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Abstract: A bioengineered tooth is a well-studied subject. However, it is a challenge when seamless 

integration of various functionalities is required. In the case of teeth, integrating stem cell differentiating 

agents, regenerating the dentin tissue, and arresting the biofilm formation are three aspects that call for 

attention. Dental pulp stem cell differentiation to odontoblasts can be facilitated by dexamethasone 

(Dex). The ideal scaffold for regeneration applications – collagen (Col), has several advantages but also 

has no inherent rigidity. Silver nanoparticles (AgNps) are found to be an ideal material for preventing 

biofilm formation, with challenges arising from their stability and cytotoxicity. The route was chosen 

based on the successful demonstration of various platforms is the PAMAM (Den) dendrimers. The 

platform encompassing all the ingredients – AgNp@Den@Dex@Col had a max at 622 nm. FTIR 

studies revealed the presence of all components, and scaffold degradation temperature improved. A 

linked morphology was observed under TEM, and the zone of inhibition (MIC) was 3.5 mm, indicating 

good antibacterial activity. There was also a 60% reduction in biofilm formation against Staphylococcus 

aureus and 40% against Klebsiella pneumoniae by the fabricated nanocomposite 

AgNp@Den@Dex@Col. In essence, this work reports a platform where three functions of stem cell 

differentiation, regeneration, and biofilm formation are integrated. 
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1. Introduction 

Dental plaque and its tie-up to oral health and diseases have been studied for decades. 

The dental biofilm, which contains more than 700 bacterial species, causes diseases such as 

dental caries and periodontal diseases in the teeth and their supporting tissues. Streptococcus 

mutans and Staphylococcus aureus are linked to infections like dental caries and infections to 

other medical implants. Due to acid production, microbial biofilm in the teeth can lead to 

demineralization and damage to the hard tissues, which have a different regenerative capacity 

that ultimately leads to loss of teeth. Researchers worldwide have attempted to improve dental 

materials' clinical performance, yet a major issue lies at the multifunctional level: a) biofilm 

degradation, b) re-mineralization, and c) tooth regeneration. Nowadays, innovative 

biomaterials have been developed to create highly cellularized bioengineered teeth to prevent 

cavities, and treatment is aimed for larger appeal [1]. 
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The ideal source of pulp stem cells of dental origin in four different dental tissues: a) 

apical papilla, b) human exfoliated deciduous teeth, c) periodontal ligament, and d) dental 

follicle tissue. The natural function of dental pulp stem cells is to transform into odontoblasts 

that form dentin, neural cells, and adipocytes. The advantages associated with dental pulp stem 

cells are: a) easy access to collection sites and low morbidity, b) highly efficient extraction of 

stem cells from pulp tissue, c) extensive differentiation, and d) interactivity with biomaterials 

[2]. The mesenchymal stem cells from the dental pulp of exfoliated deciduous teeth, 

abbreviated as SHED can differentiate in vitro to neuro-like cells and odontoblasts. Their 

capacity to produce dentin and form bones is higher than the dental pulp stem cells [3,4]. 

However, dental pulp stem cells continue to be an easy and direct source of dental stem cells 

for tissue engineering and regeneration purpose. An examination of human dental pulp cells' 

cell differentiation potential seeded on mechanically and chemically treated dentin surfaces 

indicated that they developed into an odontoblast-like morphology [5,6]. The differentiated 

odontoblast cells secrete reparative dentin. For bioengineering of the tooth, the pulp cell 

differentiation to odontoblasts needed to be triggered in vitro. Researchers identified 

dexamethasone (Dex), a synthetic glucocorticoid, as having the potential to induce odontogenic 

differentiation [7]. Dexamethasone stimulated alkaline phosphatase activity and induced 

expression of transcript encoding dentin sialophosphoprotein, a major odontoblastic marker. 

How dexamethasone was released to the medium containing pulp cells was found to influence 

pulp cells' odontogenic differentiation [8]. Dexamethasone delivery systems ranging from 

systemic injection to coating and loading within biodegradable polymeric carriers have been 

developed over time. Biphasic calcium phosphate nanoparticle –collagen (Col) scaffolds were 

recently demonstrated to promote dexamethasone's controlled release. In relationship to ex vivo 

culturing of stromal cells, Oliveira et al. (2010) [9] demonstrated that carboxymethyl chitosan-

PAMAM dendrimers (Den) were able to provide for a controlled release of dexamethasone. 

The next step in developing a bio tooth is to harvest the stem cells and incorporate them 

within a scaffold for implantation at the site of tooth loss [10]. Cells are plated on the scaffolds 

either through in vitro method or cell homing. The cell homing method is an in vivo method 

where endogenous stem cells from adjacent host sites are mobilized and inhabited to the 

scaffold matrix, thereby avoiding the isolation and manipulation of cells in the laboratory. As 

tooth has both hard and soft tissues, multiple approaches have to be combined with regenerating 

teeth. One approach is to create a three-dimensional scaffold that is rich in growth factors, 

seeding the cells in a manner in which tissue of desired size and architecture can be obtained. 

Subsequent implantation in sites where sufficient blood supply, oxygen, and nutrition is 

available would lead to the tissue's maturation [11]. The maturation is also achieved through 

in vitro techniques. The current challenge, however, is the seamless integration of various steps. 

In another approach, the three-dimensional scaffold can be replaced with a soft scaffold matrix, 

and this is useful for tissue generation within the pulp cavity. 

