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Abstract: Proteases, also known as proteinases or proteolytic enzymes, belong to a group of hydrolases. 

It can be applied in numerous fields and industries. Solid-state fermentation (SSF) is recognized as an 

effective method to produce protease. The ultimate aim of this study is to optimize the production of 

protease from Aspergillus niger under solid-state fermentation (SSF) by utilizing shrimp shell powder 

as a solid substrate. It was found that the produced protease from SSF was slightly alkaline. The 

correlation between factors operating parameters (incubation temperature, inoculum size, moisture 

content) for enzyme production is analyzed using statistical software, Minitab 16. A 23 full factorial 

experimental design was employed, and the enzyme produced was optimized by the method of 

desirability function. The optimal conditions for protease production of 3.7 U/mg were 35 °C of 

incubation temperature, 60% of initial moisture content, and 1.0 inoculum size. It is concluded that SSF 

protease was successfully produced from Aspergillus niger by utilizing shrimp waste as substrate. 

Through optimization study, moisture content, the interaction between incubation temperature and 

moisture content, interaction between moisture content and inoculum size significantly impact protease 

production.  
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1. Introduction 

Proteases, also known as proteinases or proteolytic enzymes, belong to a group of 

hydrolases. It acts as a catalyst in the hydrolysis of protein to polypeptides and oligopeptides 

to amino acids [1-3]. Proteases account for approximately 60% of the whole industrial enzyme 

market and have wide-ranging applications in numerous fields and industries, including leather, 

detergent, food processing, textile, analytical, pharmaceutical, diagnostic, commercial, and 

waste treatment. Proteases can perform hydrolyzation of insoluble protein in the waste stream, 

while solubilization of meat and fish remains. Besides, protease utilization in wastewater 

treatment systems also improves sludge dewatering [1, 4-7]. 

Proteases can be produced from different sources, such as fungi, plants, animals, and 

microorganisms, by submerged or solid-state fermentation. A microbe is commonly used to 

produce proteases due to its feasibility in genetic manipulation, rapid growth rate, and wide 

biochemical diversity. Fungal species like Aspergillus, Penicillium, and Rhizopus are also 

generally used for proteases production as they are considered safe. Aspergillus niger is one of 

the main sources of fungal proteases [2, 8-10].  
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1.1. Research background. 

Solid-state fermentation (SSF) is a fermentation process involving a solid matrix with 

a very low amount or without free water; however, there must be a sufficient amount of 

moisture in the substrate to support the metabolism and growth of microorganisms [11-13]. 

The solid matrix mentioned could be the source of nutrients or carbon utilized by the 

microorganisms to support the development, growth, and metabolic activities [14, 15]. 

Microorganisms excrete the required enzymes during SSF for the degradation of the substrate 

molecules [14]. The solid substrate and microorganisms' nature is the important parameter that 

influences the production yield and affects the SSF process [16]. 

Filamentous fungi are regarded as the most appropriate microorganisms for SSF. Fungi 

such as Aspergillus niger, Fusarium culmorum, and Penicillium can excrete significant 

amounts of enzymes and metabolites through SSF as this technique can stimulate their natural 

habitat. There are approximately 60% of commercially available enzymes produced from 

fungi. Yeasts are also suitable for SSF. Filamentous fungi and yeasts are able to grow in an 

environment with low water activity. Some species of bacteria, such as Bacillus thuringiensis, 

Pseudomonas sp., and Bacillus subtilis, have also been employed to produce the enzyme 

through SSF [12, 13, 17]. 

Practically all the fermentation processes were based on the concepts and theory of SSF 

as it played a very important role for humankind, mainly for food and beverages, both in 

western and eastern countries. In recent decades, SSF employing microorganisms for the 

production of biomolecules and has been applied in various industries and sectors, including 

textile, pharmaceutical, food, biochemical and bioenergy, and others [11, 13, 18]. SSF can be 

utilized and applied in a controlled way to produce value-added products, for example, 

enzymes [12]. Solid-state fermentation (SSF) has been claimed to have more significant 

advantages in enzyme production. It requires lower energy consumption and produces lesser 

wastewater. Furthermore, enzyme productions through SSF are less subjected to the effects of 

the pH of media and temperature and inhibition inhibition by the substrate [11, 18]. 

