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Abstract: This work presents a polysaccharide-based magnetic self-healing hydrogel fabricated 

through the incorporation of surface modified magnetic nanoparticles, a silica-surface modified 

magnetic - Fe3O4@SiO2, (MNP), to a polymer composite synthesized from the oxidation of xanthan 

gum (XG) and it's crosslinking with chitosan (CS) to generate Schiff base linkages rendering self-

healing character. Fourier transform infrared (FT-IR) spectroscopy analyses revealed the successful 

formation of Schiff base bonding in the CS-OXG and CS-OXG-MNP hydrogels. In incorporating 

surface-modified magnetic nanoparticles, the resulting CS-OXG-MNP hydrogel with a weight ratio of 

1:1:0.2, respectively, exhibited a better self-healing hydrogel in terms of faster self-healing 

characteristics and stronger mechanical property. 
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1. Introduction 

Hydrogels are interesting materials capable of trapping a large amount of liquid (usually 

water) through their crosslinked structures. This makes them comparable to natural 

extracellular matrices, making them efficient biocompatible materials. Moreover, hydrogels 

also have a porous structure and are suitable to take in high amounts of water-soluble 

compounds[1-9], which is important for a broad range of biomedical and industrial applications 

such as drug delivery, tissue engineering, and adsorbents [10-14]. Crosslinks can be in the form 

of strong chemical linkages (e.g., covalent, ionic bonds), physical entanglements, or weak 

interactions   (like hydrogen bonds) [2, 6, 15]. Adding self-healing character renders these 

materials a remarkable, unique property usually associated with natural organisms - the ability 

to heal when certain damages and injuries occur. Such smart materials can lead to a gamut of 

commercial applications - drug delivery, implant coatings, tissue engineering, artificial 

muscles, etc.  

On the other hand, magnetic nanoparticles (MNPs) are exceptionally minuscule 

particles that measure from 1-100 nm, paramagnetic, and usually made of magnetic elements 

such as iron, nickel, cobalt, and their oxides. Over the years, MNPs have been a wide-ranging 

research topic due to their many possible applications due to their high surface area, magnetism, 

and biocompatibility [16-22]. Magnetite (Fe3O4) nanoparticles are ideal candidate filler 

materials for hydrogels as they are widely used for biomedical applications  [19, 23-28]. They 

are also employed in wastewater purification, specifically for adsorbing arsenite, cadmium, 
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nickel and alkalinity and hardness adjustments, and desalination efforts. By a simple magnetic 

process, Fe3O4 can be separated from the medium after adsorption [28-32].  

This work introduces self-healing capability to a hydrogel composite system made from 

ubiquitously abundant biopolymers, chitosan, and xanthan gum filled with modified magnetic 

nanoparticles. Crosslinking between chitosan (CS) and oxidized xanthan gum (OXG) provided 

through Schiff base linkages results in a self-healing material. Schiff bases or imine bonds are 

formed between the aldehyde's interaction (in the oxidized xanthan gum, OXG) and the amine 

functional groups (provided by chitosan, CS). These linkages based on aromatic derivatives 

have relatively greater stability than their aliphatic counterparts. Schiff bases can dynamically 

uncouple and recouple, resulting in self-healing and injectability properties in their network 

structure [6, 15]. In the past years, dynamic hydrogels created based on Schiff bases have been 

widely used in industrial and biomedical applications. Schiff base linkage keeps a balance 

between breakage and regeneration, leading to the hydrogel's remarkable self-healing 

properties. The incorporation of stable silica-modified magnetite nanoparticles well-dispersed 

in the CS-OXG hydrogels results in relatively stronger materials than CS-OXG hydrogels 

(unfilled). 

2. Materials and Methods 

2.1. Materials. 

Chitosan in medium molecular weight (MMW), concentrated acetic acid, sulfuric acid 

(H2SO4), absolute ethanol (EtOH), hydrochloric acid (HCl), and ammonium hydroxide 

(NH4OH), as well as solid ferric sulfate (FeSO4), ferric chloride (FeCl3), hydroxylamine 

hydrochloric acid (NH2OH(HCl)), xanthan gum, chitosan, tetraethyl orthosilicate (TEOS), and 

potassium metaperiodate (NaIO4) were obtained from Sigma-Aldrich. 

The oxidized xanthan gum (OXG) used (with 45% aldehyde content) was prepared via 

periodate oxidation as reported elsewhere [32, 33]. 