 To date, both natural and synthetic biomaterials have been employed for constructing 

scaffolds. This includes proteins like collagen [12, 13], fibrin, silk; polysaccharides like 

chitosan, alginate, hyaluronic acid, etc.; synthetic polymers like polylactic acid 

polycaprolactone. Along with these biomaterials, compounds like hydroxyapatite, amorphous 

calcium phosphate, tricalcium phosphate, and compositions of silicate and phosphate glasses 

are also used to form porous scaffolds [14].  

 Same biomaterials can serve both as hard and soft scaffolds. By definition, a soft 

scaffold can be injected as they demonstrate a sol-gel conversion. These compounds are also 
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called hydrogels, and classic examples of those employed in tooth engineering are collagen, 

fibrin, PEG, silk, etc. The hydrogel formation techniques are thermal gelation, ionic interaction, 

physical cross-linking, polymerization, and chemical cross-linking [15]. 

Collagen is one of the most popular extracellular matrix (ECM) molecules and is used 

in native form or as denatured gelatin. Abundance, ubiquity, and biocompatibility make 

collagen type I the most popular collagenous material for scaffolds. Collagen is naturally 

extracted, most preferably from skin, bones, rat-tail tendon, jellyfish skeletons, and fish scales, 

and can be prepared both as swollen hydrogel or cross-linked fibers [16]. Collagen is isolated 

from the source at around 4 oC and in acids such as acetic acid. This removes the non-

collagenous proteins, lipids and performs decalcification when isolated from bones. The 

extracted collagen is stored by way of lyophilization. One of the significant challenges is that 

the acid-soluble collagen loses its intra/inters molecular bonds and swells. Further, at 

temperatures above 40 oC, a helix-to-coil transition also occurs, destroying the natural cross-

links and possible conversion to gelatin [16]. This results in poor tensile strength when 

compared to native collagen [18].   

Chemical cross-linking has been in vogue for a long, including in the conversion of 

skin to leather. This includes a) covalent amine/imine linkage using glutaraldehyde, isocyanate 

etc., b) linking the carboxyl group of collagen through 1-Ethyl-3-(3-

dimethylaminopropyl)carbodiimide (EDC), c) H-bonding through polyphenols, and d) metal – 

protein interactions through metal ions like chromium [19].  

More benign materials have now replaced the most popular glutaraldehyde and metal 

complex cross-linking. Several plant-based crosslinkers have been identified for cross-linking 

collagen. This includes plumbagin, curcumin, shikimic acid etc. [20]. However, in many 

instances, the natural product-based cross-linking alone is not able to satisfy the mechanical 

requirements for a scaffold. Nanoparticle-mediated cross-linking of collagen has gained 

attention in recent times. This includes those of gold, silver nanoparticles, zinc oxide 

nanoparticles, etc. [21-24]. 

Combining nano-biomaterials that can resemble ECM structures provides an 

opportunity for engineering teeth. Amongst the various materials, one of the branch structured 

nanomaterial that has caught attention is the dendrimer. Dendrimers are branched, symmetrical, 

and monodisperse core-shell nanostructures, which can be synthesized in a branched manner 

with diverse surface functionalities. Among various dendrimers such as polyamidoamine 

(PAMAM), poly (alkyl aryl ether), poly-L-lysine, etc., the PAMAM dendrimers are the most 

popular that could mimic the natural mineralization process of dental hard tissues. The 

dendrimers are iteratively grown from a central core. Every iteration or subsequent step is 

referred to as a generation. Increasing generations or molecular weight increases the diameter 

doubles the reactive sites. Each generation is also dual the molecular weight of the earlier 

generation. They are three-dimensional and have a structure that resembles biological 

macromolecules, leading to the dendrimers being referred to as artificial proteins [25]. For 

instance, an ammonia core Generation 3 to 5 PAMAM dendrimer resembles insulin, 

cytochrome, and hemoglobin, respectively. 

Dendrimer-based dental composites have attracted attention because of the higher 

cross-link density, decreased water sorption and solubility, improved mechanical properties, 

and higher resin melting temperature [26]. For in situ re-mineralization of human tooth enamel, 

Alendronate conjugated carboxyl-terminated PAMAM has been reported to be a promising 
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restorative biomaterial [27]. Phenylalanine modified G3 PAMAM dendrimers have been 

reported to increase the delivery efficiency of antibacterial [28]. 

The advancement of nanomaterials in dental science has been phenomenal. Sharan et 

al. (2017) [29], in a review article, have traced the growth path in dentistry's various specialty 

areas. Oral administration of antibiotics causes systemic side effects. The access of antibiotics 

to deeper pockets areas in teeth is also limited. Nano drug delivery systems that increase the 

retention time and penetrate into inaccessible areas such as periodontal pocket is considered 

advantageous for biofilm management [30]. 

Metal nanoparticles, more so those such as silver nanoparticles, are known to have 

antimicrobial properties [31] by way of their ability to generate radical oxygen species. The 

disruption of bacteria DNA leads to loss of ability to reproduce [32]. Silver has been a part of 

restorative materials, such as silver nitrate, silver bromide, etc. [33,34]. However, for the same 

quantity of silver nanoparticles and silver nitrate solutions, nanoparticles had a closer coating 

arrangement. While the antibacterial and anti-biofilm properties were the same, the 

nanoparticle-based coating did not discolor the teeth and also maintained structural integrity 

over a higher time than silver nitrate. As of date, research indicates that silver nanoparticles 

can be incorporated into composite resins, dental primer, and dental adhesives. The self-

diffusion coefficient of silver nanoparticles in a biofilm decreased exponentially with the 

square of the nanoparticle's radius [35].  

