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Abstract: Nanomaterials, including carbon-based nanoparticles, have been applied as carriers for 

anticancer drugs. This short communication reported the synthesis, cytotoxicity, and drug delivery of 

methotrexate using graphene oxide (GO) as a carrier. GO was synthesized following Hummer's method. 

It was characterized using X-ray diffraction (XRD), transmission electron microscope (TEM), and 

scanning electron microscope (SEM). Data analysis confirms the synthesis of GO with high crystallinity 

and lamellae morphology. GO showed a high cytocompatibility toward the human EA.hy926 

endothelial cells. GO has been used as a carrier for the anticancer drug; methotrexate. The drug delivery 

was tested for hepatocellular carcinoma cells (HepG2 cells), human embryonic kidney cells (HEK293A 

cells), and porcine skin fibroblasts (PEF).  
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1. Introduction 

Cancer disease has been considered a severe threat to humans. The World Health 

Organization (WHO, 2018) reported that cancer causes one in six deaths. According to a study 

in 2020, there are 19 million cases related to cancer annually [1], causing 8.8 million deaths 

(represents 15.7% of deaths annually) [2,3]. Several drugs have been reported as promising 

anticancer therapeutics [4–11]. However, they lack high cell internalization, cell permeation, 

bioavailability, selectivity, and increased efficiencies [5,6,12–19]. Thus, several carriers, 

including natural polymers [20], polysaccharides [13], magnetic carriers [21], and extracellular 

vehicles (EVs)[22], were reported for drug delivery. They exhibit high drug loading capability, 

controlled release, and increased cell internalization. Nanotechnology has advanced 

biomedical fields, including cancer treatment [23–29].   

Graphene is a new allotrope (two-dimensional, 2D) of carbon nanomaterials with a 

single layer of sp2-hybridized carbon atoms [30–39]. The synthesis of graphene was awarded 

Nobel Prize in Chemistry in 2010. Graphene-based nanomaterials such as graphene oxide(GO) 

have advanced biomedicine, including drug delivery [40,42]. They can proceed into scaffold 

[43,45], fiber [46], and hydrogels [47]. Graphene-based materials offered several advantages, 

including high drug loading and release abilities [47]. Mixed anticancer drugs such as 

doxorubicin (DOX) and camptothecin (CPT) can be loaded into GO [49]. Thus, they can 

deliver more than one drug simultaneously. The drug can be loaded to graphene via covalent 
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through cross-linking chemistry [50], electrostatic, and physical absorption interactions such 

as π-π cooperative interaction [51]. The drug delivery can be controlled via pH [50,52], 

enzymatic [53], Near-infrared (NIR) light [54], and electrically control [55]. The surface 

modification ensures high drug release [56]. Graphene can also be modified with other 

nanoparticles, including magnetic nanoparticles for photothermal treatment [57].  Graphene-

based materials offer multifunctionality [58–61].  The polar groups render the material highly 

hydrophilic. Thus, they were used as a carrier for the delivery of anticancer drugs such as DOX 

[62], quercetin and gefitinib [63], sumatriptan succinate (SS)[64], and cytarabine (CYT)[65]. 

Herein, the application of graphene oxide (GO) to deliver methotrexate (MTX) was 

investigated. Hummer's method was followed to synthesis GO followed by ultrasonication to 

ensure high dispersion. The crystallinity and morphology of GO were characterized using X-

ray diffraction (XRD) and electron microscope (transmission (TEM), scanning (SEM)). The 

material was mixed with methotrexate. Methotrexate-loaded GO was tested using 

hepatocellular carcinoma cells (HepG2 cells), human embryonic kidney cells (HEK293A 

cells), and porcine skin fibroblasts (PEF). 

2. Materials and Methods 

 Graphite flakes were purchased from Alfa Aeser (Germany). 3-[4,5-

dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT), sulfuric acid, and potassium 

permanganate (KMnO4) were purchased from Sigma-Aldrich (USA). 

2.1. Synthesis of GO. 

GO was prepared using Hummer's method [32,66]. Natural graphite (1.0 g) was 

dispersed into a mixture of sulfuric acid (15.0 mL) and nitric acid (10.0 mL) in an ice-bath. 

