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Abstract: Analytical study of the free and forced convective flow of Casson fluid in the existence of viscous 

dissipation, ohmic effect and uniform magnetic field in a porous channel to the physical model. The 

nonlinear coupled partial differential equations are converted to linear partial differential equations using 

similarity transformation and the classical perturbation method.  The physical parameters such as Prandtl 

number (Pr), viscous dissipation (Vi), Schmidt number (Sc), Reynolds number (R), thermal buoyancy 

parameter (λ), Ohmic number (Oh), Casson fluid parameter (β), Darcy number (Da), Hartmann number 

(M2), the concentration of buoyancy parameter (N), chemical reaction rate (𝛾) effect on velocity, 

temperature and concentration have been studied with pictorial representation.  For the particular case, the 

present paper analysis is compared with the previous work and is found good agreement. 
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dissipation. 
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1. Introduction 

Among non-Newtonian fluids, Casson fluid has gained the attention of researchers because 

of its wide applications in the field of engineering such as food processing, metallurgy, drilling 

and bioengineering operations have been mentioned by Ramesh et al. [1]. The free and forced 

convective flows in a vertical channel to study the effect of Joule heating and viscous dissipation 

have been studied both analytically and numerically by using the power series method by Barletta 

et al. [2]. The steady laminar MHD mixed convection of viscous dissipating fluid about a 

permeable vertical fluid to study the ohmic effect and viscous dissipation in the presence of the 

magnetic field, to solve the equations Keller box method is implemented, temperature and velocity 

profiles are studied for the physical model by Orhan Aydın et al. [3]. The effect of ohmic heating 

and viscous dissipation effect on an incompressible, viscous, steady flow of an electrically 

conducting fluid in the presence of a magnetic field at a stagnation point has been studied by 

Pushkar Raj Sharma et al. [4]. The governing equations are solved numerically by using the fourth-

order Runge-Kutta method with the shooting technique. Temperature and velocity profiles are 

discussed graphically.  
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Das et al. [5] investigated the Joule heating and viscous dissipation effect on thermal and 

momentum transport of MHD flow in the presence of opposing and aiding buoyancy force over 

the inclined plate. Similarity transformation and Runge–Kutta fourth-order method-based shooting 

method has been implemented to solve the governing equations numerically and results on 

temperature, velocity, heat transfer rate, and shear stress have been discussed. A steady MHD 

forced convective flow of viscous fluid in the presence of Joule heating and viscous dissipation in 

a porous medium have been studied and distribution of velocity and temperature distributions have 

been discussed by Raju et al. [6].  Gilbert Makanda [7] have studied the radiation effect on MHD 

free convection of Casson fluid in the presence of the non-Darcy porous medium. The obtained 

boundary layer equations are converted into non-similar partial differential equations and are 

solved by using the bivariate quasi linearization method and temperature and velocity profiles at 

boundary level are discussed. 

An unsteady natural convective flow on the plate in the existence of the radiation, porous 

medium and chemical reaction to study the effect of ohmic heating and viscous dissipation have 

been studied numerically by Lognathan et al. [8] in which the obtained equations are solved by 

Crank Nicolson method of finite difference scheme. Physical parameters are discussed on velocity, 

concentration, skin friction, temperature and Nusselt number distributions. A double-diffusive 

flow above the heated vertical plate in the existence of different properties of the fluid to study the 

combined effect of internal heat generation and viscous dissipation have been carried by Suresh 

Babu et al. [9] numerically using shooting technique and the effect of physical parameters are 

carried out on velocity, temperature, concentration graphically. Suresh Babu et al. [10] studied the 

viscous dissipation and ohmic effect on the oscillatory flow of a couple of stress fluid on a semi-

infinite vertical permeable plate in a porous medium.  

The boundary layer steady flow and heat transfer over a porous plate in presence of viscous 

dissipation, thermal radiation and magnetic field have been studied numerically using shooting 

technique by Ravi Kumar et al. [11]. They have stated that greater viscous dissipative heat causes 

an increase in the temperature of the fluid. Raju et al. [12] have studied the convective condition 

and cross-diffusion of Casson fluid across a paraboloid of revolution.  The shooting technique is 

used to solve the governing equations and the effects are studied on velocity, concentration and 

temperature. The study of MHD viscous flow over the slandering stretching surface in the presence 

of Joule, Ohmic and Forchheimer effect have been studied by Divya et al. [13].  MHD Casson 

fluid flows on a stretched surface with variable thickness to study the thermal radiation effect has 

been investigated by Basavaraju et al. [14]. 