 It has been reported that the success of silver nanoparticles in biomedical applications 

is limited by the stability of bare nanoparticles and the high level of cytotoxicity [36, 37]. Next-

generation silver nanoparticles such as polysaccharide capped silver nanoparticles have been 

reported to have better properties. While the nanoparticle would provide for appropriate 

structure, viz., rigid, hollow, or porous, the nanoparticle's functionalization would address how 

the nanoparticles would be assembled and interact with the biofilm [38]. However, 

functionalization could also passivate the nanoparticles, thus making them not available for 

antimicrobial properties. 

Dendrimers are well suited to host nanoparticles as they have a uniform structure and 

composition. Encapsulation of nanoparticles with dendrimers prevents their aggregation and 

remains confined by steric effects and thus available for catalytic reactions [39].  

 Several authors have reported the preparation of silver-dendrimer nanocomposites, with 

silver nanoparticle size reducing with an increase in dendrimer generation. Based on the 

literature's identified opportunities, this work focuses on providing an appropriate platform 

where multiple steps involved in developing a bioengineered tooth could be seamlessly 

integrated. Accordingly, the objective of the investigation is to develop PAMAM dendrimer 

into a platform where a) dental pulp stem cells differentiation to odontoblasts could be 

facilitated through controlled release of dexamethasone, b) collagen scaffold for regeneration 

of dentin tissue could be stabilized, and c) silver nanoparticles that can arrest biofilm formation 

can be encapsulated. 

2. Materials and Methods 

 2.1. Materials. 

Sigma Aldrich and/or Himedia was the source for the chemicals used. . Bacterial 

strains: Staphylococcus aureus and Klebsiella pneumoniae were generous gifts from the 
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Department of Microbiology, Chettinad Hospital, and Research Institute. Reagents/chemicals 

utilized in this study were of analytical grade and used as received without further purifying. 

2.1.1. Synthesis of Silver Nanoparticle (AgNp). 

The silver nanoparticle was synthesized by the citrate reduction method [40]. Silver 

nitrate and trisodium citrate were used as starting materials for the preparation of AgNp. In 500 

mL of a round bottom flask, 8 mg of silver nitrate was dissolved with 47.5 mL of Milli Q water 

while stirring and heating to boiling continuously using a magnetic stirrer. Change in the color 

of the solution from milky whitish to pure white was noted. After bubble formation, 2.5 mL of 

trisodium citrate was added rapidly using a syringe to the round bottom flask. After a few min, 

vigorous stirring was continued for 15 min.  The colloid color was changed to pale yellow, an 

indication of nanoparticle formation using citrate as a capping agent.  

2.2. Fabrication of dendrimer stabilized drug-loaded nanoparticles 

(AgNP@Den@Dex@Col). 

Dendrimer (PAMAM- Polyamidoamine ) stabilized silver nanoparticles were prepared 

based on the modified procedure as described earlier [41]. 100 µL of the solution, which 

contains 5 mg of a dendrimer, was stirred for 1 h. Now at this stage, to functionalize silver 

nanoparticles with dendrimer, 100 µL containing 50 µg of silver nanoparticles (analyzed by 

ICP OES analysis) was added and stirred for 2 h. The functionalization of dendrimer to silver 

nanoparticles was observed through a color change. Incorporation of Dex to AgNp@Den was 

done by an earlier method [42]. 1 mg of dexamethasone was weighed and dissolved in 70% 

ethanol. 100 µL containing 100 µg of dexamethasone was added dropwise to the continuously 

stirred AgNp@Den solution and was stirred for 2 h. The final concentration of dexamethasone 

was 255 µM. To activate the carboxylic group of collagen, 15µL of collagen was added to 1 

mL of EDC solution containing 1 mg of EDC, it was dissolved using 2 mL of 1% acetic acid. 

Followed by stirring was continued for 2 h to activate the carboxylic group of collagen and 

stored under -20 °C for further uses. To cross-link the collagen to AgNp@Den@Dex, 100 µL, 

which contains 6 µg of activated collagen, was added to AgNp@Den@Dex. The solution was 

kept in a vial shaker for 3 h. so that the amine group of dendrimer can bind with the carboxylic 

group of collagen. The color change can see the binding of collagen to the PAMAM of the 

solution. There was a bluish-black color appeared after adding collagen. Then the bluish-black 

color was disappeared. To remove unbound EDC, the solution was dialyzed against deionized 

water. This procedure was carried out by modifying earlier methods [43]. 

2.3. Physiochemical characterization of AgNP@Den@Dex@Col. 

To understand the binding and functionalization of AgNP, the prepared NP of all groups 

were characterized by UV-Vis spectrophotometry to understand the shift in the peak of silver 

nanoparticles. Dynamic Light Scattering (DLS) technique was carried out to understand the 

size distribution; Zeta potential measurements to understand stability and to know the charge 

that of the molecules that are bound on the nanoparticle surface, Thermogravimetric analysis 

to understand the thermal behavior of collagen; Transmission Electron Microscope (TEM) was 

carried out to understand the nanomaterial formation upon interaction with collagen; Fourier 

Transform Infrared Spectroscopy (FTIR) was used to determine the adsorption/entrapment of 

drugs in nanomaterial. 
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2.4. Bacterial growth inhibition (MIC assay). 

