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Abstract: The effects of weathering and human activities cause the breakdown of porous structures, 

such as concrete. Studies have been conducted to address this situation involving the development of 

self-healing processes that can be employed to seal cracks in concretes in an eco-sustainable manner. 

This paper addresses the composition and technical norms of concrete, chemical and biological 

(especially bacteria of the genus Bacillus) healing agents, microencapsulation technologies, calcium 

carbonate biomineralization processes in concrete, the relation between solubility curves and the 

crystallization process, crystallization mechanisms and methods, microscopic and macroscopic 

techniques employed for the characterization of self-healing concrete, and state of the art in periodicals 

and patents. All these topics are essential to establishing planning for the synthesis and/or 

characterization of self-healing concretes and reductions in the consumption of cement and production 

of CO2. 
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1. Introduction 

One of the hallmarks of urbanization is the mass production of buildings, avenues, 

bridges, viaducts, and a gamut of constructions that serve as tools to facilitate daily living. 

However, one of the challenges is the natural formation of cracks in these buildings due to 

weathering, resulting in drastic and even fatal situations for whoever lives in urban centers. To 

address this issue, researchers have studied the development of concrete with the capacity for 

self-healing, mainly with biotechnology's assistance [1]. 

Ordinary concrete is composed of cement and water as binding agents and a fine and 

coarse aggregate to ensure rigidity. Cement has various compositions (although it is difficult 

to find all classifications in the marketplace) and is the most widely consumed mixture globally 

due to the large quantity of construction projects. Understanding the production and different 

classifications of cement is key to the establishment of remediating measures. One of the major 
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problems is the toxicity caused by particulate matter containing silicon dioxide (SiO2). 

Therefore, the duality of the high consumption and high toxicity of cement needs to be 

reconciled [2].  

The hydration and drying of cement mixed with fine and coarse aggregate in adequate 

proportions enable durable concrete formation. However, the effects of weather and human 

actions cause internal and external cracks in concretes, which require remediating measures. 

Microorganisms (bacteria and fungi) have been used to adsorb to the interstices of concrete, 

react with substances such as organic calcium salts, and synthesize compounds such as calcium 

carbonate to promote the self-healing of cracks in concrete. This phenomenon, known as 

biomineralization, is found in oysters, as the presence of a parasite in the shell's interior leads 

to the formation of a pearl [3]. 

Among the diverse compounds and reactional mechanisms for the self-healing of 

concrete, calcium lactate is an organic salt that can generate the biomineralization of CaCO3 

with greater safety, as metabolic pathways through other compounds, such as urea and nitrogen 

compounds, induce the synthesis of nitric acid, which causes corrosion in structures with 

reinforced concrete [4]. 

The crystallization of material is also an important aspect in bioconcrete systems for 

controlling and filling pores. This operation, which is the inverse of solubilization, requires 

knowledge of the following: the solubility curve of substances (linear or exponential; forward 

or backward); the temperature for a microbial agent to be used in optimal crystallization 

conditions; possible polymorphs or pseudo-polymorphs of substances, which affect properties 

such as strength, solubility, and biological interactions; as well as other advantages [5]. 

By synthesizing calcium carbonate, microorganisms create crystal structures that fill in 

pores and cracks resulting from natural and anthropogenic phenomena. The microscopic 

properties of these crystals can be evaluated using scanning electron microscopy and x-ray 

diffractometry. Macroscopic evaluations of essential characteristics for synthesizing new types 

of bioconcrete include the determination of compression, tensile, and flexion strength, setting 

time, expansibility, and paste consistency, as well as thermogravimetric analysis [6]. 

The present review addresses these topics, underscoring the importance of 

biotechnology for the construction of eco-sustainable cities and roads, reducing the synthesis 

of CO2 resulting from the mass production of cement, and reducing the exposure of 

construction workers to the toxic SiO2 component.  

2. Composition of Concrete 

Concrete has four basic components: water, cement, fine aggregate, and coarse 

aggregate (Figure 1). The first two are the most widely used compounds in the world and reflect 

the binding characteristic of concrete, whereas fine and coarse aggregate are incorporated to 

enhance the rigidity of the material, with variations found in the shape and proportion of the 

granules [7]. 

According to Shanks et al. [8], approximately four billion tons of cement are produced 

per year, which corresponds to the use of 560 kg per person per year. Along with water, this 

component is essential to the concrete matrix due to the formation of a cement paste to adhere 

to the components. The cohesion between water and cement is such that hydraulic cement is 

the term used to denominate all cement that reacts with water and subsequently hardens.  
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Figure 1. Composition of concrete: cement, water, fine aggregate, and coarse aggregate. 

