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Abstract: This study has comparatively evaluated the degree of affinity of N-(5-morpholino-2-

arylimidazo[2,1-b][1,3,4]thiadiazol-6-yl)carboxamides 2a-f and 6-(4-isopropylphenyl)-2-(4-((4-

methylpiperazin-1-yl)methyl)piperidin-1-yl)imidazo[2,1-b][1,3,4]thiadiazole (E260) to Fer kinase 

using molecular modeling methods. The Fer kinase model has been generated by homology modeling. 

It has been shown that compounds 2a-f predominantly form stronger complexes with this enzyme than 

the reference drug E260. In silico ADMET prediction of the properties of compounds 2a-f and E260 

has been carried out. Comparative analysis of the obtained results has shown that compounds 2a-f are 

not inferior to the reference drug - E260 and even surpass it in most parameters. All examined 

compounds 2a-f have shown good results under in silico experimental conditions and can be 

recommended for further study on tumor cell cultures. 
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1. Introduction 

Derivatives of imidazo[2,1-b][1,3,4]thiadiazoles are widely described in the scientific 

literature and are of great interest for organic and medicinal chemistry as well as pharmacy [1-

3]. Compounds containing the imidazo[2,1-b][1,3,4]thiadiazole cycle have antibacterial 

activity [4-6]. Some of them can suppress quorum sensing [7,8] and prevent the formation of 

biofilms [9]. Some derivatives of this compounds have antifungal [4,10,11], anti-tuberculosis 

[11-13], antiviral [14], anti-inflammatory [15], hypoglycemic [16], antithrombotic [17], anti-

Alzheimer [18] and other types of biological activity [1-3]. Over the past ten years, many works 

have appeared on the antitumor activity of these compounds [19-28]. 

Recently, the research group of Professor Nir U. has shown that the imidazo[2,1-

b][1,3,4]thiadiazole derivative, E260 (6-(4-isopropylphenyl)-2-(4-((4-methylpiperazin-1-

yl)methyl)piperidin-1-yl)imidazo[2,1-b][1,3,4]thiadiazole), effectively inhibits Fer and FerT 

(which is specific for cancer cells) kinases, leading to selective death of malignant cells and 

suppression of their growth in vivo [29]. Fer kinase is found in the cytoplasm, nucleus [30], 
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and mitochondria of malignant cells [31]. In mitochondria, Fer and FerT are associated with 

complex I of the electron transport chain (ETC) of a malignant but abnormal somatic cell. In 

this case, Fer and FerT support ATP production in cancer cells. Fer and/or FerT suppression 

leads to disruption of the ETC complex I activity and disrupts ATP synthesis in malignant cells 

[31]. All this makes Fer/FerT a very promising target for cancer therapy. 

Earlier, we reported on the synthesis of a series of N-(5-morpholino-2-arylimidazo[2,1-

b][1,3,4]thiadiazol-6-yl)carboxamides 2 [32,33] based on N-(2,2,2-trichloro-1-((5-aryl-1,3,4-

thiadiazol-2-yl)amino)ethyl)carboxamides 1 [33,34] (Scheme 1). Products 2 were obtained in 

acceptable yields. The closure of the imidazole ring occurred through the formation of 

intermediates A and B. 

 
Scheme 1. Synthesis of N-(5-morpholino-2-arylimidazo[2,1-b][1,3,4]thiadiazol-6-yl)carboxamides (2). 

The main goal of this work is to search for potential Fer/FerT inhibitors among the 

previously obtained N-(5-morpholino-2-arylimidazo[2,1-b][1,3,4]thiadiazol-6-

yl)carboxamides 2 using molecular docking research [35,36]. 

2. Materials and Methods 

2.1. Protein model building. 

To create a three-dimensional Fer kinase model, the homologous modeling method 

ProMod3 has been used, implemented in the SWISS-MODEL online server [37] (supporting 

information Figure S1). This enzyme's amino acid sequence was taken from the UniProt open 

database [38] (UniProt ID: P16591). The crystal structure of human tyrosine-protein kinase 

Fes/Fps (PDB ID: 6JMF) was used as a template [39]. The structure of the resulting model was 

optimized using the YASARA online server [40]. To analyze the resulting model's validity, we 

used the SWISS-MODEL online server, the Structure Assessment function. The resulting 

model used the amino acid residue numbering automatically generated by SWISS-MODEL 

(supporting information Figure S2). 
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2.2. Ligand preparation. 