Ohmic and magnetic effects on an unsteady stretching surface to study the heat transfer 

have been discussed by Divya et al. [15]. The homotopy perturbation method is used to convert 

the nonlinear partial differential equations into ODE. Taseer et al. [16] investigated the stretched 

3D flow of viscous fluid with prescribed concentration and heat fluxes in the existence of Joule 

heating, chemical reaction and viscous dissipation. Ganesh et al. [17] studied the viscous 

dissipation and Joule heating of Oldroyd B fluid in three dimensions. The governing equations 

have been solved using the shooting method and discussed the graphs about the viscous dissipation 

and Joule heating effect.  

Ashish et al. [18] investigated the influence of ohmic effect and viscous dissipation, heat 

absorption, or generation on MHD flow of nanofluid over the stretching sheet with injection and 

suction. The governing equations have been solved numerically using the shooting technique and 

the results have been discussed. Anjalidevi et al. [19] considered the unsteady boundary layer flow 

of hydrodynamic fluid on stretching surfaces to study the effect of viscous dissipation, mass 
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transfer, thermal radiation and ohmic dissipation. The governing equations have been solved 

numerically by using the fourth-order Range-Kutta method and the effects of physical parameters 

have been discussed. Hitesh Kumar [20] studied the characteristics of heat transfer and flow of the 

fluid in the presence of ohmic heating, viscous dissipation and radiation on a stretching porous 

sheet. The obtained governing equations have been solved analytically by the Homotopy 

perturbation method and the results have been discussed on temperature and velocity profiles. 

Dulal [21] investigated the unsteady electrically conducting a convective flow of the fluid 

on a permeable stretching sheet in the presence of an Ohmic effect, viscous dissipation and internal 

heat.  The effect of physical parameters such that buoyancy parameter, Eckert number, 

unsteadiness parameters have been discussed. Thiagarajan et al. [22] studied the double stratified 

magnetohydrodynamic nanofluid flow on an exponentially stretching sheet in the existence of heat 

absorption or generation under the influence of Joules heat and viscous dissipation.  Nachtsheim-

Swigert shooting technique scheme with fourth-order Runge-Kutta method has been employed to 

solve the governing equations. Further, the effect of physical parameters has been discussed on 

temperature and concentration.   

The effect of viscous dissipation, heat and mass transfer on mixed convection of MHD 

flow of Casson fluid over a plate has been investigated by Gireesha et al. [23], in which governing 

equations were solved using  RKF-45 scheme and convergent solutions for velocity, concentration 

and temperature fields were discussed graphically. A steady, incompressible, electrically 

conducting mixed convective MHD flow of viscous fluid over an infinite plate in the presence of 

ohmic heating, chemical reaction and viscous dissipation have been studied by Garg et al. [24] in 

which the effect of non-dimensionalized parameters on velocity, temperature and concentration 

profiles have been studied. MHD mixed convection, incompressible and electrically conducting 

nanofluid flow along with the vertical plate with ohmic and viscous dissipation have studied 

numerically using Quasi-linearization technique and finite difference scheme by Jagadha et al. 

[25]. The mixed convective flows of Casson fluid in a porous channel in presence of amplification 

and porous media have been studied by Shilpa et al. [26].  Perturbation technique is implemented 

to solve the obtained governing equations and physical parameters effects have been studied on 

temperature, velocity and concentration.  Sravan Kumara et al. [27] investigated the unsteady 

convection flow of nanofluid on exponentially moving vertical plates in the presence of viscous 

dissipation and Lorentz force.   

Wilfred et al. [28] studied the effect of ohmic and viscous dissipation on convective of a 

MHD flow over the shrinking surface in the existence of radiation and internal heat generation.  

Umamaheswar et al. [29] discussed the effect of ohmic and viscous dissipation of 

magnetohydrodynamic flow with suction and injection in the presence of porous media.  The effect 

of physical parameters has been discussed on temperature, concentration and velocity.  Manjula et 

al. [30] examined the free convection, steady MHD of Casson fluid flow over a slanted porous 

sheet in the presence of radiation and viscous dissipation. Runge-Kutta method of fourth-order has 

been implemented to solve the dimensionless equations. Further temperature, velocity and 

concentration profiles have been discussed. Tariq Javed et al. [31] investigated the effect of ohmic 

heating and viscous dissipation by considering the Prandtl nanofluid with a magnetic coating on 

an unsteady moveable surface. The Keller-Box method has been implemented to solve the 

governing equations and physical parameters have been discussed. 

