be specific for curing diseases, a dual activity could make the pharmaceutical 

compounds more potent agents for treating such unwanted diseases like COVID-19. For such 

a current situation of unknown treatments for the COVID-19 pandemic, it is unavoidable to 

investigate new pharmaceutical compounds for this purpose. Working on already known 

compounds such as Cyt with potent activity against enzymes is also very important, as they 

could be considered lead compounds to generate such B-Cyt derivative. 

4. Conclusions 

 This in silico work has been done to investigate B-Cyt's formation as a new Cyt 

derivative to examine its interaction with COVID-19 main protease. The formation of such a 

derivative could be possible within the obtained results because of its stabilization without 

imaginary frequency by DFT methods. The obtained orbital-based electronic properties 

indicated that B-Cyt's structure could provide better sites for interactions with the target. In 

other parts, ligand-target interactions results indicated that the new ligand B-Cyt could interact 
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with the target  COVID-19 main protease very much better than the original Cyt. Better value 

of BE and a larger AA number are all the benefits of B-Cyt versus original Cyt to be consumed 

against the unwanted COVID-19 pandemic. 
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