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Abstract: An interesting electrochemical potentiodynamic amperometric heavy metal concentration 

monitoring system based on overoxidized polypyrrole has been proposed. A model describing the 

electrochemical behavior in potentiostatic mode of the system with metal complex oxidation during the 

formation has been developed and analyzed using linear stability theory and bifurcation analysis. It has 

been shown that the oscillatory behavior may occur more probably in this system than in similar ones 

due to the cyclical electrode surface impedance change during the chemical and two electrochemical 

stages. Nevertheless, this system may be efficient for heavy-metal concentration monitoring in vitro 

and in vivo. 

Keywords: heavy metal cations; electrochemical sensor; overoxidized polypyrrole; electrochemical 

oscillations; stable steady-state. 
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1. Introduction 

Heavy metal poisoning is one of the most problematic questions in toxicological and 

ecotoxicological investigations [1-7]. The monitoring of heavy metal concentration, like 
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recycling and elimination, is of special concern due to their toxic effects, penetration via the 

food chains and persistence in the environment. Moreover, the chelating heavy metal cation 

concentration in the organism may be an important stress marker. Therefore, the development 

of a monitoring system for heavy-metal concentration, like their elimination from the 

environment, remains actual. The electroanalytical systems would serve as an interesting 

solution for this task [8–10].  

On the other hand, polypyrrole [11–15] is one of the most used conducting polymers. 

It can combine the properties of plastics with metal conductivity and provide flexibility in 

modification and use. Although the overoxidized polypyrrole diminishes its conductivity, it 

becomes able to interact with chelating metal cations, yielding complex compounds, which is 

very important for metal concentration monitoring.  

Nevertheless, the development of a new electroanalytical method, especially involving 

chemical and electrochemical stages, requires an a priori mechanistic theoretical analysis of 

the system’s behavior, providing us the resolution of different kinetic and thermodynamic 

problems, including the branched mechanism for the electroanalytical process, oscillatory and 

monotonic instabilities, characteristic for the similar systems [16–22].  So, this work aims to 

continue the investigation of the possibility of heavy-metal cations determination and removal 

over an overoxidized conducting polymer coating. This aim will be achieved by developing 

and analyzing the correspondent mathematical model linked to the reaction mechanism. Also, 

the behavior of this system will be compared with that of similar ones [23 – 28].  

In this case, a potentiodynamic constant-voltage mode behavior of this sensor will be 

described. 

2. Materials and Methods 

 2.1. System and its modeling. 

Herein, an interesting method for heavy metal electrochemical monitoring systems has 

been suggested and theoretically described. By this, a heavy metal chelating cation reacts with 

the overoxidized or specially modified conducting polymer, yielding a complex (Fig. 1).  
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Figure 1. Conducting polymer-based heavy-metal concentration monitoring by cation recapture. 

Depending on the metal properties, different types of behavior may be realized in this 

case. The simplest case has already been described by us in [28] for an amperometric sensor  

(working in potentiostatic mode), detecting a metal incapable of more than one valent state. In 

this case, we describe a system in which the metal complex, after formation, is also electro-

oxidized, yielding another complex with another valent state. Therefore, this process will 

contain two electrochemical stages (the 1st and the 3rd) and one chemical, also influencing the 

double electric layer (DEL) (the 2nd).  

 So, in order to describe the behavior of this system, we introduce three variables:  

 m – metal-ion concentration in the pre-surface layer; 

 p – overoxidized polypyrrole surface coverage degree; 
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 c – the low-valence metal complex surface coverage degree.  

  Taking into account some assumptions [26 – 28], we describe the system´s behavior by 

a trivariant equation set as:  

{
 
 

 
 
𝑑𝑚

𝑑𝑡
=

2

δ
(
𝑀

δ
(𝑚0 −𝑚) − 𝑟1)

𝑑𝑝

𝑑𝑡
=

1

𝑃
(𝑟𝑂 − 𝑟1)

𝑑𝑐

𝑑𝑡
=

1

𝐶
(𝑟1 − 𝑟2)

                                   (1) 

Herein, M is the heavy metal cation diffusion coefficient, m0 is the heavy metal ion 

concentration in the pre-surface layer; P is the maximal surface concentration of the 

overoxidized polypyrrole, C is the maximal surface concentration of the low-valence polymer 

complex compound, and the parameters r are the correspondent reaction rates, calculated as (2 

– 4):  

𝑟𝑂 = 𝑘𝑂(1 − 𝑝 − 𝑐) exp
𝑛𝐹𝜑0

𝑅𝑇
                      𝑟1 = 𝑘1𝑝𝑚 exp(−𝑎𝑝𝑚) 

𝑟2 = 𝑘2𝑐 exp
𝑚𝐹𝜑0

𝑅𝑇
                           (2 – 4), 

Where the parameters k are the correspondent reaction rate constants, a is the parameter capable 

of describing the relation between DEL and surface conductivity and structure, related to the 

complex compound formation,  m and n are the numbers of the transferred electrons, 𝜑0 is the 

potential slope, related to the zero-charge potential, R is the universal gas constant, and T is 

the absolute temperature.  

As there are two electrochemical stages, both capable of influencing the DEL, the 

electrochemical instabilities are more probable to occur in this system. Nevertheless, the 

electroanalytical process is efficient for both electroanalytical and electro-synthetical purposes, 

as shown below. 