Potassium permanganate (3.0 g) was gradually added to the acid mixture during stirring. After 

12h, hydrogen peroxide (15.0 mL) was dropped. GO was collected and washed with HCl and 

water to remove any impurities. The solution of GO (1 mg/mL) was prepared via 

ultrasonication (140 W) for 2d at 60 °C.  

2.2. Instruments. 

X-ray diffraction (XRD) was recorded using a PANalytical X'Pert Pro diffractometer 

(Cu Kα1, λ of 1.54Å). Transmission electron microscopy (TEM) image was captured using a 

JEM-2100 instrument (JEOL, Japan). Scanning electron microscopy (SEM) image was 

performed using a JSM-7000 instrument (JEOL). UV-Vis spectra were recorded using Thermo 

Scientific Evolution-300. Fourier transform infrared (FT-IR) spectra were evaluated in solid 

form using Shimadzu-470 via the KBr disc technique. 

2.3. Indirect cytotoxicity assay. 

Human EA.hy926 endothelial cells were cultured in Dulbecco's modified Eagle 

medium (DMEM; Invitrogen, USA) supplemented with 10% fetal bovine serum (FBS; 

Hyclone, USA) and 1% penicillin/streptomycin (p/s, Gibco, USA) in a humidified incubator at 

37°C and 5% CO2. The cells were harvested using the trypsin-based method. Extracts were 

prepared from the GO to investigate any potential toxicological risk. The substrate was 

sterilized using ethylene oxide gas and mixed with serum-free DMEM supplemented with 1% 

p/s culture medium under the condition of 37°C/120 r/min for 72 h, according to a ratio 
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standard of 0.2 g/mL of culture medium [67]. Then, the supernatant was centrifuged and 

filtered to prepare the preconditioned media finally. 

Cells were cultured at a density of 5×104 cells/well in 24 well-plates for 24 h using a 

complete culture medium. The medium was aspirated, then 500 µL of conditioned or control 

medium was added after combining 10% FBS. As a negative control, cells were cultured with 

DMEM, while in the positive control wells, the cells were cultured in the presence of 20% 

dimethyl sulfoxide (DMSO). Cell viability was qualitatively investigated on day 3 using a 

Live/Dead assay kit (calcein-AM/ethidium Bromide homodimer, Invitrogen), according to the 

manufacturer's instructions, being viewed under a fluorescence microscope (Olympus, Japan). 

2.4. Drug loading. 

The anticancer drug was loaded by adding 1.0 mL of methotrexate (100 µg/mL; Sigma-

Aldrich) to 4.0 mL of GO in buffer solution (25 µg/mL) under stirring for 48 hours in the dark 

at room temperature.  

2.5. Drug delivery testing. 

Hepatocellular carcinoma cells (HepG2 cells), human embryonic kidney cells 

(HEK293A cells), and porcine skin fibroblasts (PEF) were cultured in DMEM supplemented 

with 10% FBS in a humidified 5% CO2 atmosphere inside an incubator at 37°C. The cells were 

harvested from 90% confluent cell culture plates and were resuspended in a completely fresh 

medium before plating. The cells (3×104) were seeded in a 24-well plate. The cells were 

cultured for 24 hours, washed twice with phosphate-buffered saline (PBS), and then incubated 

with either MTX–GO, or MTX (20 µg/mL), or GO (20 µg/mL) only containing DMEM 

medium at 37°C for 24 hours. The cell viability was evaluated using the MTT assay. Active 

cells reduce yellow-colored MTT to purple-colored formazan dye crystals. Briefly, 50 μL of 

MTT solution (5 mg/mL) was added to each well and incubated at 37°C for 4 hours. After 

discarding the medium containing MTT, 350 μL of the cells were cultured in the presence of 

20% DMSO. After 10 minutes of incubation, 100 μL aliquots from the wells were pipette into 

another 96-well plate. The color developed was quantified by recording the absorbance at a 

wavelength of 570 nm with a spectrophotometer. 