Before molecular docking, the structures of all studied N-(5-morpholino-2-

arylimidazo[2,1-b][1,3,4]thiadiazol-6-yl)carboxamides (2) and E260 were optimized within 

the framework of the semiempirical PM3 method [41] using the ArgusLab 4.0.1 software 

package [42-50] (supporting information Figure S3). 

2.3. Molecular docking studies. 

For all targets, molecular docking was performed using AutoDock Vina [51] 

implemented in the PyRx 0.8 software package. The lowest energy conformation was chosen 

as the most likely binding site. Molecular docking was carried out blindly. The grid size was 

X: 48.7 Y: 61.4 Z: 80.3 Å centered at X: -17.4 Y: 23.6 Z: 18.7 Å. The conversion of files from 

the pdbqt to pdb format was performed using Open Babel [52]. The results were visualized 

using the PyMOL 0.99rc6 program [53]. 

2.4. In silico ADMET studies. 

In silico assessment of the ADMET properties of the analyzed compounds was carried 

out using the admetSAR 2.0 online server [54,55]. This server uses QSAR/SAR models for 

forecasting based on reliable, open-source databases and full-text peer-reviewed scientific 

publications. The structures of all analyzed compounds were loaded in the "SMILES" format. 

The conversion was performed using Open Babel [52]. The results were saved by "copy-paste" 

operations. To predict new compounds' ADMET properties, admetSAR 2.0 uses 22 qualitative 

classification models and 5 quantitative regression models. In addition to the forecast result (+ 

or -), qualitative classification models also provide the probability value of observing this effect 

in an experiment. The resulting probability value must be above 0.5. To assess the reliability 

of the results obtained, admetSAR 2.0 uses the concept of an applicability domain, which is 

determined by several physicochemical and topological properties. 

3. Results and Discussion 

3.1. Model of Fer kinase. 

Fer is a non-transmembrane receptor tyrosine kinase from the Fes family [39]. This 

enzyme is represented by one polypeptide chain, consisting of 367 amino acid residues. We 

have obtained the Fer kinase model by homology modeling based on the crystal structure of 

human tyrosine-protein kinase Fes/Fps (PDB ID: 6JMF) [39]. The sequence identity of the Fer 

kinase and template was 67.30% (supporting information Figure S2). In the resulting model, 

97.82% of the amino acids are in the Ramachandran plot's preferred regions (Figure 1b), and 

2.18% are in the allowable regions. 
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Figure 1. (a) Model of Fer kinase obtained by homologous modeling; (b) Ramachandran plot for the resulting 

model, 97.82% of the amino acids are in the preferred regions of the Ramachandran plot, and 2.18% are in the 

allowed ones. 

3.2. Molecular docking studies. 

Molecular docking of E260 with the resulting Fer kinase model was carried out blindly. 

This made it possible to establish the binding site's localization in the enzyme molecule (Figure 

2a). E260 interacts with amino acids of the Fer kinase active site through hydrophobic contacts 

and intermolecular hydrogen bonds with the Arg 688 amino acid (3.2 Å bond length) and Asn 

573 (3.2 Å bond length) amino acid (Figure 2b). The energy of the E260-Fer kinase complex 

was -7.9 kcal/mol. 

  
Figure 2. Position of the 6-(4-isopropylphenyl)-2-(4-((4-methylpiperazin-1-yl)methyl)piperidin-1-

yl)imidazo[2,1-b][1,3,4]thiadiazole (E260) in the active site of Fer kinase according to molecular docking 

results. 

According to the results of blind docking, all analyzed N-(5-morpholino-2-

arylimidazo[2,1-b][1,3,4]thiadiazol-6-yl)carboxamides (2a-f) interacted with the active site of 

the Fer kinase (supporting information Figure S3) and surpassed E260 in the strength of the 
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complex formed. The exception was N-(5-morpholino-2-(p-tolyl)imidazo[2,1-

b][1,3,4]thiadiazol-6-yl)acetamide (2а), for which the energy of the complex with Fer kinase 

as well as in the case of E260 was -7.9 kcal/mol. The molecule of compound 2a was 

additionally fixed in the enzyme's active site due to two hydrogen bonds with the amino acid 

Asp 702, the length of which was 3.1 and 3.3 Å (Figure 3).  

