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Abstract: Type 2 diabetes mellitus (T2DM) is characterized by insulin resistance, and it is hitherto 

incurable. Among different therapeutic modalities, glucose co-transporter (SGLT) inhibitors have 

gained prominence. In the current study, we have screened natural compounds as potential SGLT 

inhibitor and compared with conventional gliflozin drugs. We have selected human SGLT 1 and 2 

sequences modeled by homology modeling using SWISS-MODEL server, stability analysis was 

performed in silico. We used CDOCKER to dock the selected gliflozin drugs and natural compounds 

with SGLT 1 and 2. We further checked adsorption, distribution, metabolism, excretion, and toxicity 

using ADMETSAR tools and identified Sophoraflavonone G as a potential natural compound with good 

binding energy and drug-like characteristics. The molecular dynamic simulation revealed 

sophoraflavonone G binds with SGLT2 and forms a stable complex. 
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1. Introduction 

Diabetes is a metabolic disorder that affects hundreds of millions of people globally. 

Type 2 diabetes mellitus (T2DM) is commonly found among diabetic patients and it is 

characterized by reduced insulin secretion by β cells of Islets of Langerhans and insulin 

resistance [1], which results in hyperglycemia, delayed or impaired wound healing, diabetic 

retinopathy, diabetic nephropathy, diabetic neuropathy, etc., among multiple other 

complications [2]. Diabetes is an incurable disease, but its progression can be controlled. If 

unchecked, diabetes may cause stupor, coma, and even death due to multiple other 

complications. Since diabetes may happen due to multiple causes, there is no complete cure. 

Instead, drugs are designed to target different pathways or enzymes or receptors to keep the 

glucose level checked. T2DM results in major metabolic imbalance and activation of different 

inflammatory pathways [1]. A genome-wide analysis study (GWAS) identified ~400 

associated gene variants. The conventional treatment of T2DM includes a) insulin therapy 

where external insulin is administered for a therapeutic purpose [3], b) sulfonylurea used to 

stimulate pancreatic β cells to secrete insulin [4], c) α-glucosidase inhibitor, which delays 

carbohydrate absorption by small intestine [5], d) biguanide which inhibits hepatic 
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neoglucogenesis process (e.g., metformin) [6], e) Thiazolidinesdions which is a PPARγ 

activator [7], f) dopamine antagonist [8], g) dipeptidyl peptidase inhibitor [9, 10], h) sodium-

glucose co-transporter (SGLT) inhibitors [11-13]. 

Sodium-glucose co-transporters are found on the proximal convoluted tubule (PCT) of 

the nephron in the kidney [14]. The function of SGLT is the reabsorption of glucose, which 

works independently of insulin. For diabetic patients, due to SGLT activity, glucose is 

reabsorbed and transported back to the bloodstream, which results in elevated glucose in the 

bloodstream. There are six types of SGLTs are found in humans, of which SGLT 1 and 2 found 

mostly in the kidney and function as glucose transporter/absorber. Other than the kidney, 

SGLT2 is found in the liver, and SGLT1 is found in the kidney and many other organs like the 

brain, heart, intestine, trachea, testis, etc. SGLT3 is believed to act as a cellular glucose sensor 

and is found in the intestine, testis, lung, brain, etc. The function of SGLT 4, 5, and 6 is 

unknown, but they are found in different parts of the body [14]. In the kidney, SGLT 1 and 2 

ratio is 1:10. Blocking of SGLT activities with selective inhibitors resulted in a significant 

decrease in glucose reabsorption, weight loss, and reduced HbA1C [15-17]. Gliflozine is a 

group of SGLT inhibitors that are designed to block glucose reabsorption at PCT. Different 

types gliflozine drugs are synthesized, and all drugs are not approved all over the world. 

Different gliflozine drugs like Canagliflozine, Dapagliflozine, Luseogliflozine, 

Empagliflozine, Topogliflozin have a higher affinity towards SGLT2 compared to SGLT1 [12, 

15]. A post-market study shows urogenital tract infection, diabetic ketoacidosis as potential 

side effects [18, 19].  