3. Results and Discussion 

3.1. Material characterization. 

GO was synthesized through graphite oxidation using KMnO4 in an acidic solution 

(Figure 1) [39,68,69]. XRD pattern for GO exhibits a strong Bragg's diffraction peak at 10.9° 

corresponding to Miller index of (002) plane (Figure 2a). The d-spacing for the prepared 

material is 0.9 nm (Figure 2a). The morphology of GO was evaluated using TEM and SEM 

images (Figure 3). The transparency of GO in the TEM image reveals that GO consists of a 

few 2D layers (Figure 3a). SEM images confirm the lamellae morphology of GO (Figure 3b). 

The TEM and SEM images reveal that GO has crumbling morphology (Figure 3).  

UV-Vis spectrum of GO shows maximum absorption bands at 250 nm and 355 nm 

corresponding to π → π* transition of aromatic C–C bonds and n → π* transition of C = C 

(Figure 2b) [70]. Based on the chemical structure, MTX shows strong π–π* or σ–σ* transition 

in the UV–Vis region at maximum absorbance of 368 nm and 274 nm (Figure 2b). The ultimate 
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absorbance band of MTX at 368 nm was shifted to 361 nm after conjugation with GO indicating 

the strong interaction between GO and MTX.  

 

 
Figure 1. Schematic representation for the synthesis of GO and loading of methotrexate for drug delivery. 

The chemical function groups before and after the interactions were characterized using 

FT-IR spectra (Figure 2c). GO exhibits vibrational bands at 3569 cm-1, 1707 cm-1, 1628 cm-1, 

1412 cm-1, and 1029 cm-1, corresponding to O−H stretching,  C=O stretching of the carboxylic 

acid groups, aromatic C−C stretching, O–H deformation, and the C–O (Figure 2c). The FT-IR 

spectrum of MTX shows the characteristic bands at 1380 cm-1, 1644 cm-1, and 3400 cm-1 

corresponding to C−N, −NH2, and N−H, respectively (Figure 2c). MTX-GO exhibits the 

characteristic features for both materials. However, the vibrational bands of MTX mainly 

disappear, indicating the strong interaction with GO (Figure 2c).  

 
Figure 2. (a) XRD pattern of GO; (b) UV-Vis spectra for GO, MTX, and MTX-GO; (c) FT-IR spectra for GO, 

MTX, and MTX-GO. 
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Figure 3. (a) TEM image; (b) SEM image of GO. 

3.2. GO cytocompatibility. 

The fluorescence images of EA.hy926 cells were also reported (Figure 4). Images 

indicate high cell density revealing the high biocompatible nature of GO (Figure 4). 

 
Figure 4. Fluorescence images of live cells (EA.hy926 cells) after 3 days of culture. Scale bar represents 100 

µm. 

3.3. Drug delivery. 

GO was used for the delivery of methotrexate (Figure 1). Both sides of GO layers can 

adsorb MTX via non-covalent interactions including electrostatic, and π-π intercalation. The 

GO layers' interplanar distance is close to 1 nm, which offers MTX intercalation between the 

layers. Thus, GO can be used as a carrier for the delivery of MTX. The loading of MTX onto 

GO was achieved by mixing both species in an aqueous solution with sonication aid. The drug 

release was evaluated using HepG2, HEK293A, and PEF cells.  
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The MTT assay showed that the bare GO does not cause any considerable cytotoxic 

effect to the three cell types; HepG2, HEK293A, and PEF cells (Figure 5). The free MTX was 

taken up by the tumor cell line (HepG2 cells) and the normal cells (HEK293A and PEF cells) 

with almost similar cytotoxicity to all three cell types without apparent selectivity. After 

conjugating the MTX to GO as a carrier, the MTX-GO displayed significant specific 

cytotoxicity to the tumor cell line (HepG2 cells) compared to the normal cells (HEK293A and 

PEF cells). The results may open new avenues for using GO-based materials for clinical and 

surgery applications [71–74]. 

 
Figure 5. MTT assay for MTX, GO, and MTX-GO. 

4. Conclusions 

GO has been synthesized and applied as a carrier for the delivery of methotrexate. It 

exhibits high biocompatibility. The drug loading is simple. The cell viability for HepG2, 

HEK293A, and PEF cells showed controlled release. These findings open new opportunities 

for the biomedical applications of graphene oxide as a carrier for drug delivery.  
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