1.2. Problem statement. 

It is vital to select suitable substrates for the production of enzymes under SSF. An 

appropriate solid material should be able to supply all the essential nutrients for the growth of 

microorganisms. Solid substrates also act as anchorage and physical support for the microbial 

cells. Lignin, starch, fibers, pectin, cellulose, and hemicellulose are the fundamental structure 

of solid substrates. These structures define the substrates' properties and characteristics and 

play the carbon and energy source's role for microorganisms' growth [11, 17-19]. Agro-

industrial residues and shrimp by-products have been introduced as solid substrates to produce 

microbial extracellular enzymes as they are cheap and have low commercial value. These waste 

are available abundantly and can cause environmental problems if they are disposed of to the 

environment without any treatment [18, 20]. Agro-industrial residues [21], soybean hull [22], 

and okara [23] have been utilized for protease production by previous researchers. Bio-

conversion of these residues into commercially valuable products provides a considerable 

economic bonus, reduces the quantity of solid waste, and encourages environmentally-friendly 

agro-industrial waste management [18, 19]. 

Shrimp belongs to the family of Crustacea. It is one of the most favored harvests among 

crustaceans. Shrimp catches marked a new record in 2017 and 2018 at over 336,000 tonnes. 
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Since 2005, global shrimp catches increase annually and have been stable since 2012 at 3.5 

million tonnes, with Asia marked the most significant volume in shrimp fishing. Shrimp shells 

are an important group of by-products. It was categorized as a slow natural degradation rate of 

shells produced in high volumes due to the increased processing and production [24, 25]. Non-

edible parts of shrimp processing bio-wastes, including the shell, head and tail portions, occupy 

about 50-70% of the raw material's total volume. These bio-wastes are being generated 

tremendously due to the high demand for shrimp products. It has been reported that around 6-

8 million tonnes of crustacean waste are generated annually. Severe environmental problems 

and impacts have arisen as a result of the continuous disposal of shrimp waste into the shore 

and coastal environment [26, 27]. 

Most of the shrimp wastes are discarded at will. According to the current level of 

awareness of society on the negative impact of pollution, shrimp waste can be utilized as a 

fermentation media and the production of high value-added and economically useful products. 

In the meantime, shrimp bio-waste utilization also plays a vital role in conserving and 

preserving a clean environment [20, 26, 28]. In the present study, enzymes are produced using 

shrimp shell powder as solid substrate under SSF. SSF is believed to possess several advantages 

over submerged fermentation (SmF), such as higher enzyme production, higher product 

stability, lower demand on sterility, and lower protein breakdown [12]. 

2. Materials and Methods 

2.1. Microorganism and inoculum preparation. 

The fungus Aspergillus niger used in this study was isolated from the effluent of a 

domestic wastewater treatment plant in Universiti Malaysia Terengganu (UMT) [29]. The 

inoculums were inoculated in potato dextrose agar (PDA) media in a Petri dish at 30 °C for 4 

days. Then, it was diluted with 500 ml of distilled water. The spore suspension was stored in 

the chiller at 4 °C [30]. The inoculum size was calculated using Neubauer Chamber [31]. 

2.2. Preparation and characterization of shrimp shell substrate. 

Unwanted shrimp shells were collected from a local seafood restaurant named Ocean 

Restaurant. Shrimp shells were removed as only the shrimp's flesh is needed to prepare dishes 

for this restaurant. The shrimp shells were then sent to the laboratory in an icebox. The shells 

were washed to remove dirt, sand, and soil from them. The washed shells were then dried in 

the oven at 55 °C for 12 hours. The shells were then milled into powder form with a disk mill 

with a sieve size of 1.2 mm. The shrimp shell powder was applied as the substrate for this study 

without any pre-treatment [20]. 