2.1. Cement. 

The production of cement as a binding agent begins in a limestone mine. Points of the 

mine are studied to identify possible locations for the mineral extraction using characterization 

methods, such as scanning electron microscopy (SEM) and x-ray diffractometry (XRD). These 

techniques assist in the comparison of the material analyzed to standard crystal profiles. When 

the material exhibits high similarity with the established standards, the limestone is extracted 

through explosions in the mine until the rocks are small enough to be transported to a nearby 

factory on large conveyor belts. A second sampling of the material may be performed in the 

factory to evaluate whether the mineral has similar quality as that found during the initial SEM 

and XRD analysis and avoid working with inadequate material. After the mineral's effective 

extraction, the rocks are stored in silos to be mixed with iron ore and clay (aluminum, iron, and 

magnesium silicates) and ground into a “flour”. The proportion of flour varies depending on 

the type of cement, as different compositions enable different applications. The flour then goes 

through a preheating phase denominated pre-calcination, in which heat is applied at a 

temperature of around 1000°C, which is a little higher than the temperature needed for the 

breakdown of CaCO3 into CaO and CO2. Some of the different types of clay are refractory 

materials that can tolerate temperatures of more than 1500°C and can vitrify at around 1300°C. 

After the major elimination of the gases during pre-calcination, the flour is submitted to heating 

between 1000 and 1450°C in a continuous rotary kiln, enabling the formation of a mixture 

denominated clinker. As preheating and heating are the cement industry's main processes, the 

equipment's maintenance is only performed a few times a year [9].  

One of the major environmental problems associated with these types of kilns is the 

high production of CO2, accounting for 5 to 7% of global carbon emissions. The consumption 

of electrical power alone accounts for 10% of the CO2 emissions from a cement production 

process. After the vitrification of the clinker, cooling to room temperature occurs. The entire 

process is illustrated in Figure 2. These data show that cement fabrication causes an increase 

in greenhouse gases due to both the reactional process and energy needs [8]. 
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Figure 2. Schematic of clinker production. 

After leaving the kiln, the clinker is mixed with different materials: plaster (mainly 

composed of CaSO4), which is responsible for the setting time of cement; slag (SiO2 with other 

oxides), which is a byproduct of the metal industry; unheated limestone (CaCO3) powder as a 

low-cost, sustainable alternative for the industry; pozzolan (rich in silicates), which is highly 

resistant to corrosion in conditions of high alkalinity; and filler (CaCO3), which is a fine powder 

to enhance the workability of cement. Figure 3 lists the materials that form traditional cement. 

Thus, cement composition includes different types of oxides, especially SiO2, anions such as 

carbonate and sulfate, and cations such as calcium, magnesium, iron, and aluminum [7]. 

 
Figure 3. Traditional components of a cement. 

The fabrication process is usually directed at the production of Portland cement, which 

takes its name from the British Isles of Portland. In Brazil, technical norm NBR 16697 unites 

a set of old norms that specified Portland cement types' composition, describing codes for this 

specification (Figure 4).  

 
Figure 4. Schematic of brazilian codes for cement production. 
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The codes are divided into four parts: a) “CP”, which designates the type of cement as 

Portland; b) type based on composition, such as type I (ordinary), II (compound), III (a blast 

furnace), IV (pozzolanic) and V (high initial strength); c) additives to the base composition, 

such as E (blast furnace slag), F (filler) and Z or S (pozzolanic material); and d) resistance in 

megapascal (MPa) after 28 days when submitted to a minimum compression of 25, 32 or 40 

MPa. Thus, CP II-Z 32 means Portland cement composed of pozzolanic material and resistant 

to a minimum compression of 32 MPa. Subtypes of cement  have specific characteristics, as 

listed below [10]: 

• Ordinary cement (CP I): a mixture of at least 95% clinker with one or more calcium 

sulfate forms (plaster). This cement type is used to slow the setting time and has a variation 

of pozzolanic additives (CP I-S) to diminish permeability and corrosion.  

• Compound cement (CP II): a maximum mixture of clinker with calcium sulfates of up 

to 94%, with variations in E, F, and Z to have less heat release, greater workability due to 

the fine filler powder and reduced permeability, respectively.  

• Blast furnace cement (CP III): used in works requiring greater strength, such as sewers 

and dams, with a large amount of slag (silicates). 

• Pozzolanic cement (CP IV): greater amount of pozzolans to reduce corrosion and 

permeability. 

• Initial high-strength cement (CP V): practically no additives, with rare exceptions, 

ensuring greater initial strength on the first day. 

2.2. Fine and coarse aggregates.  

Fine and coarse aggregates, which are usually sand and gravel, respectively, account 

for 75% or more of the mass of concrete. Aggregate is an essential factor due to its mechanical 

and thermal qualities, which influence the concrete's performance, despite not being chemically 

reactive. The fine aggregate has particles smaller than 4 mm, and the coarse aggregate has 

particles larger than 5 mm. Grain size is of the utmost importance to the determination of 

aggregates, as it determines the shape in which the granules can be arranged, affecting 

characteristics such as porosity, density, and strength. These and other petrographic properties 

stem mainly from the matrix rock characteristics from which the aggregates were fragmented. 