In all the above-cited literature and to our knowledge, it has been observed that the 

numerical approach carries out the study of the casson fluid flow and much work has not been 

carried out by incorporating ohmic and viscous dissipation effects, which play a great role in 
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controlling the velocity, concentration and temperature for many applications cited above. Thus, 

the main objective and aim of the present work are to study the viscous dissipation and ohmic 

effect on forced and free convection flow of Casson fluid in a porous channel in the presence of 

uniform magnetic field porous medium and chemical reaction analytically by using perturbation 

technique. The effects of non-dimensional parameters on temperature, velocity and concentration 

have been studied graphically.  

2. Materials and Methods 

 A steady, laminar, incompressible Casson fluid flow in the presence of viscous dissipation, 

ohmic effect and applied magnetic field B0 uniformly in a porous channel is the physical 

configuration to be considered. This model consists of a two-dimensional system of axisymmetric 

flow with one wall of the channel at y = -H and another wall at y = +H.  The x-axis is along with 

the channel's flow, parallel to the channel surface and perpendicular to the channel will be the y-

axis.  At y = +H the fluid is injected into the channel and at y = -H the fluid is extracted out from 

the channel with uniform velocity V.  

 The governing equations for MHD flow of Casson fluid in the presence of amplification, 

porous media, viscous dissipation, and Ohmic effect are expressed as follows 

                                                            
∂u

∂x
+

∂v

∂y
= 0,                                                          (1)  

      u
∂u

∂x
+ v

∂u

∂y
= −

1

ρ

∂p

∂x
+ υ (1 +

1

β
)

∂2u

∂y2 −
σB0

2u

ρ
−

μp

k2
u ± g(βT(T−T2)+βc(C−C2)),               (2)                                                                          

                                          u
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∂v
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= −

1

ρ

∂p
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−

μp

k
v + ν (1 +

1

β
)

∂2v

∂x2 ,                   (3)         

                                      u
∂T

∂x
+ v

∂T

∂y
=

k

ρCp

∂2T

∂y2 +
μ

ρcp
(

∂u

∂y
)

2
+

μp

ρcpk2
u2,                                (4) 

                                                   u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2 − Ck1.                                              (5) 

Where σ is electrical conductivity, ρ is density,  k is thermal conductivity, cp is the specific heat 

at constant pressure, β is Casson fluid parameter, 𝛾 is kinematic viscosity, T is the temperature of 

the fluid, k1 is reaction rate, C is the concentration field, μ is dynamic viscosity, k2 is the 

permeability of the medium and D is mass diffusion. 

 For the above mentioned physical configuration, the boundary conditions are: 

u = 0, v =
V

2 
, T = T2 , C = C2 at y=H, 

    
∂u

∂y
= 0, v = 0 , T = T1 , C = C1 at y=0 .         (6) 

From (3) and (4), we get 

u
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The above equations are non-dimensionalized by introducing the following parameters 

y∗ =
y

H
, x∗ =

x

H
, v = aVf(y∗), u = −Vx∗f ′(y∗), ϕ(y∗) =

C−C2

C1−C2
, θ(y∗) =

T−T2

T1−T2
,       (8) 

With these parameters (4), (5) and (7) becomes, 

                                        θ′′ − aPrf ε θ′ + ε Vi f ′2
+ Oh ε f 2 = 0,                          (9) 
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                         ϕ′′ − a ε Sc f ϕ′ − Sc γ (ϕ + A) = 0.         Where  A =
c2

c1−c2
       (10) 

    (1 +
1

β
) f ′′′′ − (M2 + Da)f ′′ + Rε[−aff ′′′ + (2 − a)f ′f ′′] ± λ[Nϕ′ + θ′] = 0,      (11) 

The reduced boundary conditions are 

   f(0) = 0, f(1) =
1

2
 , f ′′(0) = 0, ϕ(0) = 1, f ′(1) = 0 , θ(0) = 1, ϕ(1) = 0, θ(1) = 0,              (12) 

Where Oh=
(aVH)2

K22(T1−T2)
 is Ohmic effect, Grx =

VH4gβT(T1−T2)

xυ3  is Grashof number, M2 =
σB0

2H2

μ
 is 

Hartmann number, R =
VH

υ
   is Reynolds Number (R < 0 for injection and R > 0 for suction), 

Vi=
μ 𝑎2𝑣2

k2(T1−T2)
 is viscous dissipation, N =

βC(C1−C2)

βT(T1−T2)
 is a concentration of buoyancy parameter, 

Sc=
HV

𝐷
  is Schmidt number, γ =

k1H

υ
 is chemical reaction rate, Pr =

ρCpHV

k
 is Prandtl number,  Da =

H2μP

K2υ
  is Darcy number and  λ =

Grx

R2  is the thermal buoyancy parameter. 