2.2. Synthesis of magnetite nanoparticles (Fe3O4). 

The Fe3O4 nanoparticles were synthesized via a modified co-precipitation method based 

on the work of Yazdani and Seddigh (2016) [34]. In a 250-mL round bottom flask, 26.4 mL of 

0.1 M FeCl3, 13.2 mL of FeSO4, and 182.64 mL of distilled water were combined using 

syringes stirring at 800 rpm and 60 ºC. The reaction flask was maintained under a nitrogen 

atmosphere by connecting a balloon containing nitrogen gas. Afterward, to initiate the 

precipitation, 18.2 mL of 1 M NaOH was added into the mixture and a sufficient amount of 

distilled water for washing after 1 minute. The black precipitates were then collected at one of 

the flask using a strong neodymium magnet and decanted for subsequent washings. The 

collected black precipitates were washed with distilled water several times and dried under a 

vacuum overnight.  

2.3. Surface modification of silica-modified magnetite nanoparticles (Fe3O4@SiO2). 

In modifying the surface of the previously synthesized magnetite nanoparticles, a 

modified Stöber method (Thangaraj, 2016) [35] was used. About 4 g of Fe3O4 was then 

dispersed in 180 mL absolute ethanol and 20 mL distilled water under sonication. Afterward, 

with a 1:1 weight ratio of Fe3O4 with TEOS, 4 mL of TEOS and 10 mL of 25 % ammonium 
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hydroxide were added dropwise into the mixture and stirred for 6 hours. The resulting particles 

were collected using a magnet and thoroughly washed with ethanol and distilled water. The 

final products were freeze-dried for subsequent use. 

2.4. Synthesis of magnetic biopolymeric hydrogel composite (CS-OXG-MNP). 

Initially, a chitosan solution (3%, w/w) was prepared by dissolving 0.30 g of chitosan 

powder into 10 mL of acetic acid (2%, v/v) aqueous solution. Right after, 0.09g of Fe3O4@SiO2 

nanopowder was added into the chitosan solution. Subsequently, it was stirred vigorously, 

followed by sonication for 1 hour to produce the target black homogenous gel of the chitosan 

Fe3O4@SiO2 (CS-MNP). This CS-MNP composite gel was isolated by exposing it to the 

external magnetic field. 

In preparing and synthesizing the magnetic self-healing hydrogel, 0.30 g of oxidized 

xanthan gum was dissolved in 3.5 mL distilled water. The OXG solution was then added to the 

CS-MNP composite gel and was stirred under 500 rpm and 40 ºC for about 30 minutes. Finally, 

the CS-OXG-MNP hydrogel was transferred and molded into a square-like shape in acetate 

films and air-dried for 6 hours. 

2.5. Characterization.  

2.5.1. Fourier transform infrared (FT-IR) spectroscopic measurements.  

An FT-IR spectrophotometer was used to obtain the FT-IR spectra of Fe3O4 

(unmodified) and Fe3O4@SiO2 (modified) to follow the silica-modification of the magnetic 

Fe3O4 nanoparticles employing KBr pellet technique at room temperature in the wavenumber 

range of 4000–500 cm−1. The samples were pulverized to obtain a powder and were mixed with 

KBr. It was then molded into a KBr pellet. Each of the spectra was obtained after 16 scans.  

2.5.2. Self-healing tests.  

The self-healing tests were done by slicing the hydrogel into two parts using a thin glass 

slide. The two separated portions were placed side-by-side, directly interacting with each other 

and given ample time to self-heal. The duration until the hydrogel fully self-healed was 

recorded for each set-up. The self-healed hydrogels were then lifted to show that the linkages 

were restored. 

For the hydrogel matrix based on the two polymers, different weight ratios were 

considered in the hydrogel preparation to determine the best combination for a hydrogel film 

that exhibited better film formation characteristic, faster self-healing time, and stronger 

mechanical property. This was exhibited in CS-OXG with 1:1 weight ratio among various 

ratios considered, as reported in an earlier paper we published [33].  