Regarding fine aggregate, sand has dimensions between 60 and 70 µm; the granulometry of 

silt is between 2 and 60 µm, and clay has smaller dimensions. Gravel is frequently used as 

coarse aggregate and may be basalt, limestone, gneiss, or granite [2]. 

The different proportions of cement (C), fine aggregate (FA), and coarse aggregate 

(CA) determine the trait of the concrete, which can be represented as C:FA:CA”. Thus, a trait 

of 1:2:3 in mass means that the concrete is one part cement, two parts fine aggregate, and three 

parts coarse aggregate.  

According to Brazilian technical norm NBR 7214, sand used for concrete must be ≥ 

95% silica. Considering the previous example with CP III cement (high concentration of 

silicates), more than half the concrete would be SiO2 [11].  

2.3. Water.  

The universal solvent is of the utmost importance in concrete, as it reacts with the 

cement and causes the hardening of the concrete. Water is so important to the composition of 

concrete that there is a water/cement ratio, which is the mass of water's division by the mass of 
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cement used [12]. Small water content in the mixture with cement can reduce the concrete 

setting time but does not ensure high stability or the ultimate performance that can be achieved. 

In contrast, high water content increases the setting time and can weaken the concrete [12]. 

2.4. Types of concrete. 

Composed of the two most widely consumed materials globally, concrete has a wide 

variety of applications and consequently a gamut of types. The following are the main types 

[2, 9, 13]: 

• Conventional: ordinary concrete used in construction. 

• Pumpable: used with a higher water/cement ratio when transport via a pump is required.  

• Reinforced: conventional concrete in which steel bars are embedded to enhance the 

mechanical strength but have a greater tendency toward corrosion. 

• Prestressed: similar to reinforced concrete, this concrete has spaces designed for the 

insertion of steel cables, also ensuring greater mechanical strength.  

• Sprayed (shotcrete): concrete sprayed through a hose using compressed air.  

• Light-weight: concrete with a low specific mass, indicated for finishes. 

• Heavy: concrete with a high specific mass designed to avoid radiation. 

• Cellular: concrete with a foam additive used in dividing walls. 

• Self-healing: concrete that can regenerate itself after suffering cracks. 

3. Self-Healing Concretes  

The first investigations on self-healing concrete emerged around 1836. In 1956, crystal 

formation with CaCO3 was identified. In 1998, researchers were able to recuperate 

approximately 200 µm of a crack using this type of autogenous cure, considerable advancement 

in chemical studies on self-healing concrete. This process has the following quality parameters: 

1) effective sealing of the crack; 2) compatibility of the formed material with the concrete 

matrix; 3) long-term strength; 4) multiple improvements in the concrete matrix, and 5) 

sustainable viability. All these characteristics are fundamental to obtaining concrete with 

excellent healing capacity. The self-healing of concrete can occur in autogenic and autonomous 

modes. The autogenic mode regards the cement components' hydration, reacting to form 

calcium carbonate and, subsequently, filling microcracks in the concrete. This hydration 

process normally occurs at a pH higher than 7.5. The autonomous mode is strategic self-

regeneration that may occur through vascularized systems that enable the percolation of a fluid 

containing a compound for self-regeneration or a microencapsulation system that releases a 

compound for self-regeneration the appropriate moment [4, 14].  

3.1. Healing agents. 

Healing agents may be polymeric, inorganic, or biological. The application depends on 

technological and financial availability. Dicyclopentadiene and methyl methacrylate are 

examples of polymeric agents. Sodium silicate and magnesium oxide are examples of inorganic 

agents, whereas bacteria (especially those of the genus Bacillus) and fungi are biological 

agents. Polymeric and inorganic agents have the disadvantage of reacting chemically in a broad 

temperature and pH range. These broad ranges are considered disadvantageous because an 

energy controller is required to stop the chemical reaction. In contrast, bacteria of the genus 
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Bacillus have an optimum neutral-alkaline pH and exhibit metabolic activity within a narrow 

temperature range, which varies depending on the species [14]. 

3.2. Microencapsulation. 

Microencapsulation technology works according to the lab-on-a-chip maxim, which is 

portability for executing a set of functions, in which two phases exist – one dispersed and one 

continuous. The first phase is where the healing agent (polymeric, biological, or inorganic) is 

inserted. The second phase is the surrounding reactive capsule responsible for protecting the 

healing agent, enabling control over the instant in which the capsule is broken, and the self-

healing process is initiated [15]. 

There are two main microencapsulation methods: microfluid droplet generation and 

cross-linking (Figure 5). The first method works basically with capillary hydraulic systems, 

such as T-junction, flow focusing, and concurrent flow systems. The input pressures of the 

system enable the micro-encompassing of the dispersed phase the continuous phase [15].  