To know the growth inhibition percentage [44] of silver nanoparticles, dendrimer, silver 

nanoparticles functionalized with dendrimer, silver nanoparticles functionalized with 

dendrimer entrapped with dexamethasone, silver nanoparticles functionalized with dendrimer 

entrapped with dexamethasone that is cross-linked with collagen 50 µL of the samples were 

added to test tubes containing Staphylococcus aureus or Klebsiella pneumoniae. Briefly, 

respective cultures were grown for 12 h in a test tube containing nutrient broth. Then, 1.9 mL 

of nutrient broth was taken in 12 tubes, 6 for Staphylococcus aureus and 6 for Klebsiella 

pneumoniae. 10 µL of bacterial culture was added to tubes except for control tubes. The tubes 

were placed in a shaker at 37 ºC for 10 h. At the end of 10 h, optical density at 600 nm was 

recorded. The percentages of inhibition of bacteria by the nanomaterial were calculated based 

on the formula below: 

𝑂𝑝𝑡𝑖𝑐𝑎𝑙 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 (%)  =  100 𝑋 ( 
𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑂𝐷

𝑇𝑒𝑠𝑡 𝑂𝐷
)  

2.5. Evaluation of antibacterial activity. 

To understand the minimum inhibitory effect of synthesized and fabricated 

nanomaterial [45,46], AgNP@Den@Dex@Col was carried out in different concentrations 

ranging from 5 to 35 µg/mL in well and incubated for 24 hours. To understand the effect of 

silver nanoparticles alone, dendrimer alone, silver nanoparticles functionalized with dendrimer 

and entrapped with dexamethasone and cross-linked dendrimers were studied for the inhibitory 

effect of these against gram-positive bacteria (Staphylococcus aureus) and gram-negative 

bacteria (Klebsiella pneumonia). The antibacterial activity was evaluated on nutrient agar with 

two bacterial strains by the well diffusion method. The aseptic condition was used to spread 

bacterial growth over the agar surface. 50 µL of the nanoparticles with different concentrations 

of AgNP were loaded into the well and incubated at 37 °C for 24 h. After incubating for 24 

hours, material diffuses in the agar medium, inhibiting the growth through the inhibition zone. 

2.6. Biofilm formation assay. 

Biofilm formation and prevention of biofilm [47] were done for two organisms 

(Staphylococcus aureus and Klebsiella pneumoniae). Bacterial suspension of 100 µL was 

inoculated in nutrient broth and incubated at 37 oC for 24 h. To each well (sterile flat bottomed 

96 well polystyrene microtiter plates), inoculated bacterial suspension (100 µL (̴ 6000) cfu ) 

was added and incubated at 37 oC for 24 h, to allow bacterial cell adhesion and biofilm 

formation on surfaces. The supernatant was discarded, and the non-attached cells were 

removed after 24 h using 100 µL of 0.9% (W/V) sodium chloride. Biofilms were washed two 

times with Milli Q water, and existing biofilms were served with 50 µL of nutrient broth 

containing with or without 50 µL of nanomaterial (A) Control, B) AgNp, C) AgNp@Den, D) 

AgNp@Den@Dex, E) AgNp@Den@Dex@Den@Col, F) Den, G) Col) was incubated at 37 

°C for 24 h. Biofilm incubated only with the nutrient broth was used as a control. After the 

incubation, the supernatant containing non-attached cells was washed using 100 µL of 0.9% 

(W/V) NaCl. Biofilm attached in the wells were fixed for 20 min, and the plates were air-dried 

at room temperature for 20 min.  
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2.7. Biofilm staining assay. 

The staining method was followed by the previous procedure steps. 1% crystal violet 

(100 µL) was used to stain Staphylococcus aureus biofilm with and without nanoparticles 

(AgNP@Den@Dex@Col) and incubated for 20 min at RT. After the incubation, the stain was 

washed, and the plates were rinsed thoroughly three times with distilled water, followed by 

solubilization using 150 µL of 1% glacial acetic acid. Biofilm formation (color formation) was 

quantified by measuring absorbance at 590 nm. The same procedure was carried out for 

Klebsiella pneumoniae, also using safranin stain, the biofilm was measured at 550 nm. 

2.8. Scanning electron microscopic (SEM) analysis. 

HR SEM analysis was carried out to understand the cell morphology changes with or 

without AgNP@Den@Dex@Col. Biofilm was formed on coverslips, and cells were fixed 

using 1 mL of 2.5% glutaraldehyde and kept at 4 oC for 24 h. 1 mL of 1X PBS was used for 

washing coverslips after incubation, and the coverslips were washed three times. By increasing 

the percentage of alcohol, cells were dried out for 10 min. Coverslips were cut and mounted 

onto aluminum stubs with carbon tape for the HR SEM analysis [48]. 

2.9. Statistical analysis. 

This was done with the use of the student’s t-test, and P < 0.05 is considered significant 

statistically. 

3. Results and Discussion 

3.1. Preparation and characterization of silver nanoparticles (AgNps). 

Silver nanoparticles were synthesized using trisodium citrate as a reducing agent. The 

formation of nanoparticles of silver can be confirmed by yellow color formation, as shown in 

Figure 1. On the right-hand side, the color formation upon fabrication is presented. 100 µg (200 

µL) of silver, when added to 1800 µL of water, shows a dispersed silver nanoparticle as 

indicated by yellow color (A). The functionalization of dendrimer to silver nanoparticles can 

be seen as the change of the solution's color (B). To the functionalized silver nanoparticles, 

dexamethasone is added to entrap in the dendrimer's cavities. The entrapment can be visualized 

by the change in color of the solution (C). The solution was then cross-linked to collagen by 

way of EDC chemistry and then dialyzed. The change in color formation after cross-linking 

can be seen in the picture below (D). Silver nanoparticles were synthesized by varying the 

concentration of citric acid added. After fine-tuning silver nanoparticles' synthesis by 

measuring the hydrodynamic diameter (DH), excess citric acid was removed. Silver 

nanoparticles were added to the dendrimer and stirred well. Next to that, dexamethasone was 

added so that the drug can fill the cavities. At this step, the solution was not dialyzed. Collagen 

was mixed with EDC so as to activate the carboxylic group and bind to the amine group of the 

dendrimer. After this, EDC and unbound dexamethasone was removed by dialysis. The flow 

of synthesis is presented in Figure 1. 

