
 

https://biointerfaceresearch.com/ 1263 

Review 

Volume 12, Issue 1, 2022, 1263 - 1272 

https://doi.org/10.33263/BRIAC121.12631272 

 

Rheological Behavior Models of Polymers 

Rachid Hsissou 1,* , Miloudi Hilali 2, Omar Dagdag 1, Fatima Adder 1, Abderrahim Elbachiri 3, Mohamed 

Rafik 1 

1 Faculty of Sciences, University Ibn Tofail, BP 242, 14000, Kenitra, Morocco 
2 Faculty of Sciences, University Mohamed V, BP 1014, Rabat, Morocco 
3 Royal Naval School, University Department - Boulevard Sour- Jdid, Casablanca, Morocco 

* Correspondence: r.hsissou@gmail.com; 

Scopus Author ID 57193233249 

Received: 12.02.2021; Revised: 8.04.2021; Accepted: 14.04.2021; Published: 26.04.2021 

Abstract: We studied and investigated the various viscosimetric and rheological polymers' behaviors 

during this comprehensive review. The viscosities relate to the investigation of the flux, the 

deformation, and the polymers' elasticity; we have employed the viscosity since this plays a primordial 

role in the phenomena flux and implementation of the polymer. The rheology behaviors were 

investigated for the determination of the physical properties of polymers. The rheological properties are 

mostly employed for improving polymers implementation. Further, three rheological behaviors models 

such as Newtonian, pseudo-plastic (Power Law, Law of Tile and Cross Law) and heat-dependent 

pseudo-plastic (Williams-Landel-Ferry Law (WLF), Law of Tile-Yasuda and Arrhenius law) were 

studied. 
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1. Introduction 

Polymer composite materials (a mixture of two or more polymers) are an excellent 

alternative to the synthesis of polymers with improved properties and may exhibit 

combinations of properties in general superior to those of pure components [1-3]. Then, 

polymer composites can be elaborated by conventional machines used in industry, such as 

extruders, internal mixers, and injection molding machines [4-8]. Composite polymers can be 

used as low shear rate Newtonian fluids, generally in the vicinity of 1 S-1, and as high shear 

rate non-Newtonian fluids. In the injection molding process, the shear rate generally reaches 

106 S-1, which is well beyond the traditional rheometer limits [9-14]. Many viscometers have 

been developed according to the fluid's nature to be studied [15-19]. Devices employed for 

extruders are prepared with thin matrices that allow elasticities and viscosities to be determined 

but at a low shear rate. The purpose of the original rheometer on injection or extrusion polymer 

processing machines is to allow the determination of various rheological properties such as 

viscosity, elasticity, and/or compressibility, under actual processing conditions, without 

disturbing the processing cycle, in a minimum of time and with a high degree of accuracy [20-

25]. It can be used both as a device for measuring and determining the rheological behavior 

laws of plastics or as a machine control and regulation device, in which case it can be controlled 

directly by the machine’s microprocessor [26-31]. Rheology is the technology that studies the 

distortion of bodies under the effect of speed stresses. Also, it studies the relationship between 

stress and strain as a function of time in the material [32-37]. Generally speaking, rheology 
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assumes that material is continuous (no voids in the material), each point of the body moves 

continuously, two points of the body that are infinitely adjacent before the deformation are still 

infinitely adjacent after the deformation and physical properties of the body vary continuously 

from one point to another, respectively. Rheology can be classified into two types [38-43]: 

Experimental rheology determines the behavioral relationship between stress and strain rate 

experimentally; Theoretical rheology provides a limited number of mathematical models of the 

behavior independently of the microscopic structure; 

Gaseous, liquid, or solid bodies are divided into two classes as Newtonian fluids (these 

are all gases and a large number of liquids; their rheological equation is simple these bodies 

have only one rheological characteristic: viscosity) and bodies with complicated rheological 

equations: these are non-Newtonian liquids and solids [44-48]. 

Therefore, in the case of polymers rheology, only studies displacements that are large 

relative to the size of the macromolecules. Intramolecular movements and chain entanglement 

are movements that rheology by nature cannot describe. Then, these local movements are the 

basis for explaining the rheological behavior of molten polymers [49-53]. 

Viscosity is a very important parameter in the study of polymer flow. The latter, which 

is about 106 to 108 times that of water, is a function of certain parameters such as weight of the 

polymer, temperature, pressure and shear rate, respectively. 