  
2a ∆G = -7.9 kcal/mol 2b ∆G = -8.8 kcal/mol 

  
2c ∆G = -8.4 kcal/mol 2d ∆G = -8.8 kcal/mol 

  
2e ∆G = -8.5 kcal/mol 2f ∆G = -8.9 kcal/mol 

Figure 3. Position of N-(5-morpholino-2-arylimidazo[2,1-b][1,3,4]thiadiazol-6-yl)carboxamides (2a-f) in the 

active site of Fer kinase according to molecular docking results. 

The molecule of N-(5-morpholino-2-(p-tolyl)imidazo[2,1-b][1,3,4]thiadiazol-6-

yl)benzamide (2b) was fixed in the active site of the Fer kinase not only due to hydrophobic 

interactions but also due to five intermolecular hydrogen bonds with amino acids Asn 573 

(bond length - 3.0 Å), Asp 684 (bond length - 3.2 Å), Asn 689 (bond length - 3.4 Å), Asp 702 

(bond length - 3.4 Å) and Lys 591 (bond length - 3.3 Å). The energy of the 2b-Fer complex 

was -8.8 kcal/mol. In the case of 4-methyl-N-(5-morpholino-2-phenylimidazo[2,1-

b][1,3,4]thiadiazol-6-yl)benzamide (2c) and N-(2-(3-bromophenyl)-5-

morpholinoimidazo[2,1-b][1,3,4]thiadiazol-6-yl)-4-methylbenzamide (2e) additional fixation 

in the active site cavity occurred due to three intermolecular hydrogen bonds formed with the 

participation of amino acids Asp 702 (bond length - 2.9 Å), Arg 688 (bond length - 3.2 Å), and 
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Asp 644 (bond length - 3.5 Å). The energies of the complexes were -8.4 and -8.5 kcal/mol, 

respectively. The molecule of 4-methyl-N-(5-morpholino-2-(3-nitrophenyl)imidazo[2,1-

b][1,3,4]thiadiazol-6-yl)benzamide (2d) was additionally fixed in the active site of the Fer 

kinase due to five intermolecular hydrogen bonds with amino acids Asn 573 (bond length - 3.0 

Å), Asp 684 (bond length - 3.1 Å), Asn 689 (bond length - 3.4 Å), Asp 702 (bond length - 3.1 

Å), and Lys 591 (bond length - 3.3 Å). The energy of the 2d-Fer kinase complex was -8.8 

kcal/mol. The best docking results were shown by 4-methyl-N-(5-morpholino-2-(3-

nitrophenyl)imidazo[2,1-b][1,3,4]thiadiazol-6-yl)benzamide (2f); its energy complex with Fer 

was -8.9 kcal/mol. The molecule of compound 2f was additionally fixed in the active site of 

the enzyme due to five intermolecular hydrogen bonds with amino acids Asn 573 (two bonds 

2.8 and 3.3 Å long), Asp 702 (bond length - 3.0 Å), Arg 688 (bond length - 3.2 Å) and Asp 644 

(bond length - 3.5 Å). 

A detailed analysis of intermolecular interactions between the amino acid residues of 

the Fer kinase's active site and the molecules of compounds 2a-f and E260 indicated an 

essential role of polar contacts in ligand fixation. A clear relationship was observed between 

the number of intermolecular hydrogen bonds and the strength of the complex formed. Most 

likely, hydrophobic interactions do not play a significant role in the fixation of these ligands. 

3.3. In silico ADMET studies. 

When predicting the biological properties of small molecules using QSAR models, first 

of all, the question is about the reliability of the results obtained. The applicability of a specific 

QSAR model for predicting the properties of analyzed compounds primarily depends on the 

degree of their similarity with compounds from the training sample. admetSAR uses the 

concept of applicability domain to assess the reliability of the results of predicting the 

properties of new molecules [54]. The applicability domain defines the region of molecular 

properties on which the QSAR model has been trained and can be applied [56]. According to 

the prediction results, compounds 2a-f and E260 are in the applicability domain. 

Most of the drugs used in medical practice are administered orally, which is associated 

with the convenience, cost-effectiveness, and safety of this administration method [57]. 