The second method is the densification of the continuous phase on the dispersed phase. 

The continuous liquid phase begins to gel until the occurrence of the protection of the dispersed 

phase. This method is subdivided into thermal systems, with polymers of different critical 

solution temperatures; ionic systems, involving the application of sodium alginate for the 

gelling of the dispersed phase; and photoinduced systems, involving the application of 

ultraviolet radiation to photoinitiators enveloped by a photomask [16]. 

 
Figure 5. Cellular microencapsulation processes - microfluid droplet generation and cross-linking. 

Ionic systems have achieved considerable success in the medical field by integrating 

3D printing to create a small vascularized heart through the deposition of cells with sodium 

alginate in a calcium chloride solution [17]. 

3.3. Biomineralization. 

Some organisms have the capacity for biomineralization, which is transforming organic 

compounds into inorganic compounds followed by the precipitation of the material. The 

material can then be employed for a specific purpose. Examples of this phenomenon include 

the formation of mollusk shells for protection from predators' attacks, the production of a pearl 

in an oyster as a natural reaction to a parasite's presence, and the precipitation of gold or 

carbonate by bacteria in a nutritive medium [18]. 

The bacterial precipitation of calcium carbonate has been studied as an option for the 

reconstitution of concrete. A bacterium consumes the anion of a dissociated calcium organic 

salt present in the cement and synthesizes the carbonate anion. This new anion is combined 
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with the calcium cation, forming biomineralized calcium carbonate and reconstituting the 

concrete's flaws [19].    

The pathways for the biomineralization of calcium carbonate by microorganisms and 

the self-healing of concrete stem basically from three types of chemical reaction: ureolytic, 

calcium lactate, and denitrifying pathways [4]. 

The ureolytic pathway consists of the initial transformation of urea into carbonic acid, 

according to Equations 1 and 2: 

𝐶𝑂(𝑁𝐻2)2 + 𝐻2𝑂 → 𝑁𝐻2𝐶𝑂𝑂𝐻 + 𝑁𝐻3                                                                                 (1) 

𝑁𝐻2𝐶𝑂𝑂𝐻 + 𝐻2𝑂 → 𝑁𝐻3 + 𝐻2𝐶𝑂3                                                                                        (2) 

In equilibrium, hydroxyl and carbonate axions are formed, leading to an increase in pH, 

according to Equations 3, 4, and 5: 

𝐻2𝐶𝑂3 → 𝐻𝐶𝑂3
− + 𝐻+                                                                                                                   (3) 

2𝑁𝐻3 + 2𝐻2𝑂 → 2𝑁𝐻4
+ + 2𝑂𝐻−                                                                                                    (4) 

𝐶𝑂3
2− + 𝐻+ + 2𝑁𝐻4

+ + 2𝑂𝐻− ↔ 𝐶𝑂3
2− + 2𝑁𝐻4

+ + 2𝐻2𝑂                                                          (5) 

The major problem with the ureolytic pathway is the transformation of ammonium into 

nitrogen monoxide, causing environmental pollution, albeit at a lower level compared to 

common sources of pollution. This pathway can also convert ammonium into nitric acid, 

thereby increasing the possibility of corrosion. 

The calcium lactate pathway (Figure 6) is safer and simpler. This pathway consists of 

the aerobic oxidation of calcium lactate and combination with calcium hydroxide for the 

synthesis of calcium carbonate, according to Equations 6 and 7: 

𝐶𝑎𝐶6𝐻10𝑂6 + 6𝑂2 → 𝐶𝑎𝐶𝑂3 + 5𝐶𝑂2 + 5𝐻2𝑂                                                                           (6) 

5𝐶𝑂2 + 5𝐶𝑎(𝑂𝐻)2 → 5𝐶𝑎𝐶𝑂3 + 5𝐻2𝑂                                                                                        (7) 

 
Figure 6. Biomineralization of calcium carbonate by calcium lactate pathway. 

The denitrification pathway involves the reduction of nitrate into nitrogen gas and the 

consequent combination of the formed carbonate with calcium ions, according to Equations 8, 

9, and 10: 

𝑂𝑟𝑔𝑎𝑛𝑖𝑐 𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑 + 𝑎(𝑁𝑂3
−) + 𝑏(𝐻+) → 𝑐(𝐶𝑂2) + 𝑑(𝐻2𝑂) + 𝑒(𝑁2)                                  (8) 

𝐶𝑂2 + 2𝑂𝐻− → 𝐶𝑂3
2− + 𝐻2𝑂                                                                                                     (9) 

𝐶𝑎2+ + 𝐶𝑂3
2− → 𝐶𝑎𝐶𝑂3                                                                                                           (10) 
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The hydrolysis of urea is the fastest path for the production of calcium carbonate, but 

the fastest path is not always the most adequate, considering the problems above related to 

corrosion and pollution. Likewise, the denitrification pathway increases the possibility of the 

transformation of nitrate into nitric acid, accelerating reinforced concrete's corrosion. A 

similarity in the three pathways is the attraction of calcium cations due to the bacterial surface's 

negative electrical charge [4]. 