2. Rheological Behavior in Dynamic Regime (Low Deformations) 

 defined The strain γ (t) and the stress σ (t) were defined according to the following 

relations (Equations 1 and 2) [28, 29]: 

( ) 0
i tt e =                                                     (1) 

( ) ( )
0

i t
t e

 
 

+
=                                               (2) 

Where γ0 and τ0 denote the maximum amplitudes of the strain and stress, respectively, 

t is time. Further, the complex modulus G* was calculated from strain and stress according to 

Equation 3 [28, 29]. Also, the complex modulus G* was composed of two parts, such as a real 

part (G’) and an imaginary part (G”) according to the following Equation 4. Then, The loss 

factor and the complex viscosity ƞ* were measured according to the following Equations 5 and 

6  [28, 29]: 
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2.1. Rheological behavior in the statistical regime. 

In statistical regime, the viscosity ƞ was determined from shear stress τ and speed 

deformation γ· (Equation 7) [28, 29]. 

τ
η=   •γ

                                                                         (7) 
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The viscosity don't depend to the speed of deformation, indicating for a Newtonian 

fluid, the stress is studied according to the deformation's speed. We obtained a line whose value 

of the slope is the viscosity, noted ƞ0 (Figure 1-a). When the viscosity evolves according to the 

speed of deformation, the fluid's behavior is called pseudo-plastic (Figure 1-b). In these two 

cases, these fluids deform immediately shear stress is applied. If the material does not deform 

(or little) below a certain, this is called threshold stress. The refore, the threshold constraint can 

be defined by the following relation (Equation 8) [28, 29]. 

•τ =limσ(γ )y  (8) 

Viscoelastic behaviors present threshold stress. At the high stress compared to the 

threshold stress, the viscosity does not depend on the viscosity of strain (Figure 1-c) [28, 29]. 

2.2. Rheological behaviors. 

Thermosetting polymers are not Newtonian and their apparent viscosity decreasing 

according to the shear rate. This behavior is the pseudo-plasticity type at lower temperatures, 

the viscosity of polymer increases (the polymer is viscous). The flow speed of the polymer 

thermosetting between two edges changes, this variation was owing to the viscous polymers. 

Viscosity variation of polymers as a function of the shear rate and temperature are shown in 

Figure 2 [31]. 

 

Figure 1. Varying rheological models: (a) Newtonian, (b) pseudo-plastic and (c) viscoelastic. 

 
Figure 2. Viscosity as a function of the shear rate at different temperatures. 
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2.3. Varying viscosities models. 

Viscosities models most employed are Newtonian model, pseudo-plastic model and 

heat-dependent pseudo-plastic model, respectively. 

2.3.1. Newtonian model. 

The relation between stress and sheer speed presents the viscosity. Stress speed u is 

proportional to this speed F = Ku. The components of the velocity vector are shown in the 

following equation 9 [28, 29, 31]: 

.

0

0

u y

u v

w


•

=

=

=

                                                                                                               (9) 

This force related to the surface on which it is exerted the shear stress τ = F/S 

proportional to the sheer speed (Equation 10): 

•τ = η.γ                                                                     (10) 

The proportionality coefficient between τ and γ· was defined as a dynamic viscosity ƞ 

(Equation 11). 

τ
η =  

γ•
                                                                       (11) 

The shear stress as a function of the speed gradient is shown in Figure 3-a. However, 

The viscosity versus speed gradient shown a straight line parallel to the X-axis [31]. 

 
Figure 3. Viscosity of a Newtonian model. 

2.3.2. Pseudo-plastic model. 

Most polymers don't present the Newtonian models, this indicates that the viscosities 

are is not independent of the shear rate however decrease according to the shear rate. The 

pseudo-plastic model of polymer signified that the viscosity decreases according to the shear 

rate. The rheological models proposed are a power law, law of tile, cross law, heat-dependent 
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pseudo-plastic, Williams-Landel-Ferry law, the law of Tile-Yasuda and Arrhenius law, 

respectively. 

2.3.2.1. Power law. 

 

The first behavior model for a non-carbonated fluid was developed by Ostwald-De 

Waele (Ostwald, 1923 and De Waele, 1923). It is written according to Equation 12 [54]. 

-1•
 

m

K =                                                                                                        (12) 

Where K and m denote the consistency material and index pseudo-plasticity, respectively. 

We observed that this law gives a good account of polymers' behavior with a high shear 

rate. It offers the advantage of authorizing analytical calculations in simple geometries. On the 

other hand, it has the disadvantage of not having a Newtonian plateau and even of leading to 

an infinite viscosity at zero shear rates [54]. 