Lipinski's rule, also known as the rule of five, helps determine whether a chemical compound 

has properties that make it orally active in humans. This rule of thumb is based on the 

observation that most orally administered drugs are relatively small and moderately lipophilic 

molecules. The rule describes molecular properties important for a drug's pharmacokinetics in 

the human body, including its absorption, distribution, metabolism, and excretion [58]. 

Compounds 2a-f and E260 complied with Lipinski's rule of five (supporting information Table 

S2) and, therefore, were predicted to be active by the oral route [59,60]. For compounds 2a-f 

the probability was 0.5571-0.6286, and for E260, it was 0.6286 (supporting information Table 

S3). 

Human intestinal absorption (HIA) is an important property for potential drug 

candidates. HIA is one of the key steps in the delivery of drugs to their targets. For all 

compounds studied, a high probability (for 2a-f - 0.9251-0.9404 and for E260 - 0.9948) was 

predicted to be absorbed in the human intestine (supporting information Table S3) [61,62]. 

The effectiveness of a drug depends on the degree of its binding to blood plasma 

proteins. The drugs are in the blood in two forms - bound and unbound. Depending on the 

affinity of a particular drug for plasma proteins, one part can go into a bound form, while the 

other part remains unbound. It is the unbound part of the drug that provides the therapeutic 
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effect [63]. According to the prediction results, all compounds analyzed had a low affinity for 

blood plasma proteins; the bound fraction (fb) was within 0.9-1.2% (for 2a-f) and 0.9% for 

E260 (supporting information Table S3). 

P-glycoprotein (P-gp) is a transmembrane carrier protein belonging to the ABC family 

(ATP-binding cassette). This protein is actively involved in absorbing drugs from the intestine, 

metabolism, and transfer across biological barriers [64]. Concerning this transporter, all 

biologically active substances are conventionally divided into substrates and inhibitors. 

Usually, if the drug is a substrate, then it does not show inhibitory activity against P-gp, and 

vice versa. However, in some cases, the same substance can act both as a substrate and as an 

inhibitor, depending on its concentration [65]. Compounds 2a-f act as P-gp inhibitors with a 

probability of 0.6722-0.9014 [64,66], while the role of substrate for these compounds was not 

predicted. In turn, E260 can act both as an inhibitor (probability 0.6819) and as a substrate 

(probability 0.7474) (supporting information Table S3) [67]. The ability of compounds 2a-f to 

inhibit P-gp can interfere with other drugs' transport and, therefore, enhance their action. That 

is, compounds 2a-f can be used in combination therapy, for example, with anticancer drugs 

[68]. 

The blood-brain barrier is a unique set of blood vessels that filters everything that enters 

and exits the brain. For most modern anticancer drugs, the blood-brain barrier is an 

insurmountable barrier, which greatly complicates the fight against tumor formations in the 

brain [69-71]. According to the prediction results, compounds 2a-f could penetrate the blood-

brain barrier with a high probability (0.9742-0.9826). The ability to enter the brain was 

predicted for the E260 compound with a probability of 0.9951 (supporting information Table 

S3) [61]. 

The human cytochrome P450 (CYP) family includes 57 isozymes. These enzymes are 

involved in normal metabolism and thus, affect the pharmacokinetics of drugs. The different 

behavior of biologically active compounds related to these enzymes can lead to unwanted drug-

drug interactions (DDIs). CYP isozymes metabolize approximately two-thirds of drugs in the 

human body. The most active role in this is played by five isozymes - 1A2, 2C9, 2C19, 2D6, 

and 3A4 [72]. All compounds analyzed can act as substrates for CYP3A4 with a low probability 

(for 2a-f - 0.5591-0.6515 and 0.6127 - for E260). The role of substrates CYP2C9 and CYP2D6 

is not predicted for compounds 2a-f. E260 can be a CYP2D6 substrate with a probability of 

0.5327. In turn, compounds 2a-f can inhibit CYP2C9 with a probability of 0.6648-0.8559, 

while E260 cannot. All analyzed compounds are most likely unable to inhibit CYP2D6. In the 

case of CYP3A4, only compounds 2a and 2f can act as potential inhibitors, with a probability 

of 0.6808 and 0.8827, respectively. CYP2C19 inhibition is predicted only for compound 2e, 

probability 0.6347. Besides, compounds 2e and E260 have a low probability of blocking 

CYP1A2 (supporting information Table S4) [73,74]. 