4. Solubility Curves And Crystallization 

When placed into a pure solvent, a salt molecule is dissociated into a cation and anion 

due to intermolecular interactions between the solvent and salt (solute) (Figure 7). As more salt 

molecules are added to the solvent, more ions are formed until reaching a threshold beyond 

which the remaining molecules of the solvent no longer have the energy necessary to break the 

intramolecular bonds of the salt, resulting in the precipitation of the excess salt. Hence, each 

saline solution has a necessary chemical potential to dissociate the salt occurs [20]. 

 
Figure 7. Separation of ions of solute by solvent through intermolecular interactions. 

In practice, rather than using chemical potentials, a quantity (in mass) of a given salt is 

used for a quantity (in volume) of solvent. The salt's solubility limits differ depending on 

variations in the solute, solvent, pressure, and temperature. Under a single pressure, these limits 

are graphically represented as a solubility curve comprising the ratio between the quantity (in 

mass) of a given solute per 100 units (in volume) of the solvent, varying with temperature. 

Solubility curves can have profiles with linear or exponential variations and with solubility 

directly (more frequent) or inversely (rarer) proportional to the variation in temperature. The 

International Union of Pure and Applied Chemistry (IUPAC) offers a set of more than 100 

volumes with solubility tables and curves to help researchers find the most adequate, most 

reliable solubility for solutions. The solubility curve assists in making the ideal choice to enable 

the recovery of the solute and/or solvent through an operation denominated crystallization, 

which is the inverse of solubilization and enables the formation of ordered arrangements of 

molecules in a repetitive matrix (crystals) [20, 21]. 

The importance of solubility curves to crystallization is exemplified in Figure 8, which 

displays the solubility curve and metastable limit for any solute and solvent. Below the 

solubility curve is the unsaturation zone, where the maximum stable degree of dissolution of a 

component has not yet been reached. Above the solubility curve is a region denominated the 

supersaturation zone, where the solvent can accommodate a larger quantity of the solute than 

the limit established by the solubility curve, but in an unstable manner, through a difference in 

chemical potentials at a fixed temperature. The supersaturation zone is subdivided into a 

metastable zone and a labile zone through the metastable limit. If linear or with a decreasing 
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exponential function, this solubility curve profile will completely change the metastable limit 

profile and, consequently, change the mechanisms and methods for the occurrence of 

crystallization [22]. 

 
Figure 8. Representation of unsaturation and supersaturation zones with solubility curve and a metastable limit 

for any solute and solvent. 

When the binary mixture (solute and solvent) is in the labile zone, there is extreme 

instability in the degree of dissolution of this component, and any collision, such as small 

particulate matter, is sufficient to induce crystallization through a mechanism known as 

nucleation. A practical example is when water vapor changes from a gaseous state into a solid-

state through inverse sublimation or resublimation when striking grains of dust in the air, giving 

rise to hexagonal snowflakes [22].  

In nucleation (Figure 9), as some ions dissolved in the solvent (growth units) in the 

labile zone perform intermolecular interactions, an unstable entity is formed denominated a 

cluster. This cluster is unstable because it can break apart again depending on the energy 

conditions. However, if the cluster keeps growing until reaching a critical size, there is the 

formation of a stable entity (nucleus). The addition of ions to the nucleus has denominated a 

crystal. This nucleation mechanism is primary because the nucleus is formed by developing a 

single cluster but can be secondary with the agglomeration of distinct clusters. Another 

mechanism of crystallization is crystal growth. This occurs when the formed nuclei are in the 

metastable region and increase in size with ions' adsorption due to the continued energy 

instability (difference in chemical potentials) [5, 23].  

 
Figure 9. Theory of primary nucleation of a crystal. 

A substance may have one or more forms of molecule arrangements upon crystallizing 

and therefore may present a polymorphism. This phenomenon occurs because it is common in 

nature for equilibrium to be reached with lower energy consumption, considering the 

environment in which the solute and solvent are found. In an industrial process, polymorphs 

can be formed under different operating conditions, such as variations in temperature and 

pressure (altering the mechanical, physiochemical, and thermal properties), as well as 

biological interactions. Ammonium nitrate is often used as a fertilizer, but the two nitrogen 

atoms in this molecule have a variation in the oxidation number between -3 and +5, which are 

the minimum and maximum oxidative states permitted for the nitrogen group in the periodic 

table. In the presence of heat, an auto-redox reaction abruptly releases a quantity of energy, 
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characterizing an explosion. Thus, the polymorphism can transform a fertilizer substance into 

an explosive [24]. 