To understand any changes in the λ max by binding PAMAM to silver nanoparticles, 

the UV-Vis spectrum was recorded for the range from 300 nm – 700 nm. The λ max of 

unpurified silver nanoparticles was found to be 429 nm (A). The λ max of purified silver 

nanoparticles as seen from B is 415 nm. Figure. 2 provides information on the UV-Vis spectra 
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of AgNP@Den λ max at 416 nm, AgNP@Den@Dex λ max at 416 nm, and 

AgNP@Den@Dex@Col λ max at 622 nm. 

 

 

Figure 1. Steps involved in the synthesis and fabrication of nanocomposites; (A) AgNp; (B) AgNp@Den; (C) 

AgNp@Den@Dex; (D) AgNp@Dex@Den@Col. 

Silver nanoparticles are used as antimicrobials, and their use in dentistry has gained 

significance use as a promising platform for their use against tumors, inflammation, and a wide 

range of microbes [49]. However, though silver has gained significance, bare silver 

nanoparticles are toxic to the system, and due to this, it is difficult to extrapolate the in vitro 

activity to in vivo activity [50-52]. Thus, silver nanoparticles are functionalized or incorporated 

in carrier systems like chitosan, gelatin, dendrimer, protein, etc., to reduce toxicity and increase 

efficacy. The release of drug or silver nanoparticles from the matrix has been shown to improve 

silver nanoparticles' activity [53]. Based on the above advantages of silver nanoparticles, 

especially in the dental field, we used silver nanoparticles for antibacterial activity in the 

current study. 

Figure 2 provides detailed information on the surface plasmon resonance band of silver 

nanoparticles, purified silver nanoparticles, and fabricated silver nanoparticles. The shift in the 

absorbance to a shorter wavelength could be due to a decrease in hydrodynamic diameter which 

could be due to the removal of excess citric acid from the solution [54]. UV-Vis spectra of 

AgNp@Den compared to AgNp show an absorbance maximum at 416 nm, indicating the 

functionalization of dendrimer on silver nanoparticles [55,56]. An interesting observation in 

the study is that when dexamethasone was added to the AgNp@Den and analyzed for any 

change in the spectra, it can be seen that the λ max remained the same at 416 nm, a clear 

indication that dexamethasone is entrapped in the dendrimer and not bound to silver 
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nanoparticles. AgNP@Den@Dex, when cross-linked with collagen, showed a shift in the λ 

max to a longer wavelength at 622 nm. A large shift in the λ max is a clear indication of the 

formation of mesh-like structures wherein nanoparticles are arranged in an orderly fashion 

along with the collagen matrix. 

 
Figure. 2. UV-Absorbance spectra for (A) AgNp before centrifuge; (B) AgNp after centrifuge; (C) 

AgNp@Den, AgNP@Den@Dex, and AgNp@Den@Dex@Col. 

Dendrimer, especially PAMAM dendrimer, is gaining tremendous importance due to 

much functionality and its ability to be functional at lower generations and as a nanoparticle 

carrier at higher generations [57]. It is also interesting to note that dendrimers like PAMAM 

dendrimers have the ability to prevent the formation of bacteria [58]. Due to the multifunctional 

capability of PAMAM dendrimers, in this study, the PAMAM dendrimer of generation 3 was 

chosen, and this was functionalized on silver nanoparticles such that dendrimer and silver 

nanoparticles are bound in a web-like fashion [59]. This study differs from the earlier study 

with the incorporation of dexamethasone inside the cavities of the dendrimer. Earlier reports 

have indicated that dexamethasone included in the culture medium can stimulate pulp origin's 

dental cells into odontoblast [60]. Dexamethasone is a glucocorticoid that is recommended to 

relieve pain [61]. It is reported that dexamethasone can stimulate the stem cells of dental pulp 

origin even at very minute concentration. In this study, the color change in the appearance of 

nanocomposites entrapment, functionalization, and cross-linking with collagen can be 

confirmed from Figure 1. 
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A major portion of the dental component is collagen, and it provides an important role 

to part of the extracellular matrix. However, collagen as such, when incorporated or bound to 

nanomaterials, has lesser mechanical properties [62]. In this study, to develop a biomimetic 

approach, silver nanoparticles embedded along with dendrimer carrying dexamethasone was 

cross-linked with collagen to provide a matrix-like structure to the composites developed. This 

study chose EDC as a crosslinker as we wanted a liquid formulation and not hydrogels. Other 

types of crosslinkers like glutaraldehyde can cross-link dendrimer, but more instances form a 

hydrogel. Glutaraldehyde is toxic, whereas EDC is a zero-length crosslinker i.e., it can be 

successfully removed either by dialysis or centrifugation from the system. Reports have also 

suggested that cross-linking PAMAM with collagen is a better way for safe biomedical 

applications [63,64]. As the dental matrix is predominately made up of collagen Type I [65], 

we activated the carboxylic group amino acids present in collagen and was allowed to form a 

covalent amide bond with the amine group of the dendrimer. In the process, collagen fibrils 

[66-68] can form cross-linked collagen and bind with the dendrimer's free amine group.  

