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Abstract: Xanthohumol is a prenylated chalcone derived from hops and very well known for its 

biological activity as an anticancer agent. We have previously reported a complete computational 

evaluation of two novel chalcone derivatives, substituted with diethanolamine on the second ring with 

increased biological activity. Herein, using density functional theory studies, we are representing a 

complete structural evaluation of these two molecules. It seems that the significant alterations on their 

spectroscopic data are responsible for their higher biological activity. 
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1. Introduction 

The xanthohumol molecule and some of the xanthohumol analog molecules such as 

Isoxanthohumol, 6-Prenylnaringenin, and 8-Prenylnaringenin, have been studied extensively 

by the researchers as potential drugs, especially because of their anticancer [1, 2, 3], 

antimicrobial [4-7], and antioxidant activities [8-12]. Moreover, several studies indicated 

apoptotic activity against different cancer cell lines [13-15, 16]. XN's antimicrobial and 

antioxidant activity was revealed because of the antimicrobial and antioxidant capacity of beer 

that has been discussed earlier [17, 18]. XN is a prenylated chalcone that can be found 

extensively in high amounts in hops and eventually into the beer as one of the main flavonoids 

[19]. 

Hops are responsible for the beer's bitter taste and contribute significantly to its quality 

and nutritional value [20]. In medicinal chemistry, XN is playing a serious role with many 

researchers from chemical and biological backgrounds trying to test the chalcone against 

obesity [21], menopause [22], cholesterol levels [23], infections [24], and cancer [25-29, 30, 

31]. 

2. Materials and Methods 

Density functional theory studies performed using the B3LYP/6 311++G(d,p) level of 

theory. The use of a one-dimensional potential energy surface is used to predict the reactivity 

of the design molecules [32-35]. The molecules were developed with Avogadro software [36], 
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the computational chemistry performed with ORCA 4.2 software [37] and the spectrum 

representation was done using the Gabedit software [38]. 

3. Results and Discussion 

 Xanthohumol molecules can be found in beer hops and are very well know for the anti-

inflammatory, antibacterial and anticancer activity. In recent work, we have studied the activity 

of these molecules against several colon cancer-related proteins [39] theoretically. We found 

that the results were in correlation with other in vitro studies so, we decided if we could increase 

the biological binding affinity on that proteins by altering the structures of the molecules. By 

doing that, we have created two novels substituted on their second phenolic ring derivatives of 

Xanthohumol and 8-Prenylnaringenin. The interesting fact here is that the substituted 

molecules increased the studied proteins' binding affinity. So, we decided that further structural 

elucidation of that molecules to be done to correlate their structure to action activity is 

necessary. As we can see from Figure 1, Xanthohumol and Xanthohumol-Dea substituted 

molecules have slightly different IR spectra. The two strong absorptions located at 1225 and 

1750 cm-1, belong to C-O-C and C=O major functional group, respectively [40, 41]. The 

discrimination here is that the strong absorption at 3650-3590 cm-1, which belongs to the -OH 

group is stronger for the substituted molecule as it has 5 -OH groups in comparison with 

Xanthohumol which has three. The 8-Prenylnaringenin IR spectrum is very similar to its 

correspondence 8-Prenylnaringenin-Dea substitute, differentiated only at 3650-3590 cm-1 

again because of the increase of the hydroxyl groups of the substitute analog.  

 
Figure 1. IR and NMR spectrum of the two novel chalcone derivatives. 

Regarding the 1HNMR spectrum, at 2.5 and 3.65 ppm, we can see the protons belonging 

to the diethanolamine molecule moiety. The calculated bond lengths and angles of 

Xanthohumol-Dea and 8-Prenylnaringenin-Dea can be found in Table 1. The full geometry of 

the molecules can be found in supplementary tables, S1 Table and S2 Table. 
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Figure 2. LUMO-HOMO orbitals of Xanthohumol and 8-Prenylnaringenin derivatives. 

Using TDDFT studies, we were able to calculate the molecular orbitals of the two 

molecules as well. The value of the energy difference between HOMO and LUMO as well as 

the highest occupied molecular orbital (EHOMO) and lowest unoccupied molecular orbital 

(ELUMO) energies plays a very important role in the stability and reactivity of molecules. The 

EHOMO energies of molecules show the molecule's ability to give electrons. On the other hand, 

ELUMO characterizes the ability of the compound to accept electrons. Electronegativity (χ) is a 

measure of an atom's power to attract a bonding pair of electrons.  

Based on equation χ = - (EHOMO + ELUMO) 2  larger Δgap always indicates lower chemical 

reactivity and higher kinetic stability of the investigated species. The chemical reactivity of 

molecules is caused by the simultaneous effect of different parameters. The distribution and 

energy of HOMO is an important parameter to explain the antioxidant potential of phenolic 

antioxidants. The electron-donating capacity of the molecule can be predicted by looking at the 

energy values of HOMO. The value of the energy difference between HOMO and LUMO as 

well as the highest occupied molecular orbital (EHOMO) and lowest unoccupied molecular 

orbital (ELUMO) energies plays a very important role in stability and reactivity [42, 43]. In Figure 

2, we can observe the HOMO-LUMO orbitals of the studied molecules. In particular, in the 

Xanthohumol derivative, the LUMO orbital equals -5.530 eV while the HOMO orbital equals 

-9.070 eV. On the other hand, regarding the 8-Prenylnaringenin derivative, the LUMO orbital 

equals -2.672 eV, and the HOMO orbital equals -5.173 eV. Based on that, the Xanthohumol 

derivative is more electronegative than the 8-Prenylnaringenin derivative (larger Δgap), which 

means that 8-Prenylnaringenin is a more reactive molecule than Xanthohumol. The full atomic 

charges profile of the molecules can be found in S1 and S2 Table. 