There are various natural compounds used to treat diabetes [20, 21]. Many plant-based 

natural compound structures have been elucidated, and some of their biological functions are 

known [22]. Few of the natural compounds are known to have nephroprotective activities          

[23, 24]. Gliflozin drugs were originally designed based on the natural compound phorizin, 

obtained in the apple tree's bark [25]. Thus, screening for more plant-based natural compounds 

as SGLT2 inhibitors is continued [26, 27]. 

This study selected 10 different natural compounds proposed to have SGLT inhibition 

potential from literature and screened them using molecular docking analysis against SGLT 1 

and 2. We used SWISS-MODEL [28] to model the proteins as the structure is unavailable. We 

also analyzed binding studies of selected gliflozine drugs (Canagliflozine, Dapagliflozine, 

Luseogliflozine, Empagliflozine, Topogliflozin) through molecular docking simulation. Then 

we checked the natural compounds for adsorption, distribution, metabolism, and excretion 

properties. We identified that Sophoraflavonone G as the best compound based on combined 

docking and ADMET score. The molecular dynamic simulation study shows that the 

Sophorafalavonone G binds with SGLT2 and forms a stable complex. 

2. Materials and Methods 

2.1. Structures of active compounds from plants. 

 

The plant phytochemicals we used in our study are obtained from the literature review 

[29]. The phytochemicals we are studying are as follows: (1) formononetin, (2) kurarinone, (3) 

pterocarpin, (4) sophoraflavanone G, (5) variabilin, (6) acerogenin A, (7) acerogenin B, (8) 

acerogenin C, (9) gneyulin A, (10) gneyulin B. These phytochemicals have demonstrated anti-

diabetic activity and supported by the literature [29] and were shortlisted to study the mode of 

action of these compounds with the active site of glucose co-transporters. Detailed information 
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about the phytochemicals such as structure, IUPAC name, and the chemical formula was 

obtained from the PubChem database and mentioned in Table 1. 

 

2.2. Homology modeling.  

 

Homology modeling has been developed to build proteins from a sequence of amino 

acids to align with similar proteins with known structures (template) [30]. Denovo prediction 

technique can be used if there are no templates available, but if the sequence of amino acid is 

short for the de novo technique, a model cannot be built. To build a reliable three-dimensional 

structure of proteins, homology modeling plays a crucial role in silico methods [31]. We have 

used SWISS-MODEL (https://swissmodel.expasy.org/) to perform homology modeling of 

human SGLT1 and SGLT2. 

 

Table 1. Phytochemical properties of plants. 

S.no Compound IUPAC Name Chemical 

Formula 

1 Formononetin ‘7-hydroxy-3-(4-methoxyphenyl) chromen-4-one’  C16H12O4 

2 Kurarinone ‘(2S)-2-(2,4-[2])-7-hydroxy-5-methoxy-8-[(2R)-5-methyl-2-prop-1-en-2-

ylhex-4-enyl]-2,3-dihydrochromen-4-one’ 

C26H30O6 

3 Pterocarpin ‘(1R,12R)-16-methoxy-5,7,11,19-tetraoxapentacyclo [10.8.0.02,10.04,8.013,18] 

icosa-2,4(8),9,13(18),14,16-hexaene’ 

C17H14O5 

4 Sophoraflavanone 

G 

‘(2S)-2-(2,4-dihydroxyphenyl)-5,7-dihydroxy-8-[(2R)-5-methyl-2-prop-1-

en-2-ylhex-4-enyl]-2,3-dihydrochromen-4-one’ 

C25H28O6 

5 Variabilin ‘(5Z)-5-[(6E,10E)-13-(furan-3-yl)-2,6,10-trimethyltrideca-6,10-

dienylidene]-4-hydroxy-3-methylfuran-2-one’ 

C25H24O4 

6 Acerogenin A ‘(12R)-2-oxatricyclo [13.2.2.13,7] icosa-1(17),3,5,7(20),15,18-hexaene-

4,12-diol’ 