According to the results of the prediction of oral toxicity for rats, compounds 2a-f were 

assigned to toxicity class III (lightly toxic substances); LD50 was in the range of 1406.1-2588.2 

mg/kg. Significantly higher toxicity was predicted for E260; LD50 was 239.4 mg/kg, which 

classified this drug as a moderately toxic substance (toxicity class II) (supporting information 

Table S5) [75]. 

The Human Ether-a-go-go-Related gene Potassium Channel (hERG, Kv11.1) [76] is 

the main anti-target in the heart. Drug interactions with this channel are undesirable and can 

lead to serious cardiac disorders, arrhythmias, and, in some cases, death [76]. According to the 

prediction results, all analyzed compounds are capable of blocking hERG [77,78]. For 
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compounds 2a-f, the probability was 0.6297-0.8280, and for E260, it was 0.8927 (supporting 

information Table S5). 

Drug-induced liver injury (DILI) is usually caused by the blockage of transmembrane 

transporters in the liver responsible for the outflow of bile acids from hepatocytes. 

Accumulation of toxic salts of bile acids in the liver leads to cholestasis and liver damage. The 

primary role for the bile outflow from hepatocytes is played by the bile salt export pump 

(BSEP) [79,80]. According to the prediction results, compounds 2a-f (with a probability of 

0.6528-0.9207) and E260 (with a probability of 0.9489) could block BSEP. Therefore, 

hepatotoxicity was predicted for them [81,82]: for compounds 2a-f, the probability was 0.6500-

0.8250, and for E260 - 0.5250 (supporting information Table S5). 

4. Conclusions 

 Using molecular modeling methods, we have carried out a comparative assessment of 

the affinity of N-(5-morpholino-2-arylimidazo[2,1-b][1,3,4]thiadiazol-6-yl)carboxamides 2a-f 

and 6-(4-isopropylphenyl)-2-(4-((4-methylpiperazin-1-yl)methyl)piperidin-1-yl)imidazo[2,1-

b][1,3,4]thiadiazole (E260) to Fer kinase. It has been shown that compounds 2a-f 

predominantly form stronger complexes with this enzyme than the reference drug E260. 

In silico ADMET prediction of the properties of compounds 2a-f and E260 has been 

carried out. Comparative analysis of the obtained results has shown that compounds 2a-f are 

not inferior to the reference drug - E260 in most parameters and even surpasses it. In this case, 

for compounds 2a-f, in contrast to E260, the role of a substrate for P-gp is not predicted but, 

on the contrary, an inhibitory activity is predicted towards this carrier. This should control the 

concentration of compounds 2a-f in cancer cells within the therapeutically effective range and 

use these compounds in combination therapy with other anticancer drugs. Also, compounds 

2a-f are predicted to have approximately 6-10 times lower acute toxicity in rats than for E260. 

All considered N-(5-morpholino-2-arylimidazo[2,1-b][1,3,4]thiadiazol-6-

yl)carboxamides (2a-f) have shown promising results under in silico experimental conditions 

and can be recommended for further studies on tumor cell cultures. 
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Supplementary files 

a)  b)  c) 