Based on the above, we can see why these two molecules exhibit good anticancer 

potential activity, and we believe that the next step is the in vitro investigation of the 

synthesized molecules.  
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Table 1. Selected bond lengths and angles of the two chalcone derivatives. 

Xanthohumol 

Derivative 

Bond Length  

(Å) 

Bond Angle  Bond Angle ° 

O(34)-H(67) 0.9610 H(67)-O(34)-C(33) 109.2515 

C(33)-H(66) 1.1110 H(66)-C(33)-H(65) 109.4346 

C(33)-H(65) 1.1110 H(66)-C(33)-O(34) 107.1432 

C(33)-O(34) 1.4080 H(66)-C(33)-C(32) 111.2957 

C(32)-H(64) 1.1130 H(65)-C(33)-O(34) 106.4787 

C(32)-H(63) 1.1130 H(65)-C(33)-C(32) 112.8275 

C(32)-C(33) 1.5140 O(34)-C(33)-C(32) 109.3932 

O(31)-H(62) 0.9610 H(64)-C(32)-H(63) 107.1842 

C(30)-H(61) 1.1110 H(64)-C(32)-C(33) 108.6036 

C(30)-H(60) 1.1110 C(33)-C(32)-N(28) 113.8698 

C(30)-O(31) 1.4080 H(62)-O(31)-C(30) 109.3392 

C(29)-H(59) 1.1130 H(61)-C(30)-H(60) 109.5652 

C(29)-H(58) 1.1130 H(61)-C(30)-O(31) 107.1315 

C(29)-C(30) 1.5140 H(61)-C(30)-C(29) 111.3585 

N(28)-C(32) 1.4380 H(60)-C(30)-O(31) 106.3492 

N(28)-C(29) 1.4380 H(60)-C(30)-C(29) 112.7064 

C(27)-H(57) 1.1130 O(31)-C(30)-C(29) 109.4585 

C(27)-H(56) 1.1130 H(59)-C(29)-H(58) 107.0890 

C(27)-N(28) 1.4380 H(59)-C(29)-C(30) 109.1427 

O(26)-H(55) 0.9720 C(33)-C(32)-N(28) 113.8698 

C(25)-C(27) 1.4970 H(62)-O(31)-C(30) 109.3392 

8-Prenylnaringenin 

Derivative 

Bond Length  

(Å) 

Bond Angle  Bond Angle ° 

O(33)-H(64) 0.9610 H(64)-O(33)-C(32) 109.3757 

C(32)-H(63) 1.1110 H(63)-C(32)-H(62) 109.4744 

C(32)-H(62) 1.1110 H(63)-C(32)-O(33) 107.2782 

C(31)-H(61) 1.1130 H(63)-C(32)-C(31) 111.3428 

C(31)-H(60) 1.1130 H(62)-C(32)-O(33) 106.5672 

O(30)-H(59) 0.9610 H(62)-C(32)-C(31) 112.6167 

C(29)-H(58) 1.1110 O(33)-C(32)-C(31) 109.3117 

C(29)-H(57) 1.1110 H(61)-C(31)-H(60) 106.4268 

C(28)-H(56) 1.1130 H(61)-C(31)-C(32) 109.4620 

C(28)-H(55) 1.1130 H(59)-O(30)-C(29) 109.4713 

C(26)-H(54) 1.1130 H(58)-C(29)-H(57) 109.0734 

C(26)-H(53) 1.1130 H(58)-C(29)-O(30) 106.6903 

C(25)-H(52) 1.1130 H(58)-C(29)-C(28) 112.5453 

C(25)-H(51) 1.1130 H(57)-C(29)-O(30) 106.5982 

C(25)-H(50) 1.1130 H(57)-C(29)-C(28) 112.5316 

O(24)-H(49) 0.9720 O(30)-C(29)-C(28) 109.0664 

O(23)-H(48) 0.9720 H(56)-C(28)-H(55) 103.8769 

O(22)-H(47) 0.9720 H(56)-C(28)-C(29) 108.9133 

C(20)-H(46) 1.1000 H(59)-O(30)-C(29) 109.4713 

C(18)-H(45) 1.1000 C(31)-N(27)-C(28) 113.6412 

C(17)-H(44) 1.1000 C(31)-N(27)-C(26) 110.6734 

4. Conclusions 

In this short communication, we have evaluated the structural characteristics of two 

novel chalcone derivatives with potential biological activity. We have compared the structures 

with ones of Xanthohumol and 8-Prenylnaringenin (parental molecules) and gave a possible 

explanation about their increased binding affinities in colon cancer-related properties. Future 

applications were also discussed. 
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