C19H22O3 

7 Acerogenin B ‘(10S)-2-oxatricyclo [13.2.2.13,7] icosa-1(17),3,5,7(20),15,18-hexaene-

4,10-diol’ 

C19H22O3 

8 Acerogenin C ‘4-hydroxy-2-oxatricyclo [13.2.2.13,7] icosa-1(17),3,5,7(20),15,18-hexaen-

12-one’ 

C19H20O3 

9 Gneyulin A ‘4-[(E)-2-[(2R,3R)-3-(3,5-dihydroxyphenyl)-2-[(2R,3R)-2-(2,4-

dihydroxyphenyl)-3-(3,5-dihydroxyphenyl)-6-hydroxy-2,3-dihydro-1-

benzofuran-5-yl]-4-hydroxy-2,3-dihydro-1-benzofuran-6-

yl]ethenyl]benzene-1,3-diol’ 

C42H32O12 

10 Gneyulin B ‘4-[(2R,3R)-3-(3,5-dihydroxyphenyl)-5-[(2R,3R)-3-(3,5-dihydroxyphenyl)-

4-hydroxy-6-(6-hydroxy-1-benzofuran-2-yl)-2,3-dihydro-1-benzofuran-2-

yl]-6-hydroxy-2,3-dihydro-1-benzofuran-2-yl]benzene-1,3-diol’ 

C42H32O12 

 

Homology modeling is based on 4 main steps: Identification of proteins with 

experimentally solved protein structure (Search of template from databases); Modelling for a 

protein of interest (Selection of a template); Mapping of a target sequence and the template 

structure by manual adjustment and sequence alignment method; Evaluation of the derived 

protein. 

Once the 3D-Structure of the proteins was generated, structural evaluation and 

stereochemical analysis were performed using SAVES 5.0 

(http://servicesn.mbi.ucla.edu/SAVES/). Ramachandran Plot was used to determine the 

accuracy of the structure and visualization was performed. 
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2.3. Binding Site Prediction.  

The cavities of the receptors are displayed as a set of points and a transparent sphere. If 

there is a ligand chain in the receptor-binding site cavity that is not detected, this method is 

known as Ligand Fit. It is based on user-defined binding site ligand may be minimized based 

on fixed and partial flexible receptors. 

 

2.4. Molecular Docking. 

 

The docking was carried out with DS 2017, which is a computational software analysis. There 

are several scoring functions available for evaluation. The high throughput screening is based 

on CDOCKER – which is based on aligning the ligand conformation of polar and nonpolar 

interaction sites of receptors known as hotspots [32]. The confirmation is generated using 

Catalyst. Minimization was done with CHARMm [33] since some poses may have hydrogen 

atoms close to receptors hotspots. Calculate ligand conformation, docks using conformation 

Libdock and minimize docked poses using CHARMm. 

 

2.5. ADMET-SAR.  

 

admetSAR (http://www.swissadme.ch/) plays a major role in screening new drugs, pesticides, 

different food additives and industrial chemicals [34]. It is especially useful to carry out toxicity 

analysis [23, 35, 36]. Calculation of phytochemical properties is important for filtering their 

“drug-likeness” and “lead likeness” and toxicity potential. In that situation, computer models 

establish a valid alternative to the experiments. 

 

           2.6. Molecular Dynamic Simulation. 

  

This computer simulation method aims to analyze atoms' physical movement at the 

time of binding and nonbinding macromolecule [37]. A five-step standard dynamic cascade 

protocol in discovery studio was used to study the nature of sophoraflavonone G-SGLT 2 

complex. It begins with 1000 steps of very steep descent followed by the 2000 steps of adopted 

basis minimization followed by the Newton-Raphson method. Further, 0.1 ns heating 

simulation and 2 fs time step was performed with 50 adjusted velocity frequency. This resulted 

in input sop g complex, and protein was submitted to equilibration with the same parameters 

as heating. Finally, the production step was performed at a 0.1 ns level with NVT condition. 