3. Results and Discussion 

To describe the electrochemical behavior of the system with the electrochemical 

determination or retention of heavy metals by yielding an oxidizable overoxidized polypyrrole 

complex, we analyze the equation-set (1) using linear stability theory. The steady-state 

Jacobian matrix members for this system will be described as:  

(

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

)                                                (5) 

In which:  
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2

δ
(−

𝑀

δ
− 𝑘1𝑝 exp(−𝑎𝑝𝑚) + 𝑎𝑘1𝑝𝑚 exp(−𝑎𝑝𝑚))            (6) 

𝑎12 =
2

δ
(−𝑘1𝑚exp(−𝑎𝑝𝑚) + 𝑎𝑘1𝑝𝑚exp(−𝑎𝑝𝑚))              (7) 

𝑎13 = 0                                              (8) 

𝑎21 =
1

𝑃
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𝑎𝑘1𝑝𝑚 exp(−𝑎𝑝𝑚))   (10) 

𝑎23 =
1

𝑃
(𝑙𝑘𝑂(1 − 𝑝 − 𝑐))                    (11) 

𝑎31 =
1

𝐶
(𝑘1𝑝 exp(−𝑎𝑝𝑚) − 𝑎𝑘1𝑝𝑚 exp(−𝑎𝑝𝑚))      (12) 
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𝑎32 =
1

𝐶
(−𝑗𝑘2𝑐 exp

𝑚𝐹𝜑0

𝑅𝑇
)                       (13) 

𝑎33 =
1

𝐶
(−𝑘2 exp

𝑚𝐹𝜑0

𝑅𝑇
+ 𝑙𝑘2𝑐 exp

𝑚𝐹𝜑0

𝑅𝑇
)          (14) 

Taking into account the main diagonal elements (6), (10), and (14), we may conclude 

that the oscillatory behavior in this system is possible. Moreover, taking into account the 

presence of one more electrochemical stage influencing the DEL, it is much more probable 

than in the neutral and basic media. It is known that the Hopf bifurcation in the trivariant 

systems may only be realized if some of the elements of the Jacobian main diagonal are 

positive, being related to the positive callback. 

Besides the elements 𝑎𝑘1𝑝𝑚 exp(−𝑎𝑝𝑚) > 0, if a>0 and 𝑗𝑘𝑂(1 − 𝑝 − 𝑐) exp
𝑛𝐹𝜑0

𝑅𝑇
>

0, if j>0, typical for the simplest case [28], the element, related to the DEL impact of the second 

electrochemical stage and complex compound transformation 𝑙𝑘2𝑐 exp
𝑚𝐹𝜑0

𝑅𝑇
> 0 if l>0 is also 

capable of being related to the oscillatory behavior. All of the mentioned factors may be 

responsible for the oscillatory behavior. The oscillation amplitude and frequency will be 

dependent on the solution composition (including the pH). Nevertheless, it is expected to be 

small, and the proper oscillations to be frequent.  

As for the steady-state stability, in order to investigate it, we apply to the equation-set 

(1) the Routh-Hurwitz criterion. Avoiding the cumbersome expressions, we introduce new 

variables, rewriting thereby the Jacobian determinant as (15):  

2

𝛿𝑃𝐶
|
−𝜅 − 𝛯 𝛴 0
−𝛯 −𝛺 − 𝛴 𝛬
𝛯 −𝛲 −𝛷

|                                                (15) 

Opening the brackets and applying the requisite Det <0, salient from the criterion, we 

obtain the stability condition, exposed as (16):  

−𝜅(𝛺𝛷 + 𝛴𝛷 + 𝛲𝛬) − 𝛯(𝛺𝛷 + 2𝛴𝛷 + 𝛲𝛬 − 𝛴𝛬) < 0        (16) 

The requisite (16) describes an electroanalytical efficient detection process controlled 

by both diffusion and reaction kinetics. As no stages capable of compromising the analyte and 

(or) modifier in a side reaction are possible in this system, the steady-state stability will 

correspond to the linear dependence between the concentration and electrochemical parameter 

(in this case, the current).   

The stability requisite is satisfied in a wide parameter range, although slightly narrower 

than for the simplest case. Therefore, the overoxidized polypyrrole may be an efficient 

electrode modifier for heavy metal determination and retention in potentiodynamic mode, even 

for the metal's multivalent states.  

As for the detection limit, it is defined by monotonic instability. It defines the margin 

between the stable steady-states and unstable states. Its requisite is Det J =0, or (17):  

−𝜅(𝛺𝛷 + 𝛴𝛷 + 𝛲𝛬) − 𝛯(𝛺𝛷 + 2𝛴𝛷 + 𝛲𝛬 − 𝛴𝛬) = 0        (17) 

The resulting material has a high tendency to be used as a catalyst for electroanalytical, 

electrocatalytic, and energy-converting systems. As for its electroanalytical function, it will be 

described in one of our next works. 
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4. Conclusions 

 From the analysis of the system with heavy-metal concentration monitoring on the 

overoxidized polypyrrole with the complex compound oxidation, it is possible to conclude that 

the overoxidized polypyrrole may be an efficient electrode modifier for the determination and 

monitoring of heavy metals concentration in vivo and in vitro. The electroanalytical process 

will be more dynamic than in the simplest case without additional complex compound 

oxidation. It is either diffusion or kinetically controlled, and the analytical signal is easy to 

interpret in a wide concentration range. On the other hand, the oscillatory behavior will be more 

capable of realizing than in the simplest case due to the influence of the additional 

electrochemical stage on DEL ionic force, conductivity, and surface impedance. Nevertheless, 

the electrochemical oscillations are realized far beyond the detection limit. 
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