2.5.3. Scanning electron microscopy (SEM) analyses.  

The nanoparticles' structure and morphology (Fe3O4 & Fe3O4@SiO2) used in the 

experiment were characterized by scanning electron microscopy (SEM). The sizes of the 

particles were also determined and averaged. All samples were freeze-dried before the SEM 

tests. The gold coating was applied through sputtering for better magnification. 
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3. Results and Discussion 

3.1. Preparation and characterization of the inorganic magnetic particles as nanofillers. 

Magnetite nanoparticles were successfully synthesized using the co-precipitation 

method. The black particles rapidly precipitated as soon as the NaOH was added. The 

concentrations of the reagents used were optimized to obtain the smallest and most uniform 

nanoparticles. It was found out that at 0.1 M concentration of FeCl3 and FeSO4, smaller and 

less agglomerated particles were produced. Furthermore, according to Mahdavi et al. (2013) 

[36], the temperature of 60 C and 800 rpm are necessary to reduce the extent of agglomeration 

and, in turn, reduce the sizes of the particles. It is also important to note that the dried particles 

are sensitive and easily agglomerate when exposed to air.  

The synthesized magnetic nanoparticles (Fe3O4) were consequently coated with silicon 

dioxide (SiO2) by reacting with tetraethyl orthosilicate (TEOS), serving as a surface modifying 

agent) for stability and functional purposes. The modified nanoparticles were very responsive 

to the external magnet, as shown in Figure 1, and settled at the container's bottom without the 

magnet. For this experiment, the ratio of 1:1 (Fe3O4:TEOS) was used according to the 

previously mentioned method. 

 
Figure 1. Silica-modified magnetite (Fe3O4@SiO2) nanoparticles attracted to a magnet. 

The synthesis of magnetite nanoparticles was successfully followed by FT-IR 

spectroscopic measurements of the materials. As shown in Figure 2, Fe-O bonding around 600 

cm-1 is more prominent in the uncoated particles. For the coated ones, a peak became prominent 

at around 1100 cm-1 which denotes the presence of Fe-O-Si bands and the success in modifying 

the magnetite particles' surfaces.  

 
Figure 2. FT-IR spectra of a) unmodified magnetite (Fe3O4) nanoparticles; b) tetraethyl orthosilicate (TEOS) as 

the surface modifying agent) and c) silica-modified magnetite (Fe3O4@SiO2) nanoparticles. 
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Scanning electron micrographs (SEM) of the magnetite Fe3O4 nanoparticles 

(unmodified) and silica-modified magnetite, Fe3O4@SiO2 (modified) are shown in Figure 3. 

Comparison of the SEM images reveals the uncoated magnetite nanoparticles indeed 

agglomerated as opposed to the modified nanoparticles.  Fe3O4@SiO2 (modified) appeared 

spherical in shape and existed as isolated particles (dispersed). The average diameter is about 

55 nm.  

 
Figure 3. Scanning electron micrographs (SEM) of unmodified magnetite (Fe3O4) (left) and silica-modified 

magnetite (Fe3O4@SiO2) magnetic nanoparticles (MNPs) (right). The bar scale is 0.5 m. 

3.2. Preparation and characterization of the magnetic biopolymeric hydrogel composite. 

Both CS-OXG (1:1) and CS-OXG-MNP (1:1:0.2) hydrogel samples successfully self-

healed at ambient room conditions (Figure 4). These hydrogels self-healed even when they 

were cut into small pieces. For the CS-OXG (1:1), it was able to self-heal after 1 hour and 30 

minutes after cut portions were made to come in contact.  

 
Figure 4. Self-healing tests of CS:OXG (at 1:1 weight ratios) hydrogel - unfilled) (top) and CS:OXG:MNP 

hydrogel composite at (1:1:0.2 weight ratios, respectively) (bottom). 

In the case of adding the silica-modified magnetic nanoparticles in the hydrogel, CS-

OXG-MNP (1:1:0.2), self-healing characteristic was observed much earlier, an hour. As 

expected, it was able to withstand heavier counterweights (11.78 g), 55% greater than CS-OXG 

of ratio 1:1 (6.50 g) (Figure 5).   
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Figure 5. CS:OXG:MNP hydrogel composite subjected to a counterweight after being self-healed. 

4. Conclusions 

 A novel polysaccharide-based magnetic self-healing hydrogel was successfully 

prepared. The hydrogel used as a matrix was based on two natural polysaccharide polymers, 

chitosan, and oxidized xanthan gum, via Schiff base interaction. The FT-IR analyses' results 

proved that the crosslinking of CS and OXG formed dynamic Schiff base linkages. The 

incorporation of a surface-modified magnetic nanoparticle (Fe3O4@SiO2) in the hydrogel 

resulted in better properties than the unfilled CS-OXG hydrogel in terms of faster self-healing 

characteristics and stronger mechanical property. 
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