The spherical cutoff method was used to calculate the electrostatic energies. RMSD, RMSF 

AND protein Torsion Angles of the residues were analyzed using the analyze trajectory 

protocol. The value to calculate the structure's dynamic is mentioned as RMSD (Root Mean 

Square Deviation); it is a standard measure of the structural distance between coordinates. It 

measures the average distance between groups of atoms.  

3. Results and Discussion 

3.1. Homology modeling. 

The proteins' three-dimensional structure was carried out in the Swiss model (Figure 1 

A and B). The templates used for homology modeling of human SGLT1 and SGLT2 are mutant 

Vibrio SGLT (PDB id:2XQ2) [38]. Structure validation was done using the Molprobity 
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webserver (Table 2). We found that the ratio between the residues in the most favored region 

and additional allowed regions is similar for SGLT1 (76.3%) and SGLT2 (74.14%). The 

constructed model was energy minimized in DS 2017 using CHARMm. The protein's 

stereochemical property was carried out with Ramachandran Plot (Figure 1 C and D). 

validation of protein structure is an important step for in silico analysis. We used the 

HARMONY server (http://caps.ncbs.res.in/harmony/) to examine the structure and stability of 

the modeled protein by assigning scores to individual residues. Also, we obtained a good score 

for total propensity and substitution score (Table 3), which indicates the protein's overall 

stability. A calibration plot is used to identify folds, misfolds and margin of error. Proteins with 

the misfolded region have a significant low harmony score and fall in the straight line. The 

total propensity score and substitution score provide the smoothened score compared to reverse 

sequence with query sequence (Figure 1 E and F).  

Table 2. Comparative analysis and Ramachandran plot analysis of the proteins with Molprobity server. 

Glucose transporters SGLT 1 SGLT 2 
Residues in most favored region 351 327 
Residues in the additional allowed 

region 
460 441 

 

Table 3. Total Propensity score and Substitution score. 

Proteins No. of residues Propensity Score Substitution Score 

SGLT 1 524 2395.3999 15291.5254 

SGLT 2 489 2079.40112 13857.6582 

 

 
Figure 1. Predicted structure of A)SGLT 1, B) SGLT 2, Ramachandran plot of C) SGLT 1, D) SGLT 2, 

Validation of protein E) SGLT 1, F) SGLT 2. 
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3.2. Molecular docking. 

To identify the active biological sites of the ligand, molecular docking was performed. 

This study is performed by using CDOCKER, where CHARMm forcefield is employed for the 

ligand and the proteins [39]. The CDOCKER score is based on a novel physics-based docking 

engine (i.e., a unique set of non-bond analyses that includes favorable, unfavorable, and 

unsatisfied interaction). The CDOCKER algorithm is based on “Structure-based design”. The 

binding site of the modeled proteins is based on the template protein. The sphere's radius was 

7 for the binding site of the proteins' interaction (SGLT 1, SGLT 2) and the ligands. CHARMm 

forcefield was applied to the target and ligands to find out the lowest energy conformation 

using the SMART minimizer algorithm. The set of 15 ligands (5 drugs and 10 natural 

compounds) and the receptor proteins (SGLT 1, SGLT 2) were used for the docking. The radius 

of the binding spheres was set at SGLT 1 (X = 1.921, Y = -31.195, Z = -56.032); SGLT 2 (X 

= 3.876, Y = -37.417, Z = -57.774) were submitted to CDOCKER parameters. Ligands with 

the highest docking scores are shortlisted for pharmacophore analysis. The results show that 

among 15 ligands, only 13 were docked, and the remaining 2 ligands failed to dock in the active 

site of the protein. The ligand Sophoraflavanone G has shown the highest libdock score for 

SGLT 1 = -2.55; compared with other natural compounds which form strong hydrogen bonds, 

Sophoraflavonone G was found to have Alkyl, Pi-Alkyl, Pi-sigma and amide Pi- stacked Van 

Der Waals force interaction with the interacting residues of SGLT1. The libdock score for 

SGLT 2 with Sophoraflavonone G was found to be  -4.799, where strong hydrogen bonds, Pi-

Alkyl, Alkyl, Pi-Cation, and an unfavorable bump interaction was found with the interacting 

residues. The docking result for the best compound is shown in the below tables (Table 4 and 

5) for SGLT1 and SGLT2, respectively. We have selectively shown dapaglifozin and 

sophoraflavonone G interaction with SGLT 1 (Figure 2) and SGLT 2 (Figure 3). 