As an example of a physicochemical property, solubility is strongly influenced by the 

morphology of the crystal. Therefore, a substance can have different solubilities depending on 

the polymorphism. More stable polymorphs have less solubility. For crystals' obtainment in 

cooling and heating processes, water molecules can adhere to the molecules of the crystal, 

forming inclusions, but these hydrated compounds are not the same isolated molecules and are 

therefore denominated pseudo polymorphs [5]. 

Calcium carbonate can exhibit three distinct crystalline forms and has a reverse 

solubility curve (solubility diminishes with the increase in temperature). At a fixed temperature 

and pressure, the crystalline forms (in increasing order of solubility) are calcite (found in 

limestone mines), aragonite (found in karstic caverns and the exoskeletons of animals), and 

vaterite (found in gall stones and kidney stones). Due to its lower solubility, calcite is the most 

stable and most common form of calcium carbonate crystallization [25]. 

Methods for the crystallization of compounds vary depending on the solubility curve. 

Crystals can be formed in the following ways: I) cooling, when the solubility of the solute is 

directly proportional to temperature, avoiding the use of heat exchangers and the occurrence of 

fouling; II) evaporation as occurs in saline for the production of NaCl, when the solute varies 

little with the change in temperature; III) melting, when a solid contains two or more substances 

and the separation of one is needed through distinct points of fusion; IV) precipitation by an 

antisolvent, in which the solubility of a solute is reduced with the formation of a mixed solvent; 

V) precipitation by a chemical reaction, in which the synthesis of a product with low solubility 

occurs; and other methods [5]. 

In the case of the precipitation of calcium carbonate induced by microorganisms, the 

concreate or solidified cement exhibits porous fractures that can be filled with solutions 

containing lactate and/or microorganisms or microbial spores and/or gaseous systems 

containing air or O2. This triphasic system has two main phenomena: biochemical reactions 

and crystallization, depending on each crystallizing model. The measurement of the reaction 

and crystallization rates results in the limiting velocity of the process, enabling knowledge of 

the conditions necessary for the control of the process, especially in synthesizing the three 

polymorphs of CaCO3. Bacteria of the genus Bacillus have the advantage of having a 

negatively charged cell wall, which attractions Ca2+ cations or undissolved calcium lactate 

molecules. When this complex adheres to the surface with crystalline nuclei formation, the 

crystallization of calcium carbonate occurs through biomineralization [26]. 

Some microorganisms used in the crystallization process also have the biotechnological 

potential for the synthesis of natural surfactants (biosurfactants), which can assist in the self-

healing of concrete through the use of bacteria and fungi, as the biosurfactants enable the 

microorganisms to penetrate the pores of the concrete with greater ease by lowering the surface 

tension. Biosurfactants promote an increase in the humectation (capillarity) of the fluid, 

facilitating the penetration of bacteria and fungi into the narrower pores of the concrete, and 

promote the crystallization of microcracks; the low toxicity of these natural surfactants also 

ensures the viability of the microorganisms [27]. Durval et al. [28] confirmed the low toxicity 

of biosurfactants produced by Bacillus cereus strain. Thus, microorganisms can serve as both 

healing agents and producers of biosurfactants to improve the crystallization process. 
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5. Characterization of Self-Healing Concrete 

The entire process has standardized quality parameters to ensure reproducibility and 

determine possible continual improvement and the consequent development of the procedure 

from the artisanal realm to the technoscientific realm. The biomineralization of calcium 

carbonate in concrete through the calcium lactate pathway can be characterized using assays 

addressing the cement and concrete's macroscopic properties and the microscopic properties of 

the product formed by the healing agent in the concrete matrix. The following are analyses of 

the macroscopic properties of cement that can be performed:  

 a) Normal paste consistency: technique stipulated in Brazil by technical norm NBR 16606 

regarding the penetration depth of a probe into cement paste; the Vicat apparatus is used for 

this analysis [29]. 

 b) Setting time: technique stipulated in Brazil by technical norm NBR 16607 regarding the 

hardening of a cement paste; the Vicat apparatus is also used for this analysis [30]. 

 c) Expansibility: technique stipulated in Brazil by technical norm NBR 11582 indicating 

the variation in cement volume. High expansibility is normally not required due to the rigid 

cement paste's possible rupture; the Le Chatelier apparatus is used for this analysis [31]. 

The addition of fine and coarse aggregate enables analyzing the macroscopic properties 

of concrete. Cylindrical or prismatic molds are needed for experiments with test specimens, 

following Brazilian technical norm NBR 5738:2015, 2016 revised version [32]. The following 

are examples of concrete strength tests [2]: 

 a) Simple compression: a test of the reduction in volume in the presence of two opposing 

axial forces. 

 b) Simple tensile: a test of the increase in volume in the presence of two opposing axial 

forces. 

 c) Flexion: test in the presence of a force orthogonally applied to the center of mass of the 

test specimen. 