2.1. Method of solution.  

To find the analytic solution of (9), (10) and (11), we consider the solution by using the 

classical perturbation technique for velocity f, temperature 𝜃,  concentration 𝜙 as given below with 

very small values of perturbation parameter ‘ε’. 

θ = θ0 + ε ∗ θ1, 

         ϕ = ϕ0 + ε ∗ ϕ1,    

                                                                    f = f0 + ε ∗ f1,                                                 (13)  

On solving (9), (10), and (11) by perturbation technique using(13), we get 

θ0
′′ = 0, 

                                         θ′′ − a Pr f0 θ′ +  Vi f0
′2

+ Oh  f0
′2

= 0,                                 (14) 

ϕ0
′′ − Scγϕ0 − ScγA = 0, 

    ϕ1
′′ −  a Scf0ϕ0

′ − Scγϕ1 = 0.              (15) 

(1 +
1

β
) f0

′′′′ − (M2 + Da)f0
′′ ± λ[θ0

′ + Nϕ′
0

] = 0, 

      (1 +
1

β
) f1

′′′′ − (M2 + Da)f1
′′ + R[(2 − a)f0

′f0
′′ − af0f0

′′′] ± λ[θ1
′ + Nϕ1

′ ] = 0,            (16) 

The corresponding boundary condition takes the form 

 f1(1) = 0, f0(1) =
1

2
, f0

′(1) = 0 , f1
′(1) = 0 , θ0(1) = 0 , θ1(1) = 0, ϕ0(1) = 0,ϕ0(1) = 0,  

f0
′′(0) = 0,  f1

′′(0) = 0, f0(0) = 0, f1(0) = 0, θ0(0) = 1, θ1(0) = 0, ϕ0(0) = 1, ϕ0(0) = 0. 

Solutions (14), (15) and (16) under the above boundary conditions are  

f = d9 + d10y + d11ed8y + d12e−d8y + d13y2 + d14ed1y + d15e−d1y + ε(d126 + d127y +

d128ed8y + d129e−d8y + d231y2 + d232y3 + d233y4 + d234y5 + d165y6 + d168y7 + d235ed1y +

d236e−d1y + d237yed8y + d239y2ed8y + d238ye−d8y + d240y2e−d8y + d241yed1y +

d242ye−d1y + d243y2ed1y + d244y2e−d1y + d194y3ed8y + d198y3e−d8y + d209e2d8y +

d210e−2d8y + d211e2d1y + d212e−2d1y + d213ed18y + d214ed19y + d215ed20y + d216ed21y +

d220y3ed1y + d227y3e−d1y), 

θ = d4 + d5y + ε(d47 + d48y + d73y2 + d74y3 + d110ed8y + d111e−d8y + d77y4 + d78y5 +

d112ed1y + d113e−d1y + d114yed8y + d115ye−d8y + d116yed1y + d117ye−d1y + d85y2ed8y +

d88y2ed8y + d95y2ed1y + d98y2e−d1y + d101e2d8y + d102e−2d8y + d103e2d1y + d104e−2d1y +

d105ed18y + d106ed19y + d107ed20y + d108ed21y + d109y6), 
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ϕ = d2ed1y + d3e−d1y − A + ε(d16ed1y + d17e−d1y + d42yed1y + d43ye−d1y + d44y2ed1y +

d45y2e−d1y + d46 + d28ed18y + d29ed19y + d30ed20y + d31ed21y + d32e2d1y + d35e−2d1y +

d36y3ed1y + d39y3e−d1y). 

All the di terms which are mentioned in the above solutions are constants and their 

expressions are mentioned in the appendix. 

3. Result and Discussion 

 Here, in this problem, an analytical approach is carried out to convert the coupled PDE to 

a simultaneous ODE using the similarity transformation and perturbation method with its 

parameter ‘𝜀’.  By this technique, the physical model's governing differential equations are 

transferred to a six set of analytical expressions of ODE are obtained with its complete solutions 

under the boundary conditions.  Mathematica software is used for the computational work to study 

the physical parameters such as Prandtl number, viscous dissipation, Schmidt number, thermal 

buoyancy parameter, ohmic number, Reynolds number, Casson fluid parameter, Darcy number, 

Hartmann number, the concentration of buoyancy parameter, chemical reaction rate on 

temperature, velocity and concentration. 