Table 4. Interaction with SGLT 1. 

Name C Docker 

energy 

C Docker 

energy 

Interaction 

Initial 

potential 

energy 

Initial 

RMS 

gradient 

Electrostatic 

energy 

Potential 

energy 

Van Der 

Waals 

energy 

RMS 

gradient 

Dapagliflozin -16.1856 43.9447 43.3229 9.24713 -7.36933 21.1992 -0.30047 0.00961 

Canagliflozin -13.7402 40.8924 56.8803 10.7607 -5.85097 24.4546 03385 0.00904 

Luseogliflozin -19.431 51.8952 35.051 9.55635 -22.4615 8.45956 1.01916 0.0095 

Topogliflozin +0.759268 42.4603 63.9008 9.30167 -4.9888 394922 -1.00978 0.00919 

Empagliflozin -0.067935 48.8322 64.0779 9.54468 -11.3074 36.5242 -2.22806 0.00948 

Variabilin +27.2427 47.1613 95.9718 16.227 1.3013 69.6824 -16.4128 0.00914 

Sophoraflavanone G -2.55076 42.3333 71.5743 11.3848 5.24414 46.8 -7.50666 0.00852 

Kurarinone +5.26431 42.6011 74.628 11.4084 1.82874 48.3952 -8.10667 0.00966 

Formononetin -15.5973 26.4066 17.8551 11.0142 -1.23529 9.16661 4.22027 0.00949 

Pterocarpin +19.4484 26.0202 66.3731 23.6777 -6.0572 39.3554 7.19842 0.00968 

Acerogenin A -15.1623 29.9445 -1.81643 6.63012 -22.9437 -6.03098 -1.20927 0.00961 

Acerogenin B -17.1741 34.3197 8.50905 6.85452 -22.9728 -5.62765 -2.25999 0.00972 

Acerogenin C -19.3449 28.3537 2.78925 9.51757 -22.7967 -11.1551 -3.30114 0.00877 
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Name C Docker 

energy 

C Docker 

energy 

Interaction 

Initial 

potential 

energy 

Initial 

RMS 

gradient 

Electrostatic 

energy 

Potential 

energy 

Van Der 

Waals 

energy 

RMS 

gradient 

Gneyulin A -25.5139 74.6637 5335.45 4575.34 -32.2179 31.787 6.82299 0.00973 

Gneyulin B -15.4972 68.2842 5302.57 4703.97 -38.5573 19.1332 7.87867 0.00957 

 

Table 5. Interaction with SGLT 2. 

Name C Docker 

energy 

C Docker 

energy 

Interaction 

Initial 

potential 

energy 

Initial 

RMS 

gradient 

Electrostatic 

energy 

Potential 

energy 

Van Der 

Waals 

energy 

RMS 

gradient 

Dapagliflozin -13.0169 52.6356 46.3229 9.24713 -7.36933 21.1992 -0.30047 0.00961 

Canagliflozin -19.4977 47.3875 56.8803 10.7607 -5.85097 24.4546 0.3385 0.00904 

Luseogliflozin -18.6059 47.9363 35.051 9.55635 -22.4615 8.45956 1.01916 0.0095 

Topogliflozin -0.517491 46.4127 63.9008 9.30167 -4.9888 39.4922 -1.00978 0.00919 

Empagliflozin -0.378219 49.2695 64.0779 9.54468 -11.3074 36.5242 -2.22806 0.00948 