Other macroscopic tests include the following: 

 a) Permeability: capacity of concrete to retain a liquid, generally water [33].  

 b) Thermogravimetric analysis (TGA): method in which a solid is heated at a particular 

constant rate until reaching a particular temperature for the determination of the loss of mass 

and degree of degradation [34]. 

Tests of microscopic properties are also important to identify what probable 

components are being studied and determining the petrographic characteristics of a material. 

The following methods can be used for studying bioconcrete [6, 34]:  

(a) Scanning electron microscopy (SEM): the use of three-dimensional topographic 

profiles to examine the material's crystallinity; SEM is not a complete quantitative measure due 

to the different types of images but is a widely employed tool for the visualization of 

microscopic abnormalities 

  (b) X-ray diffraction (XRD): a crystallographic technique in which a known x-ray beam 

is applied to a sample at a particular angle, causing diffraction of the beam. The standard 

deviation of the rays corresponds to the variation in electron density in the crystal, enabling the 

determination of a crystallographic profile and identifying possible constituents. 

SEM responses are data that can be interpreted through the comparison of photographs. 

In contrast, XRD requires comparing crystallographic profiles found in databanks with distinct 

profiles from different world regions. HighScore Plus® from PANalytical B.V.© is one of the 
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software programs used for profile analysis, enabling the importation of the crystallographic 

profile obtained from a diffractometer, the comparison of the profile to an integrated data bank, 

listing possible compatibilities with the diffractogram and compatibility percentages, and the 

editing of the probable components for the material in question. Therefore, this software 

program is an essential tool for XRD analysis [35]. 

6. Patents of Self-Healing Concrete and Similar Systems 

For a company, the registration of intellectual property regards an intangible product of 

the human mind. Patents protect the ideas of inventors, and an investigation of patent records 

reveals the market aspects of different types of processes [36].  

Regarding self-healing concretes, methods and inventions are found in the Netherlands, 

the USA, South Korea, China, and Japan. Thus, a large portion of such patents is found in Asia. 

Song et al. [37] proposed a system in series to recycle solutions containing healing 

agents in concrete cylinders partitioned axially. The aim was to compare the solid medium's 

permeability and the healing agent's sealing potential, as a less permeable medium would 

denote greater self-regeneration. In this system, a solution percolates through a cylinder and 

promotes the concrete's self-healing in accordance with the level of pressure of the solution in 

the cylinder. 

Shin et al. [38] devised sealing not by immersion in a solution but through a diffusion 

process of gases applied orthogonally to a concrete block. The test specimen had a crack 

through which the gases could penetrate and promote the concrete regeneration process. 

Concrete blocks can be bio-regenerated by the sealing mechanism with calcium lactation 

through the concrete's oxygen gas diffusion.  

Jonkers [39] report that some genera of bacteria are preferable for the self-healing of 

concretes, such as Planococcus, Bacillus, and Sporosarcina, especially Bacillus. In this patent, 

the inventor indicates mass ratios between 1) the bacterial material and healing agent in the 

range of 1:10000 to 1:1000000, with the cellular material dry and in well-divided proportions, 

and 2) the healing agent and cement in the range of 1:20 to 1:2000, preferably 1:50 to 1:500 

(including water).  

Wiktor and Jonkers [40] proposed a method for conditioning concrete to bacterial 

action for self-healing through a mixture of two liquids: a healing agent and a gelling agent. 

This mixture promotes the self-healing of concrete, mainly on inclined surfaces or ceilings, 

where the weight force of a more fluid liquid impedes it from staying in place. For example, 

sodium silicate (gelling agent) and a calcium salt (healing agent), such as calcium nitrate, could 

be used. The authors suggest applying the healing agent 30 minutes after the application of the 

gelling agent.  

Li et al. [41] suggest implementing concrete containing calcium lactate salts and perlite 

granules to protect basophilic organisms, such as Bacillus cereus, from unfavorable 

environmental conditions. According to the inventors, Bacillus cereus in the dormant state in 

a dry environment can remain viable for up to 50 years.  

Keung et al. [42] created a method for forming microcapsules with the capacity to 

promote the self-healing of concrete. This development involved the initial mixture of 

surfactants (polyethylene glycol dioleate, sorbitan laurate, polyethylene glycol isostearate, and 

others), healing agents (such as colloidal silica), and encapsulating polymers (such as 

polyurethane and polystyrene). The mixture was homogenized at a low, stirring speed (50 to 

600 rpm) for the formation of an emulsion and then at high speed (1000 to 12000 rpm) in the 
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presence of catalysts, such as bismuth carboxylate, zinc carboxylate, and mercaptide oxides. 