 

2.3.2.2. Law of Tile. 

 

The Power Law model applies over a limited range of the viscosity curve. In reality, at 

low shear rates, the polymers have a Newtonian behavior, i.e., the viscosity is independent of 

the shear rate. Carreau has developed a model that completely represents the viscosity curve 

and supports this plateau; its model is written according to Equation 13 [55]. 

( -1)/2•
21 ( )  
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m

  
 

= + 
 

                                                                   (13) 

η0, λ, and m are the zero shear viscosity, the time constant, and the index of the law of power, 

respectively. 

Hieber and Chiang (1989) proposed a complete review of its various laws and their 

applications to the case of the main polymers. 

2.3.2.3. Cross Law. 

 

The cross model is a variant of the square model; it is written according to Equation 14. 

( )
0

•
1 ( )m

 
 



− 
− =

+

                                                             (14) 

With λ, ƞ0 and ƞ∞ are a characteristic time, the viscosity of the Newtonian plateau at the low 

shear rate and second Newtonian plateau at a very high shear rate, respectively. The change in 

viscosity according to the shear rate depends on the number of parameters to be adjusted. 

2.3.2.4. Heat-dependent pseudo-plastic. 

 

The heat-dependent pseudo-plastic considers the variation in viscosity according to the 

shear rate and temperature. An elevate in temperature suggesting a decrease in viscosity due to 

the polymer chains' increased mobility. In order to investigate the temperature effect on 
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viscosity, it is interesting to present the plot of viscosity according to shear stress for varying 

values of temperature. It is possible to drag all viscosities plots along a line at a constant shear 

rate to obtain a single plot. We can use the slip factor (aT), which is according to the 

temperature; it has shown the difference between a viscosity plot at temperature (T) and the 

viscosity plot at the reference temperature (Tref). aT can be calculated from an Arrhenius law 

for semi-crystalline polymers or from the equation of Williams-Landel-Ferry (WLF) for 

polymers amorphous to a temperature between Tg and Tg + 100 °C (Equation 15) [54, 55]. 

1 1
exp ( )  

E
a
T R T T

ref

 
 = −
 
 

                                                (15) 

aT, E, R, T, and Tref are the slip factor, the activation energy, the molar constant of ideal gases, 

the temperature, and the reference temperature, respectively. 

2.3.2.5. Williams-Landel-Ferry law (WLF). 

 

 The empirical Williams-Landel-Ferry relation (relation or WLF law), associated with 

the principle of time-temperature equivalence, makes it possible to account for variations in 

the limiting viscosity of amorphous (non-crystalline) polymers according to the temperature. 

The WLF law also expresses the variation with the temperature of the translation factor. 

Mathematical processing calculates aT for each of the components M’and M”of the measured 

complex modulus M*. A good correlation between the two translation factors gives the values 

of the coefficients C1 and C2 characteristic of the material. The WLF law is only verified in the 

approximate temperature range [Tg, Tg + 100 °C] (Equation 16) [56]. 
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                        (16) 

 The coefficients (or constants) C1 and C2 (positive) depend on the polymer considered 

and on T0 as a reference temperature suitably chosen. 

 2.3.2.6. Law of Tile-Yasuda. 

 

 To obtain viscosity at other temperatures, we used the time-temperature superposition 

principle (Equation 17) [54, 55]. 

( -1)/2• •
2( ) 1 ( )   

0

m

Tréf
   

 
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 
                                             (17) 

2.3.2.7. Arrhenius law. 

 

The activation energy was introduced by the Swedish scientist Svante August Arrhenius 

in 1889. After having noted the empirical law that bears his name and describes the changes in 

viscosity with temperature. The activation energy was determined according to the following 

Equations 18 and 19. 
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1 1
exp ( )   

E

Tref R T T
ref

 
 
 = −
 
 

                                                      (18) 

exp( )  
0

E
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T, E, R and ƞ0 are the temperature, the activation energy, the constant of ideal gases, and the 

constant. 

3. Conclusions 

This comprehensive review concerning the theoretical approach to rheological behavior 

allowed us to understand the phenomena relate to viscosimetric properties according to three 

models such as Newtonian model, pseudo-plastic model and pseudo-plastic thermo-dependent 

model, respectively. 

The advantages of which are the determination of different thermodynamic parameters 

such as the activation energy (Ea), the variation of the activation standard enthalpy (ΔHa), the 

variation of the activation standard entropy (ΔSa), and the variation of the free activation 

standard energy (ΔGa). 
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