FTIR was conducted using IRTracer-100 Fourier Transform Infrared 

Spectrophotometer to characterize the sample powder. KBr pellets were prepared by mixing 

the sample powder with potassium bromide (KBr) with the ratio of 1:10 and compressed into 

salt discs for scanning in the 400 – 4000 cm-1 spectral range [32, 33]. 

2.3. Enzyme production under solid-state fermentation. 

The enzyme was produced using the SSF technique. 5 gram of substrate powder was 

moistened with 5.5 ml of water in a conical flask and was autoclaved for 30 minutes at 15 psi 

pressure. The substrate medium was inoculated with 2 ml of Aspergillus niger inoculum [20]. 

https://doi.org/10.33263/BRIAC116.1480914824
https://biointerfaceresearch.com/


https://doi.org/10.33263/BRIAC116.1480914824  

 https://biointerfaceresearch.com/ 14812 

It was then incubated in an incubator at 30 °C for 120 hours [17]. After incubation, 50 ml of 

water was added, and the content was shaken at a rotary shaker at 150 rpm for 30 minutes at 

room temperature. The solution was then filtered through Whatman filter paper, and the 

supernatant was collected. It was centrifuged at 4,400 rpm at 4 °C for 20 minutes. The 

supernatant was used for enzyme assays [20]. 

2.4. Characterization of the enzyme. 

The protease activity of the enzyme produced was analyzed. In addition, the pH of the 

enzyme was also determined by using a pH meter. 

2.4.1. Protease assay. 

Protease activity was determined using the Casein Digestion Unit (CDU) Analytical 

Method [33], which is also named Spectrophotometric Stop Rate Determination. Casein was 

used as the substrate. Both test and blank conical flasks were added with 3 ml of Casein, and 

only the test conical flask was added with 0.5 ml of the enzyme. They were incubated for 10 

minutes at 30 °C in the water bath. Both flasks were then added with 3.2 ml of TCA, and 0.5 

ml of distilled water was added into a blank conical flask. Incubation was done for 20 minutes 

at 37 °C. The samples were centrifuged at 4 rpm for 15 minutes. The absorbance values of the 

prepared samples were measured using a spectrophotometer at 275 nm. 

𝑃𝑟𝑜𝑡𝑒𝑎𝑠𝑒 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =  
(𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓) (𝑡𝑒𝑠𝑡−𝑏𝑙𝑎𝑛𝑘)(67)(𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟)

10(1.34)(𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑒𝑛𝑧𝑦𝑚𝑒)
                                             (1) 

2.5. Optimization of enzyme production. 

In this present study, a 23 full factorial experimental design (3 represents the number of 

factors, 2 represents the number of levels) was employed using the statistical software Minitab 

16 to study the interactions between the factors and their effects on the response. These three 

factors are incubation temperature, moisture content, and inoculum size. Each factor was 

studied at two levels: low level and high level, coded as -1 and +1, respectively, as shown in 

Table 1. Solid-state fermentation was conducted at 25 °C and 35 °C. The moisture content of 

the solid substrate was adjusted to 40% and 60%. The inoculum size of Aspergillus niger was 

measured according to the Petri dish's number, which was 1 and 9. 

Table 1. Values and levels of the factors in the 23 factorial experimental design. 

Factors Coded Symbol Values of Coded Levels 

Low (-1) High (+1) 

Incubation Temperature (°C) X1 25 35 

Moisture Content (%) X2 40 60 

Inoculum Size (Petri dish) X3 1 9 

The software suggested a total of 24 experiment runs for data collection and analysis. 

Table 2 illustrates the factors and the levels for the experiments with real and coded values. 