3.2. Characterization of AgNp@Den@Dex@Col: Hydrodynamic diameter, Zeta potential, 

TEM analysis, FTIR- spectra, and TGA analysis. 

Nanoparticles were synthesized and fabricated using silver nanoparticles before (A1, 

B1, C1, and D1) and after purification. The hydrodynamic diameter (d. nm ) of nanoparticles 

and composites was found to be 53 d. nm – AgNp (A); 423 d. nm - AgNp@Den (B); 362 d. 

nm – AgNp@Den@Dex (C) and 324 d. nm - AgNp@Den@Dex@Col (D). As the diameter 

was largely due to the presence of excess citric acid, in the current study, the purified silver 

nanoparticles were used. The hydrodynamic diameter of purified nanoparticles and fabricated 

using those particles was found to be 35 d. nm – AgNp (A); 320 d. nm - AgNp@Den (B); 315 

d. nm – AgNp@Den@Dex (C) and 166 d. nm - AgNp@Den@Dex@Col (D). The size 

distribution of these particles is present in Figure 3. 

From the Figure. 3 it can be seen that silver nanoparticles diameter before purification 

was 53 d. nm as compared to 35 d. nm after purification, which is in good correlation with the 

study. The hydrodynamic diameter of fabricated nanoparticles of purified and unpurified silver 

nanoparticles gave different results. To get a specific binding of the nanoparticles, the particles 

were purified and fabricated as the functionalization and entrapment were carried out, the d. 

nm increased, but after collagen, the d. nm decreased, which could be due to many surface 

charges present, contributing to the nanocomposite's hydrodynamic diameter. Earlier reports 

have suggested that silver nanoparticles synthesized using different molar ratios of silver with 

collagen resulted in a change in the hydrodynamic diameter due to the presence of different 

charge groups, resulting in a change in the potential difference [69]. 

Zeta potential values of silver nanoparticles and dendrimer bound to silver 

nanoparticles along with the change in the potential difference after encapsulation of 

dexamethasone and cross-linked to collagen were noted. The zeta potential of silver 

nanoparticles and dendrimer based nanocomposite is -20.6 mV for AgNp (A); 3.63 mV for 

AgNp@Den; -0.840 mV for AgNp@Den@Dex and -14.6 mV for AgNp@Den@Dex@Col. 

The potential zeta distribution of synthesized and fabricated nanoparticles is presented in 

Figure 4. 

Figure. 4 provides information on the zeta potential distribution. To understand the 

colloidal solution's electrical traits upon binding and interactions, zeta potential measurements 

are used [70,71]. Citrate stabilized silver nanoparticles showed negative potential values of – 
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20 mV, which could be due to nanoparticles' higher surface energy after purification due to 

capped citric acid and electrostatic stabilization of the capping agent [72,73]. 

The binding of dendrimers with the nanoparticles determines nanoparticles' stability, 

which can be deciphered by the potential measurements [74]. The positive zeta potential could 

be due to the presence of amine groups in the dendrimer. This is also an indication that 

dendrimer is functionalized on top of silver nanoparticles. Values of +3 mV could be due to 

the aggregation of nanoparticles, while the broader UV-Vis spectrum can see functionalization 

of AgNp@Den compared to Den. The near-zero zeta measurement of drug entrapped 

AgNp@Den indicates drug entrapment, and a broader UV-Vis spectrum suggests aggregated 

nanoparticles. Collagen, a protein that contains different amino acids and is easily ionizable. 

The negative zeta potential of AgNp@Den@Dex@Col is a clear indication of the dendrimer-

based nanomaterial on the collagen matrix. The reduction in the d. nm is in good correlation 

with the increase in the zeta potential values of -14 mV. 

  

Figure. 3. Hydrodynamic diameter of synthesized and 

fabricated nanoparticles before and after 

centrifugation A/A1 - AgNp, B/B1 - AgNp@Den,  

C/C1 - AgNP@Den@Dex and  D/D1 - 

AgNp@Den@Dex@Col 

Figure. 4. Fig. 4. Zeta potential distribution of 

synthesized and fabricated nanoparticles A) AgNp, B) 

AgNp@Den, C) AgNP@Den@Dex and D) 

AgNp@Den@Dex@Col 

Figure 5 provides information on the micrographs of dendrimer functionalized silver 

nanoparticles and cross-linked collagen bound to dendrimer with functionalities. TEM studies 

were carried out to understand the morphological changes and the changes upon interaction 

with collagen. The localized surface plasmon resonance band shift is evident from UV-Vis 

spectra. From TEM pictures, AgNP@Den@Dex@Col showed the web-like or mat-like 

formation of nanocomposites due to cross-linking with collagen. 

The vibrational bands' changes upon the interaction between citric acid and silver 

nanoparticles - AgNp, Interaction between dendrimer and silver nanoparticle for - AgNp@Den, 

entrapment/adsorption of dexamethasone in dendrimer - AgNp@Den@Dex, and cross-linked 

collagen to fabricated nanoparticles - AgNp@Den@Dex@Col are presented in Figure 6. The 

vibrational states of molecules of collagen, as well as dendrimer, are also presented in Figure 

6. 
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Figure. 6 provides detailed information about the functional groups involved in the 

formation interaction of silver nanoparticles and interaction with dendrimer. The band 

assignments involved by the presence of citric acid, the involvement of –NH stretching in 

functionalization of silver nanoparticles, the involvement of carboxylic group and amide bands 

of dendrimer collagen is presented in Table 1. FTIR spectrum confirms binding, entrapment, 

functionalization, and cross-linking [75-77]. 