Variabilin +32.2813 48.5525 63.9008 16.227 1.3013 69.6824 -16.4128 0.00914 

Sophoraflavanone G -4.79975 49.2259 71.5743 11.3848 5.24414 46.8 -7.50666 0.00852 

Kurarinone -1.82271 49.6274 74.628 11.4084 1.82874 48.3952 -2.01667 0.00966 

Formononetin -22.2949 32.8885 17.8551 11.0142 -1.23529 9.16661 4.22027 0.00949 

Pterocarpin +15.079 30.4889 66.3731 23.6777 -6.0572 39.3554 7.19842 0.00968 

Acerogenin A -14.6421 30.4329 -1.81643 6.63012 -22.9437 -6.03098 -1.20927 0.00961 

Acerogenin B -13.958 31.6208 8.50905 6.85452 -22.9728 -5.62765 -2.25999 0.00972 

Acerogenin C -22.103 33.949 2.78925 9.51757 -22.7967 -11.1551 -3.30114 0.00877 

Gneyulin A +3.62908 64.3098 5335.45 4575.34 -32.2179 37.787 6.82299 0.00973 

Gneyulin B -6.6668 68.7939 5302.57 4703.97 -38.5573 19.1332 7.87867 0.00957 

 

 
Figure 2. (A) Interaction of Dapagliflozin with SGLT 1. 3D and 2D interaction view of protein and ligand 

complex and (B) Interaction of Sophoraflavanone G with SGLT 1, 3D and 2D interaction view of protein and 

ligand complex. 
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Figure 3. (A) Interaction of Dapagliflozin with SGLT 2, 3D and 2D interaction view of protein and ligand 

complex. (B)Interaction of Sophoraflavanone G with SGLT 2, 3D and 2D interaction view of protein and ligand 

complex. 

3.3. ADMET-SAR.  

Acute oral toxicity refers to the adverse effect observed within 24 h of oral or dermal 

administration of single or multiple doses of a given substance. LD50 or median lethal dose 

was divided into four categories. Categories I contain the compound ≤ 50 mg/kg. Categories II 

contains compound > 50 mg/kg but < 500 mg/kg. Category III LD50 contains > 500 mg/kg but 

< 5000mg/kg, and Category IV LD50 contains > 5000 mg/kg. Bio-degradation is to check the 

drug's breakdown, which is a chemical reaction that involves the collision of molecules. Human 

intestinal absorption if the compound with HIA% is less than 30% it is labeled as HIA-, 

otherwise labeled as HIA+. In Table 6, the ADMET score for 5 drugs and 10 natural 

compounds is mentioned. Considering all the factors, Soporaflavonone G was selected for 

further analysis. 

Table 6. ADMET Score. 

Chemical Drug 

and natural 

compounds 

Acute Oral 

Toxicity 

(Kg/mol) 

Bio-

degradatio

n 

Human Oral 

Bioavailability 

Human 

Intestinal 

Absorption 

CYP2D6 

Inhibitor 

Blood-Brain 

Barrier (BBB) 

Solubility 

(Log S) 

Dapagliflozin 2.776 - - (0.6714) + (0.9297) - (0.8768) + (0.9557) -3.0847 

Canagliflozin 2.901 - - (0.5429) + (0.8753) - (0.8683) + (0.9681) -2.8768 

Luseogliflozin 2.284 - + (0.5286) + (0.9338) - (0.9215) + (0.9460) -2.4706 

Tofogliflozin 2.762 - - (0.5143) + (0.6489) - (0.9401) + (0.8578) -1.9281 

Empagliflozin 3.114 - - (0.7000) + (0.9094) - (0.7888) + (0.9685) -2.7518 

Variabilin 2.302 - - (0.6571) + (0.9751) - (0.8811) + (0.9491) -3.5814 
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Chemical Drug 

and natural 

compounds 

Acute Oral 

Toxicity 

(Kg/mol) 

Bio-

degradatio

n 

Human Oral 

Bioavailability 

Human 

Intestinal 

Absorption 

CYP2D6 

Inhibitor 

Blood-Brain 

Barrier (BBB) 