 The polynomial equation based on the first-order model for this experimental design 

with three factors is given as below: 

𝑌 = 𝑎0 + 𝑎1𝑋1 + 𝑎2𝑋2 + 𝑎3𝑋3 + 𝑎12𝑋1𝑋2 + 𝑎13𝑋1𝑋3 + 𝑎23𝑋2𝑋3 + 𝑎123𝑋1𝑋2𝑋3                              (2) 

where Y is the experimental response, which represents the enzyme yield. X1, X2, and X3 are the 

coded variables shown in Table 1 corresponding to incubation temperature, moisture content, 

and inoculum size, respectively. X1X2, X1X3, X2X3, and X1X2X3 indicate the interactions between 
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the factors. The coefficient a0 implies the average value of the enzyme yield from the total 

experiment runs, a1, a2, and a3 show the linear coefficients while a12, a13, a23, and a123 represent 

the interaction coefficient [34, 35]. 

Table 2. Design matrix of 23 full factorial designs in real and coded values. 

Experiment 

number 

Factors 

Incubation Temperature 

(°C) 

Moisture Content 

(%) 

Inoculum Size 

(Petri dish) 

1 35 60 9 

2 35 60 9 

3 25 40 1 

4 25 60 1 

5 35 40 1 

6 35 40 9 

7 25 60 1 

8 35 40 1 

9 35 40 9 

10 35 40 1 

11 35 60 1 

12 35 40 9 

13 25 60 1 

14 35 60 1 

15 35 60 9 

16 25 40 9 

17 25 60 9 

18 25 40 1 

19 25 60 9 

20 35 60 1 

21 25 40 9 

22 25 60 9 

23 25 40 1 

24 25 40 9 

The method of desirability function was then applied to acquire maximum production 

of protease [36]. 

3. Results and Discussion 

3.1. Characteristics of shrimp shell substrate. 

The shrimp shell powder's structural and functional properties were determined by 

FTIR spectra shown in Figure 1. It is found that strong absorbance bands are seen at 3141.00 

cm-1, 2939.52 cm-1, 2353.16 cm-1, 1643.35 cm-1, 1411.89 cm-1 and 1068.56 cm-1. The FTIR 

spectrum of shrimp shell powder shows a band at 3141.00 cm-1 representing amino peak and 

N-H stretching vibration of amide group present in the protein [32, 37]. The peak observed at 

2939.52 cm-1 indicating CH2 stretching and CH3 vibration, which also present in a protein 

molecule. It might also result from a long hydrocarbon chain of lipids and carotenoids that exist 

in dried shells [38, 39]. Shrimp shell powder also showed the characteristics at 2353.16 cm-1, 

representing asymmetric and symmetric C-H stretching vibrations of amide-II linkage of 

protein [37, 40]. 

 It is clearly noticed that a peak at 1643.35 cm-1 corresponded to the β-sheet structure of 

the protein [37]. Besides, weak peaks are observed at 1411.89 cm-1 and 1068.56 cm-1. The peak 

at 1411.89 cm-1 implying C-N stretching and N-H bend of amide II linkage of the protein, while 

the peak at 1068.56 cm-1 represents C-O stretching vibration asymmetric bridge oxygen in the 

sample [37, 39]. 
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Figure 1. FTIR spectra of shrimp shell substrate. 

3.2. Characteristic of the enzyme. 

The pH value of the enzyme produced from Aspergillus niger by using shrimp shells 

as a substrate is slightly alkaline, which is 8.74. The pH of dried shrimp by-products was 8.6 ± 

0.2, according to the studies of [20]. It also contained protein, chitin, fat, and minerals. The 

shrimp by-product composition might differ from batch to batch due to various factors, 

including age, shrimp species, proportion of the shrimp body, and processing methods [20]. 

The inoculum size of the selected microorganism was calculated 1.59 x 106 pores/ml, using 

Neubauer Chamber. 

The protease activity of the enzyme produced from SSF is 3.5 U/ml. Previous studies 

[27, 41] utilized shrimp by-products to produce protease and lipase under submerged 

fermentation (SmF). Various reports on enzyme production from Aspergillus niger are 

available, mostly applied agricultural or biomass waste as a solid substrate. The enzymes 

produced including protease [42], amylase [43], and lipase [44]. Nevertheless, to the best of 

our knowledge, there are no reports available regarding the production of protease from 

Aspergillus niger under SSF using shrimp shell powder as the solid substrate. 