The change in speed was necessary for the initial emulsification and the consequent formation 

of larger silica droplets. The high stirring speeds in the emulsification process reduced the 

colloidal silica droplets' size, causing phase separation.   

7. Self-Healing Concretes and Similar Systems in Periodicals 

Reddy et al. [43] address a set of chemical healing agents, such as crystalline mixtures, 

polymers, and fibers, for concrete self-healing. The authors also report the thickness of 

crystalline recovery and the type of exposure to environmental conditions (dry or wet).  

Reddy et al. [44] offer an excellent compilation of four types of bacteria of the genus 

Bacillus (megaterium, pasteurii, sphaericus, and subtilis) from diverse bibliographic sources 

for application in self-healing concrete, indicating where the bacteria are found, cell 

concentration ranges in the medium, the common working temperature for the bacteria, and the 

encapsulation material. The authors also compare the strength of the concrete considering 

different bacterial concentrations.  

Martuscelli et al. [45] evaluated the biotechnological potential of 19 species of fungi 

grown in Petri dishes with a urea medium (20 g/L) for six days, identifying strains of 

Cladosporium herbarum, Cladosporium angustiherbarum, and Penicillium brevicompactum 

as having ureolytic activity based on the strong change in color.  

Rauf et al. [46] submitted sporulated strains of Bacillus subtilis, Bacillus cohnii, and 

Bacillus sphaericus to different media containing urea (0.0 to 2.8%, m/m of cement) and 

calcium lactate (1.2 to 4.0%, m/m of cement) for 28 days. The authors evaluated the thickness 

of the concrete seal, diffractograms of the self-healed concretes, and compression strength, 

reporting the following results: the maximum thickness of 0.8 mm; diffractograms containing 

calcite and aragonite as polymorphs of calcium carbonate; and maximum compression strength 

of 42 MPa. B. sphaericus demonstrated the best efficiency regarding the recovery of concrete.  

Zhang et al. [3] pre-inoculated a strain of Bacillus cohnii and two microorganism 

colonies under anoxic and anaerobic conditions in a medium containing calcium lactate (8 g/L). 

The solutions were placed in devices for the simultaneous testing of the concrete's permeability 

and its regeneration by CaCO3 in 28-day experiments. XRD analysis was also performed. The 

researchers found maximum calcification of 1.22 mm under anoxic conditions of the colonies 

after the study period. Moreover, permeability in water presence was reduced by incorporating 

calcium salts into the concrete structure. Under these conditions, calcite and aragonite (both 

crystals of CaCO3) were found in the diffractograms. 

Brasileiro et al. [47] added calcium lactate (2.8 to 6.6%, w/w of cement) to the 

composition of cement, hydrating and solidifying the mixture in 15-cm Petri dishes, followed 

immediately by the inoculation of 1 mL of a medium containing Bacillus cereus (107 

cells/mL). The authors observed crystal growth on the cement's surface (Figure 10) for seven 

days and performed XRD analysis. The two main results were nucleations formed after about 

17 h and peaks in the sample's diffractogram, revealing an initial 6.6% calcium lactate, 

corresponding to 82% SiO2 and 18% CaCO3 (calcite).  

8. Conclusions 

This paper discussed the main aspects of the synthesis of self-healing concrete, from 

the initial production of cement to the patenting of solutions.  
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Regarding cement production, we identified the main components that need to be 

addressed in novel methods to replace toxic agents, such as SiO2, and the suggestion of novel 

reactional and bioreaction mechanisms for the sealing of cracks in traditional concrete. 

Moreover, it is important to know the technical norms that govern the production process so 

that all mechanisms are proposed, preferably following such norms or so that a technical norm 

commission can be formed to effectuate changes. 

Regarding microencapsulation technologies, we discussed the types of healing agents 

and ways to store these agents for future applications and the adequate bioreactional 

mechanisms for the effective self-healing of concrete over time without weakening the system. 

In terms of crystallization, we addressed the importance of knowledge on each 

substance's solubility curve and each polymorph of each substance, and we point out the 

existence of pseudo polymorphs. The solubility curve of a substance enables testing the 

adequate crystallization methods for a process and adapting novel crystallization methods to 

the microorganism, type of cement, and bioreaction process.  

In evaluating self-healing concrete properties, we identified the routine methods used 

for both macroscopic and microscopic analyses to indicate competitiveness with traditional 

concrete production processes.  

One of the challenges of biotechnology is its incorporation into traditional production 

processes in the industry to achieve improvements in the process, such as optimizing the 

properties of a material and/or a reduction in the toxicity of compounds employed in the 

process. Meeting this challenge requires an adequate theoretical basis encompassing market 

aspects through records of intellectual property and scientific aspects found in international 

periodicals and books. Therefore, the production of self-healing concrete is a challenge to be 

met with biotechnology. 
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