MGFGSDLKNSHEAVLKLQDWELRLLETVKKFMALRIKSDKEYASTLQNLCNQVDKESTVQ 

MNYVSNVSKSWLLMIQQTEQLSRIMKTHAEDLNSGPLHRLTMMIKDKQQVKKSYIGVHQQ 

IEAEMIKVTKTELEKLKCSYRQLIKEMNSAKEKYKEALAKGKETEKAKERYDKATMKLHM 

LHNQYVLALKGAQLHQNQYYDITLPLLLDSLQKMQEEMIKALKGIFDEYSQITSLVTEEI 

VNVHKEIQMSVEQIDPSTEYNNFIDVHRTTAAKEQEIEFDTSLLEENENLQANEIMWNNL 

TAESLQVMLKTLAEELMQTQQMLLNKEEAVLELEKRIEESSETCEKKSDIVLLLSQKQAL 

EELKQSVQQLRCTEAKFSAQKELLEQKVQENDGKEPPPVVNYEEDARSVTSMERKERLSK 

FESIRHSIAGIIRSPKSALGSSALSDMISISEKPLAEQDWYHGAIPRIEAQELLKKQGDF 

LVRESHGKPGEYVLSVYSDGQRRHFIIQYVDNMYRFEGTGFSNIPQLIDHHYTTKQVITK 

KSGVVLLNPIPKDKKWILSHEDVILGELLGKGNFGEVYKGTLKDKTSVAVKTCKEDLPQE 

LKIKFLQEAKILKQYDHPNIVKLIGVCTQRQPVYIIMELVSGGDFLTFLRRKKDELKLKQ 

LVKFSLDAAAGMLYLESKNCIHRDLAARNCLVGENNVLKISDFGMSRQEDGGVYSSSGLK 

QIPIKWTAPEALNYGRYSSESDVWSFGILLWETFSLGVCPYPGMTNQQAREQVERGYRMS 

APQHCPEDISKIMMKCWDYKPENRPKFSELQKELTIIKRKLT 

 

Tyrosine-protein kinase Fer [Homo sapiens] 

UniProt ID P16591 

 
 
 
 
 
 
 
 

 
Based on 6JMF 

 
-165901.5 kJ/mol 

(score -0.57) 

 
 
 
 
 
 
 
 

 
 

 
 

-215245.1 kJ/mol  

(score 0.24) 

 
Figure S1. Algorithm for creating a model of the Fer kinase: a) amino acid sequence of Fer in the FASTA format; b) homology model based on the crystal structure of human 

tyrosine-protein kinase Fes/Fps (PDB ID: 6JMF); c) a model after optimization using the YASARA online server. 
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Figure S2. Alignment of human tyrosine-protein kinase Fer sequences with the structure of human tyrosine-protein 

kinase Fes/Fps (PDB ID: 6JMF). The sequence identity was 67.30%. 
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E260 ∆G = -104383.2 kcal/mol 

  
2a ∆G = -89694.5 kcal/mol 2b ∆G = -104043.8 kcal/mol 

  
2c ∆G = -104043.5 kcal/mol 2d ∆G = -107495.9 kcal/mol 

  
2e ∆G = -111838.8 kcal/mol 2f ∆G = -120910.6 kcal/mol 

Figure S3. Structures of compounds 2a-f and E260 optimized within the framework of the PM3 semiempirical 

method in the ArgusLab 4.0.1 software package. 
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Table S1. Structures of N-(5-morpholino-2-arylimidazo[2,1-b][1,3,4]thiadiazol-6-yl)carboxamides (2a-f) and E260. 

Comp

. 
Structure SMILES 

2a 

 

CC(=O)NC1=C(N2N=C(SC2=N1)C1=CC=C(C)C=C1)N1CCOCC1 

2b 

 

CC1=CC=C(C=C1)C1=NN2C(S1)=NC(NC(=O)C1=CC=CC=C1)=C2N1CCOCC1 

2c 

 

CC1=CC=C(C=C1)C(=O)NC1=C(N2N=C(SC2=N1)C1=CC=CC=C1)N1CCOCC1 

2d 

 

CC1=CC=C(C=C1)C(=O)NC1=C(N2N=C(SC2=N1)C1=CC=C(C)C=C1)N1CCOCC1 
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Comp

. 
Structure SMILES 

2e 

 

CC1=CC=C(C=C1)C(=O)NC1=C(N2N=C(SC2=N1)C1=CC(Br)=CC=C1)N1CCOCC1 

2f 

 

CC1=CC=C(C=C1)C(=O)NC1=C(N2N=C(SC2=N1)C1=CC(=CC=C1)N(=O)=O)N1CCOCC

1 

E260 

 

CC(C)C1=CC=C(C=C1)C1=CN2N=C(SC2=N1)N1CCC(CN2CCN(C)CC2)CC1 
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Table S2. Verification of N-(5-morpholino-2-arylimidazo[2,1-b][1,3,4]thiadiazol-6-yl)carboxamides (2a-f) and E260 for compliance with Lipinsky criteria*. 