Shrimp shell is a suitable carbon/nitrogen (C/N) source for protease production through 

the fermentation process [28]. The exoskeleton of shrimp is rich in protein, minerals, chitin, 

and inorganic compound like calcium carbonate. Protein hydrolysate with well-balanced 

peptides and amino acid composition is allowed to be recovered from the microbial enzymatic 

digestion of this nutrient-rich waste [45, 46]. Thus, shrimp shell powder is suitable to act as an 

inducer for protease production by Aspergillus niger, a protease-producing strain [45, 47]. 

3.3. Full factorial design analysis. 

The experimental design matrix with actual values is shown in Appendix B. The factors 

involved are incubation temperature (X1), moisture content (X2) and inoculum size (X3). Yield 

represents the response of the experiment, which is protease activity in the enzyme produced. 
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Table 3 presents the model's coefficients, a standard deviation of each coefficient, and 

probability for the full 23 factorials designs. By substituting the coefficients in Eq. (2) by their 

numerical values, we get: 

𝑌 = 2.7375 − 0.2292𝑋1 + 0.3542𝑋2 − 0.3208𝑋3 + 0.2042𝑋1𝑋2 − 0.1042𝑋1𝑋3 − 0.1375𝑋2𝑋3 −

0.0708𝑋1𝑋2𝑋3                                                                                                                                                        (3) 

The coefficient of determination (R-Sq) for a good fit model should be closed to 100% 

or 1 and should be at least 80% or 0.80 [48]. From Table 3, the R-Sq value is 88.45%. It 

suggests that the model was able to predict the response significantly. 

Table 3. Estimated regression coefficients for protease production.  

Terms Coefficients SE Coef T-value p-value 

Constant 2.7375 0.05401 50.69 0.000 

Incubation Temperature (X1) -0.2292 0.05401 -4.24 0.001 

Moisture Content (X2) 0.3542 0.05401 6.56 0.000 

Inoculum Size (X3) -0.3208 0.05401 -5.94 0.000 

X1.X2 0.2042 0.05401 3.78 0.002 

X1.X3 -0.1042 0.05401 -1.93 0.072 

X2.X3 -0.1375 0.05401 -2.55 0.022 

X1.X2.X3 -0.0708 0.05401 -1.31 0.208 

R-Sq 88.45% 

R-Sq (prediction) 74.01% 

R-Sq (adjusted) 83.40% 

 3.3.1. Main effects. 

From Eq (3), it was noted that the coefficient of X2 is positive. It can be verified that 

moisture content has a positive effect on the production of protease. It indicates that the 

production of protease increases as the moisture content increases.  
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Figure 2. Main effects plot for protease production. 

On the other hand, the regression coefficients of X1 and X3 are negative. It is 

acknowledged that incubation temperature and inoculum size have a negative effect on the 

production of protease. It implies that protease production increases when these two factors 

change from a greater extent to a lower extent. The p-values for both incubation temperature, 
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moisture content, and inoculum size are lower than 0.05, as shown in Table 3. The parameter 

with a p-value < 0.05 has a significant effect on explaining the yield response [49]. 

All respective factors affect the response differently. The main effect's magnitude is 

larger if the slope is further away from zero [50]. From Figure 2, the steep slope shows that 

moisture content and inoculum size appear to have more notable effects on the production of 

protease compared to incubation temperature. 

 3.3.2. Interaction effects between factors. 

As shown in Table 3, the p-values for X1.X3 and X1.X2.X3 are larger than 0.05. It reveals 

that the interaction between incubation temperature and inoculum size and the interaction 

between all three factors do not significantly impact the response. In contrast, the p-values for 

X1.X2 and X2.X3 are smaller than 0.05, which concludes that the interaction between incubation 

temperature and moisture content is important and the interaction between moisture content 

and inoculum size. According to the previous study [51], the production of manganese 

peroxidase from Schyzophyllum commune and Ganoderma lucidum was optimized by using 

corn stover and banana stalk as solid substrates. 