  

 
Figure 5. TEM micrographs of (A) AgNp@Den@Dex; (B1 and B2) AgNp@Den@Dex@Col. 

Thermal degradation of collagen and collagen cross-linked with nanocomposites is 

presented in Figure 7. There was a 90 % degradation of collagen at 49 oC, as observed from 

the figure. For cross-linked collagen, the degradation can be seen at 52 oC where only 86 % 

degradation has taken place.   

The pattern of decomposition of collagen is presented in Figure 7. The stability of 

collagen can be improved by cross-linking, and TGA results can suggest whether there is any 

improvement to collagen decomposition temperature. From the figure, it can be understood 

that cross-linked collagen is more stable than native collagen. Earlier reports have also 

suggested that binding collagen to nanoparticles can improve the stability of collagen. Our 

results are in good correlation with the previous reports [78]. 
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3.3. Antibacterial activity: zone of inhibition. 

Figure 8a provides information on the zone of inhibition of Klebsiella pneumoniae: by 

AgNP@Dex@Den@Col. The minimum inhibitory concentration was found by varying the 

amount of AgNP from 5 g to 35 g/mL and the same was found to be 25 g/mL. Figure 8a 

(D) shows the zone of inhibition of AgNP (1), Den (2), AgNP@Den (3), 

AgNP@Den@Dex@Col (4) and AgNP@Dex@Den (5). The zone of inhibition of 

AgNP@Den@Dex@Col was found to be 9 mm as against 1, 2.5, 3.0, 4.0 mm, respectively, 

for other systems investigated. It can be seen that the minimum inhibitory concentration for 

AgNP@Den@Dex@Col  was 25 g/mL, and the zone of inhibition was 3.5 mm (Figure 8a).  

  

Figure 6. FT IR images of synthesized and fabricated 

nanoparticles (A) AgNp; (B) Den; (C) Col; (D) 

AgNp@Den; (E) AgNP@Den@Dex; (F) 

AgNp@Den@Dex@Col. 

Figure 7. TGA analysis of (A) collagen alone; (B) 

AgNp@Den@Dex@Col. 

Figure 8b provides information on the zone of inhibition of Staphylococcus aureus by 

AgNP@Dex@Den@Col. The minimum inhibitory concentration was found by varying the 

amount of AgNP from 5 g to 35 g/mL and the same was found to be 25 g/mL.  Figure. 8b 

(D) shows the zone of inhibition of AgNP (1), Den (2), AgNP@Den (3), 

AgNP@Den@Dex@Col (4) and AgNP@Dex@Den (5). The zone of inhibition of 

AgNP@Den@Dex@Col was found to be 15 mm as against 10, 11, 11.5, 12 mm, respectively, 

for other systems investigated. It can be seen that the minimum inhibitory concentration for 

AgNP@Den@Dex@Col was 25 g/mL, and the zone of inhibition was 5.0 mm (Figure 8b). 

Table 1. FT-IR band assignments of synthesized and fabricated nanoparticles. 

Sample Band Assignment and Wavenumber (cm-1) 

AgNp O-H and N-H stretching (3361),  Asymmetric stretching of a carboxylic group (1558),  

Stretching vibration of C-O-C (1122)  

Den O-H (3835), O-H or N-H (1641), C-C(2135), stretching of a carboxylic group (1558) 

Col Amide A and B bands stretching vibration of N-H (3959), (3360), Amide II N-H 

bending and C-H stretching (1643), Stretching vibration of C-O group (1558), Amide 

III N-H bending and C-N stretching (1390) 

AgNp@Den Shift in O-H and N-H stretching (3486), Carboxylic group (1563), N-H (1643), 

stretching vibration C-O-C (1162) 

AgNp@Den@Dex O-H and N-H (3311), Stretching of a carboxylic group (1565), changes in vibration at 

900 to 1600 due to dexamethasone incorporation. 

AgNp@Den@Dex@Col Stretching vibration O-H (3900), Stretching vibration N-H (1644), Amide III : N-H 

bending  (1341), Stretching vibration of Carboxylic group (1561) 
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3.4. Antibacterial activity: bacterial growth inhibition. 

Figure. 9 shows the growth inhibition of Staphylococcus aureus (a) and Klebsiella 

pneumoniae (b). Figure 9 a and 9b shows that 50 (L of the sample when added with the 

microorganism indicated a significant inhibition in the growth of the microorganism (P<0.05) 

compared to control. The fabricated nanocomposites AgNP@Den@Dex@Col showed 

maximum inhibition compared to other groups, and growth inhibition was 71% for 

Staphylococcus aureus (a) and 45% for Klebsiella pneumoniae (b). 