Solubility 

(Log S) 

Sophoraflavanone 

G 

2.878 - - (0.6143) + (0.9951) - (0.6860) -  (0.45) -3.8950 

Kurarinone 2.544 - - (0.6143) + (0.9965) + (0.7350) - (0.3578) -3.9253 

Formononetin 1.606 - + (0.5714) + (0.9911) - (0.8998) - (0.3715) -3.4575 

Pterocarpin 1.454 - - (0.5857) + (0.9906) + (0.9395) + (0.9282) -3.3129 

Acerogenin A 2.245 - - (0.5714) + (0.9490) - (0.9330) + (0.8140) -2.4715 

Acerogenin B 2.151 - - (0.5714) + (0.9490) - (0.9330) + (0.8140) -2.4715 

Acerogenin C 1.742 - - (0.5429) + (0.9528) - (0.9626) - (0.2408) -2.3657 

Gneyulin A 1.911 - - (0.7286) + (0.9923) - (0.8256) - (0.2372) -3.6052 

Gneyulin B 2.351 - - (0.7286) + (0.9940) - (0.8110) - (0.2472) -3.3455 

3.4. Molecular dynamic simulation. 

The result of protein and docked complex standard dynamic simulation studies showed 

that the energy and RMS gradient variations. The potential energy in the production step for 

the protein and the complex was found to be -23523.160 kcal/mol and -23375.509 kcal/mol, 

respectively. The energy difference between protein and drug complex was negligible, which 

proved the drug complex was stable to inhibit the protein completely. 

The total energy of protein starts from -17525.447 kcal/mol at the beginning time; 

further, it reduced to the local minima with the energy level of -17812.447 kcal/mol at the time 

of 300 ps time (Figure 4). Similarly, the drug complex's final energy was found to be -

17799.125 kcal/mol (Figure 5). 

 
Figure 4. The total energy changes at different time intervals for the protein. 

 
Figure 5. The total energy changes at different time intervals for the protein and drug complex. 
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3.5. Trajectory analysis. 

Trajectory analysis protocol run resulted in the RMSD and RMSF values for the 50 

confirmation of SGLT 2 and SGLT 2- sophoraflavonone G complex. The analysis of Figure 6 

revealed that the natural compound interacted well and did not make any energy changes of 

residues of the protein. Drug molecules alter the confirmation of two non-binding site amino 

acids Ser1 and Met138 (Figure 6 a-d). This does not make any fluctuations of any other residues 

of the protein confirmed the complex's stability. 

This overall dynamic simulation analysis concludes that the drug molecule forms a 

stable complex with the protein and is possible to completely inhibit the target protein. 

 
Figure 6. Trajectory analysis of 50 confirmation of protein and drug-protein complex. a. RMSD value of 50 

protein. b. RMS fluctuations of residues of the protein. c. RMSD value of 50 protein and drug complex. b. RMS 

fluctuations of residues of protein and drug complex. 

4. Conclusions 

 The modeled human SGLT 1 and 2 were docked with selected gliflozin drugs and 

natural compounds. The purpose of docking was to predict the structure of the ligands 

constraints of receptor binding sites and estimate binding strength. The binding mode of 

sodium-glucose transporters with bioactive compounds was investigated by doing 

computational analysis using CDOCKER. The docking analysis results were described 

in Table 4 and 5, and Sophoraflavanone G showed a good docking score because the lower 

value of free energy of binding validates a strong and favorable bond, which is preferred for 

best docking study. So, the docking score between SGLTs and Sophoraflavanone G is the most 

favorable conformations with compared standard drugs. The ADME analysis shown in Table 

3-4 shows that the selected physicochemical properties are known to absorption and 

bioavailability. Sophoraflavanone G satisfied all the ADMET properties as a drug-like 

potential. Molecular Dynamic simulation revealed stable complex formation between SGLT 2 

and sophoraflavonone G (Figure 4-6), which indicates sophoraflavonone G can be a good 

alternative SGLT 2 inhibitor. 
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