 The interactions between the factors can also be explained by an interaction plot shown 

in Figure 3. The factors' interactions are weak if the lines are closed to parallel and vice versa 

[50]. Figure 3 presents many interactions: incubation temperature-moisture content (X1.X2), 

incubation temperature-inoculum size (X1.X3), and moisture content-inoculum size (X2.X3). 

The interaction plot of X1.X3 represents the interaction is less important, while the lines of 

incubation X1.X2 and X2.X3 display the importance of the interactions on the protease yield. 
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Figure 3. Interaction effects plot for protease production.  

The significance of the main effects and their interactions can also be present on the 

Pareto chart and normal plot generated by Minitab. Figure 4 display the Pareto chart of the 

standardized effects. The values are considered significant if they exceed the reference line or 

vice versa [52]. From Figure 4, it is clearly showed that only AC and ABC represent the 

interaction between incubation temperature and inoculum size, and the interactions between all 

three factors are not significant as their values fall before the reference line, which is 2.120.  

The normal plot is demonstrated in Figure 5. The red color points, which are far away 

from the line fitted to the middle, imply that those are significant main and interactions of 
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factors. On the other hand, points in black color, close to the line, represent factors that do not 

significantly affect the response [50, 53]. 
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Figure 4. Pareto chart of the standardized effects (response is yield, alpha = 0.05). 

7.55.02.50.0-2.5-5.0

99

95

90

80

70

60

50

40

30

20

10

5

1

Standardized Effect

P
e

rc
e

n
t

A Incubation Temperature

B Moisture C ontent

C Inoculum Size

Factor Name

Not Significant

Significant

Effect Type

BC

AB

C

B

A

Normal Plot of the Standardized Effects
(response is Yield, Alpha = 0.05)

 
Figure 5. Normal plot of the standardized effects (response is yield, alpha = 0.05) 

Contour and surface plots of all three variables were generated through Minitab to study 

further the relationship between the optimization factors and the yield of protease [54].  

 Figures 6(a) and (b) demonstrate the effect of incubation temperature and moisture 

content on protease production. From Figure 6, it is obviously showed that the interaction 

between incubation temperature and moisture content has a positive impact on protease yield. 

It is in accordance with the results shown in Table 3. The protease production increased as the 

incubation temperature increased together with the substrate's increment of moisture content. 

The interaction of these two factors is significant on the response variable, as explained in the 

normal plot in Figure 5. 
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The interaction between incubation temperature and inoculum size on protease 

production is presented in Figures 7(a) and (b). From the plots, the interaction between these 

two factors has a negative effect on the protease yield. The yield of protease increases with the 

decrement of incubation temperature and inoculum size. This is inclined to the negative 

coefficient of X1.X3, as shown in Table 3. However, the interaction between these two factors 

is not significant to protease production, as shown in the Pareto chart in Figure 4. 

Figure 8(a) and (b) present the effect of interaction between moisture content and 

inoculum size on protease yield. From Figure 8, it is inferred that the yield of protease increases 

when the moisture content increases while the inoculum size decreases.  

 

 
(a) 

 
(b) 

Figure 6. The effect of incubation temperature and moisture content on protease yield (a) contour plot; (b) 

surface plot. 

 
(a) 

 
(b) 

Figure 7. The effect of incubation temperature and inoculum size on protease yield (a) contour plot; (b) surface 

plot. 

 
(a) 

 
(b) 

Figure 8. The effect of moisture content and inoculum size on protease yield (a) contour plot; (b) surface plot. 

The interaction between moisture content and inoculum size significantly affects the 

response variable as interpreted in the Pareto chart and normal plot in Figure 4 and Figure 5, 

respectively. 
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 3.3.3. Normal probability. 

A normal probability plot of residuals is constructed to determine the normality 

assumption of the data. An experiment's data are normally distributed if the data points are 

situated remarkably close to the plot's straight line [48, 49]. By referring to Figure 9, the data 

points are considerably close to the straight line. Thus, it is determined that the data were 

collected from a normally distributed population. 

 
Table 9. Normal probability plot of residuals (response is yield). 