  

Figure. 8. (a) Zone of inhibition of Klebsiella pneumoniae: A: 2.5 g/mL (1), 5.0 g/mL (2), 7.5 g/mL (3), 

10.0 g/mL (4), 12.5 g/mL (5); B:15.0 g/mL (1) , 17.5g/mL (2), 20.0 g/mL (3), 22.5 g/mL (4), 25.0 

g/mL (5), C: 27.5g/mL (1), 30.0 g/mL (2), 32.5 g/mL (3), 35.0 g/mL (4), D: AgNP (1), Den (2), 

AgNP@Den (3), AgNP@Den@Dex@Col (4), AgNP@Den@Dex (5) – 50 L of synthesized samples were 

added to these samples. (b) Zone of inhibition of Staphylococcus aureus a: 2.5 g/mL (1), 5.0 g/mL (2), 7.5 

g/mL (3), 10.0 g/mL (4), 12.5 g/mL (5); b:15.0 g/mL (1) , 17.5g/mL (2), 20.0 g/mL (3), 22.5 g/mL 

(4), 25.0 g/mL (5), c: 27.5g/mL (1), 30.0 g/mL (2), 32.5 g/mL (3), 35.0 g/mL (4), d: AgNP (1), Den 

(2), AgNP@Den (3), AgNP@Den@Dex@Col (4), AgNP@Den@Dex (5) – 50 L of synthesized samples 

were added to these samples. 

  

Figure. 9. Growth inhibition of (a) Staphylococcus aureus; (b) Klebsiella pneumoniae by 50 L of AgNP, 

Den, AgNP@Den, AgNP@Den@Dex@Col and AgNP@Den@Dex. 

3.5. Antibiofilm activity: Crystal Violet and Safranin O staining assay. 

The antibiofilm activity was carried out against gram-positive and gram-negative by 

crystal violet safranin staining for Staphylococcus aureus and Klebsiella pneumoniae. Biofilm 

was allowed to form 24 h after biofilm formation, 50 L of AgNP, Den, AgNP@Den, 

AgNP@Den@Dex@Col, and AgNP@Den@Dex was added to the biofilm and kept for 24 h. 
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Figure 10a and Figure 10b show that there was very little biofilm formation (E) when 

AgNP@Den@Dex@Col was added compared to other groups. The percentage of inhibition is 

depicted in Figure 10a and Figure 10b; there was a 60% reduction in biofilm formation against 

Staphylococcus aureus and 40% against Klebsiella pneumoniae by the fabricated 

nanocomposite AgNP@Den@Dex@Col. 

(a) (b) 

Figure 10. (a) Anti-biofilm activity by safranin O staining against Klebsiella pneumoniae: A) Control, B) 

AgNP, C) AgNP@Den, D) AgNP@Den@Dex, E) AgNP@Den@Dex@Col, F) Den, G) Col. (b) Anti-

biofilm activity by crystal violet staining against Staphylococcus aureus: A) Control, B) AgNP, C) 

AgNP@Den, D) AgNP@Den@Dex, E) AgNP@Den@Dex@Col, F) Den, G) Col. 

To understand the inhibitory effect of AgNP@Den@Dex@Col, HRSEM analysis was 

carried out. Briefly, the bacteria Staphylococcus aureus was grown on a coverslip. Another 

coverslip AgNP@Den@Dex@Col was coated, and the bacteria (Staphylococcus aureus and 

Klebsiella pneumoniae) were allowed to grow for 24 h. The coverslips were fixed and analyzed 

using HRSEM, and from Figure 11 A and B, it can be seen that the fabricated nanofilm 

inhibited the formation of biofilm. The inhibitory effect of AgNP@Den@Dex@Col can be 

understood by the disruption of the integrity of bacterial surfaces. Earlier reports a similar 

biocidal activity of nanoparticles towards bacteria after 6h of incubation with nanoparticles 

[79]. 

Figures 11 C and D provide a detailed description of the anti-biofilm, inhibition of 

growth formation, and prevention of biofilm formation by AgNp, Den, AgNp@Den, 

AgNp@Den@Dex@Col, and AgNp@Den@Dex. From all the groups, it can be seen that 

AgNp@Den@Dex@Col prevented the formation or inhibition or reduction better than the 

other groups. For the two organisms tested, the nanocomposite activity was better against 

Staphylococcus aureus compared to Klebsiella pneumoniae. 

It is interesting to note that Streptococcus mutans is the main reason for cause of dental 

caries [80]. In this study, the effect of AgNp@Den@Dex@Col is more against gram-positive 

than against gram-negative. 

Zeta potential measurements in this study revealed that the charge on the matrix's 

surface is mainly negative. Earlier reports have suggested nanoparticles with a negative charge 

are more potent antibacterial agents [81]. Earlier reports have indicated the use of nanoparticles 

as a good biofilm degradative material [79,82], and hence, incorporation of dexamethasone can 

pave the way to regenerative potential of the nanocomposite. 
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Figure 11. HR-SEM images of Staphylococcus aureus (A) Klebsiella pneumoniae (B) treated with 

AgNP@Den@Dex@Col and Percentage of biofilm formation; Staphylococcus aureus (C); Klebsiella 

pneumoniae (D). 

4. Conclusions 

 The salient outputs from this work are PAMAM dendrimer's functionalization to silver 

nanoparticles to protect the nanoparticles from aggregating and reducing its cytotoxicity 

without affecting the antibacterial properties. The concept has been demonstrated successfully 

in this work as the AgNP@Den@Dex@Col showed 71% for Staphylococcus aureus and 

reduced biofilm formation against Staphylococcus aureus by 60% and against Klebsiella 

pneumoniae by 40%. Entrapping dexamethasone into the dendrimer's cavities was done to 

ensure a slow release of the drug that is vital for the dental pulp stem cell differentiation to 

odontoblasts. It was demonstrated by way of increased particle size and functional groups' 

presence and enhancing collagen's functional properties. By cross-linking collagen to 

dendrimer through EDC, collagen's stability was found to increase with a denaturation 

temperature of 52oC as measured by TGA. 
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