Compound Mr logP Rot.Bond Hdonor Hacceptor 

2a 357.44 2.56 3 1 7 

2b 419.51 3.86 4 1 7 

2c 419.51 3.86 4 1 7 

2d 433.54 4.16 4 1 7 

2e 498.41 4.62 4 1 7 

2f 464.51 3.76 5 1 9 

E260 438.65 4.05 5 0 7 

________________________________________________________________ 
* Lipinski's rule states that, in general, an orally active drug must not violate more than one of the following conditions: its structure must contain no more than 5 donor hydrogen bonds (the total number 

of nitrogen-hydrogen and oxygen-hydrogen bonds); its structure should contain no more than 10 acceptor hydrogen bonds (the total number of nitrogen or oxygen atoms); the molecular weight of the 

compound must be less than 500 a.e.m.; octanol-water partition coefficient (log P) should not exceed 5 for a given compound. 

 

Table S3. In Silico evaluation of absorption and distribution properties of N-(5-morpholino-2-arylimidazo[2,1-b][1,3,4]thiadiazol-6-yl)carboxamides (2a-f) and E260. 

Comp. 
Human oral bioavailability Human intestinal absorption Pgp-inhibitor Pgp-substrate Blood brain barrier Plasma protein binding 

result prob. result prob. result prob. result prob. result prob. result fb, % 

2a + 0.5571 + 0.9364 + 0.6722 - 0.7046 + 0.9816 + 0.928 

2b + 0.5571 + 0.9404 + 0.9014 - 0.7214 + 0.9826 + 1.195 

2c + 0.5857 + 0.9404 + 0.8897 - 0.6683 + 0.9826 + 1.181 

2d + 0.5857 + 0.9404 + 0.8826 - 0.6540 + 0.9816 + 1.086 

2e + 0.6286 + 0.9251 + 0.8739 - 0.5670 + 0.9826 + 1.200 

2f + 0.5857 + 0.9306 + 0.6722 - 0.7046 + 0.9742 + 1.181 

E260 + 0.6286 + 0.9948 + 0.6819 + 0.7474 + 0.9951 + 0.902 
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Table S4. In Silico evaluation of the metabolic pathways of N-(5-morpholino-2-arylimidazo[2,1-b][1,3,4]thiadiazol-6-yl)carboxamides (2a-f) and E260. 

Comp. 

CYP3A4 

substrate 

CYP2C9 

substrate 

CYP2D6 

substrate 

CYP3A4 

inhibition 

CYP2C9 

inhibition 

CYP2C19 

inhibition 

CYP2D6 

inhibition 

CYP1A2 

inhibition 

result prob. result prob. result prob. result prob. result prob. result prob. result prob. result prob. 

2a + 0.5591 - 0.8000 - 0.8963 + 0.6808 + 0.8033 - 0.6448 - 0.9395 - 0.6641 

2b + 0.5656 - 1.0000 - 0.9043 - 0.667 + 0.7410 - 0.7069 - 0.9070 - 0.6051 

2c + 0.5571 - 1.0000 - 0.9043 - 0.667 + 0.7410 - 0.7069 - 0.9070 - 0.6051 

2d + 0.5593 - 1.0000 - 0.9043 - 0.6808 + 0.8033 - 0.6448 - 0.9395 - 0.6641 

2e + 0.6113 - 1.0000 - 0.8989 - 0.5067 + 0.8559 + 0.6347 - 0.8722 + 0.5614 

2f + 0.6515 - 0.7932 - 0.8979 + 0.8827 + 0.6648 - 0.6259 - 0.9325 - 0.8013 

E260 + 0.6127 - 0.8046 + 0.5327 - 0.9587 - 0.6537 - 0.5739 - 0.5151 + 0.5474 

 

Table S5. In Silico toxicity evaluation of N-(5-morpholino-2-arylimidazo[2,1-b][1,3,4]thiadiazol-6-yl)carboxamides (2a-f) and E260. 

Comp. 
Acute oral toxicity hERG blockers Hepatotoxicity BSEP inhibitior 

-log mol/kg mg/kg result prob. result prob. result prob. 

2a 2.163 2455.9 + 0.6781 + 0.8250 + 0.6528 

2b 2.422 1587.6 + 0.7769 + 0.7750 + 0.8602 

2c 2.369 1793.7 + 0.8280 + 0.8000 + 0.8346 

2d 2.489 1406.1 + 0.8210 + 0.7750 + 0.8623 

2e 2.414 1921.3 + 0.8203 + 0.8000 + 0.8995 

2f 2.254 2588.2 - 0.6297 + 0.6500 + 0.9207 

E260 3.263 239.4 + 0.8927 + 0.5250 + 0.9489 
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