 3.3.4. Optimal design conditions. 

To acquire the maximum protease yield, the method of desirability function was applied 

[36]. The optimum condition for the maximum production of protease was at 35 °C of 

incubation temperature, 60% of initial moisture content, and 1.0 inoculum size. This optimal 

combination of factor settings was introduced for the predicted response of 3.7 U/mg with a 

desirability value of 1.0000, as shown in Figure 10. 

 The results obtained from this study are approximately matched to studies by previous 

researchers. Production of xylanase under SSF with the influence of incubation temperature 

found out that the ideal temperature was maintained in the range of 30-35 °C based on the 

research from [55]. On the other hand, the optimal incubation temperature for amylase 

production was 37 °C in the study from [56]. For this study, 35 °C is the optimum incubation 

temperature for protease production. At higher temperatures, the temperature of fermenting 

substrate rises due to a large amount of metabolic heat. It might inhibit microbial growth and 

slow down their metabolic activities due to the denaturation of proteins, leading to lesser 

enzyme formation [57, 58]. 

 In this present study, 60% of moisture content was obtained as the optimal condition 

for protease production. According to the study from [19], it is in accordance with the 

production of cellulases from Aspergillus niger NS-2 and learned that substrate-moisture ratio 

of 1:1.5 (60.0%) was most suitable for the production of cellulases under SSF. It would lead to 

poor solubility of the nutrient substrate at a lower moisture level, higher water tension, and 

lower degree of swelling, which would result in poor microbial growth. In contrast, higher 
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moisture content would cause a decrease in substrate porosity. Thus, oxygen penetration is 

limited and eventually reduces fungi growth and enzyme formation [57, 59]. 

 The optimum inoculum size for this study is 1.0, which indicates that only 1 petri dish 

of inoculum is needed for the maximum production of protease. As mentioned in subsection 

3.2, 1 petri dish contains 1.59 x 106 pores/ml of Aspergillus niger inoculum. This result is 

almost matched to the study from [60]; the inoculum size for optimum production of alpha-

amylase from Aspergillus oryzae was 106.87 by utilizing industrial waste residues. There are 

fewer conidial cells at a smaller inoculum size as a long time is required for the cell to duplicate. 

Conidial cells are insufficient for the initiation of microbial growth and production of the 

enzyme. In contrast, extremely large inoculum size results in decreased yield due to the high 

initial concentration of conidial cells. The cells' enormous growth causes depletion and 

imbalance of nutrients within a short period, resulting in lower metabolic activity [17, 19]. 

 
Figure 10. Desirability functions for the optimization of the response. 

4. Conclusions 

This study found out that the enzyme solution produced from Aspergillus niger under 

SSF was slightly alkaline. The enzyme produced was also tested for enzyme activity. The 

results indicate that it possessed protease activity. The correlation between factors operating 

parameters was studied by using Minitab 16. Incubation temperature, initial moisture content, 

and inoculum size were the factors in the design matrix. According to the statistical analysis, 

moisture content has a positive effect on the production of protease. It is also deduced that the 

interaction between incubation temperature and moisture content is significant and the 

interaction between moisture content and inoculum size. 

 Production of protease was optimized by employing a full factorial design. The 

maximum protease production was achieved at 35°C of incubation temperature, 60% of initial 

moisture content, and 1.0 inoculum size. Aquaculture sludge collected from Integrated Shrimp 

Aquaculture Park (iSHARP) Sdn Bhd was considered highly polluting wastewater. Due to the 

high content of organic material in the sludge, the COD value was extremely high. It was 
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harmful to the environment, causing pollution and eutrophication. Besides, the sludge 

contained a high amount of TSS. 

 A batch test was conducted with SSF and commercial protease for the treatment of 

aquaculture sludge. The samples were left for digestion for 7 days. The results indicate that 

both proteases can be effectively used as an enzymatic treatment of aquaculture sludge. It was 

able to remove COD and TSS. The batch test showed a higher percentage of reduction of COD 

using commercial protease. The reduction percentage was 93.32%. However, SSF protease was 

more economically friendly. 
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