3.1. Effect of Casson parameter (β). 

 Casson fluid is one of the non-Newtonian fluid which has high viscosity at zero rate shear. 

Fig.1 and Fig.2 indicate the Casson fluid parameter (β) effect on concentration, temperature, and 

velocity. The concentration, velocity, and temperature profiles diminish with the increase in the 

Casson parameter. This is due to the non-Newtonian character of the Casson fluid, which offers 

more resistance flow.   

3.2. Effect of Darcy number (Da). 

 Fig.3 shows the effect of Darcy number (Da) on concentration and temperature as the 

porous medium's permeability increases the concentration and temperature profiles, enhancing 

with a very small increase in Darcy number. Here, we are highlighting more on concentration and 

thermal effect, which is not focused in the literature.  

3.3. Effect of buoyancy parameter (𝜆). 

 Fig. 4 shows the Buoyancy parameter on concentration and temperature in which 

Buoyancy parameter (𝜆) enhances the concentration and temperature profiles, Due to the thickness 

of the fluid velocity profiles are not showing much effect.  

3.4. Effect of Hartmann number (M2). 

Fig.5 and Fig.6 indicate the Hartmann number effect (M2) on concentration, temperature 

and velocity. In all the cases, the profiles decrease with the increasing value of Hartmann number 

due to the magnetic field present in the electrically conducting fluid, which offers resisting force 

to flow called Lorentz's force, which acts against the flow.   
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3.5. Effect of Concentration of buoyancy parameter (N). 

 The concentration of buoyancy parameter increases the concentration and temperature 

profiles at the lower values of N increases. This is due to the increased thickness of the fluid, and 

no change in velocity is seen in Fig.7.   

3.6. Effect of chemical reaction (γ). 

As the chemical reaction occurs, there will be an exchange of molecules in the fluid so that 

the concentration and temperature profiles increasing with increasing values of chemical reaction 

(γ) are seen in Fig.8.  

3.7. Effect of ohmic number (Oh). 

 The ohmic effect arises in the fluid due to the porosity of the media. Fig.9 and Fig.10 show 

the ohmic effect on concentration, temperature, and velocity. The profiles enhance with the 

increase in ohmic number (Oh) due to the porous media.    

3.8. Effect of Prandtl number (Pr). 

 Fig.11 and Fig.12 show the effect of the Prandtl number on concentration, temperature and 

velocity. All the profiles diminish as the Prandtl number (Pr) increases due to the high viscosity of 

the fluid.  

3.9. Effect of Reynolds number (R). 

 Reynolds number is the ratio of inertial force to viscous force. As the Reynolds number 

increases, inertial forces increase and viscosity decreases. Fig.13 indicates the effect of Reynolds 

Number (R) on concentration and temperature. Viscosity decreases with an increase in the inertial 

forces, which enhances the profiles of concentration and temperature.  

3.10. Effect of Schmidt's number (Sc).  

Schmidt's number is the ratio of momentum diffusivity to mass diffusivity. Schmidt's 

number (Sc) effect on concentration and temperature is seen in Fig.14, in which the profiles 

increase with an increase in very small values of Schmidts number.   

3.11. Effect of viscous dissipation (Vi).  

 Fig.15 gives the effect of viscous dissipation (Vi) on concentration and temperature. As the 

viscous dissipation increases, the fluid's thickness enhances, leading to increased concentration 

and temperature profiles and no changes in velocity due to an increase in thickness of the fluid. 

3.12.      Effect of perturbation parameter (𝜺) and amplification parameter (a).  

 We have solved the problem in the presence of amplification by using the perturbation 

method. Fig.16 and Fig.17 indicates the effect of perturbation parameter (𝜀) and amplification 

parameter (a) on concentration and temperature, both concentration and temperature profiles 

increases with an increase in the values of the parameters mentioned above, so these two 

parameters are used as a tool to control concentration and temperature, but these parameters are 

not showing the much effect on velocity. 
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Figure 1. Casson Parameter (β) effect on Concentration and Temperature. 

   
Figure 2. Casson Parameter (β) effect on velocity. 

 
Figure 3. Darcy Number (Da) effect on Concentration and Temperature. 
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Figure 4. Buoyancy Parameter (𝜆) effect on Concentration and Temperature. 

 
Figure 5. Hartmann number (M2) effect on Concentration and Temperature. 

 

 
Figure 6. Hartmann number (M2) effect on velocity. 
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Figure 7. Concentration Buoyancy Parameter (N) effect on Concentration and Temperature. 

         
Figure 8. Chemical Reaction (γ) effect on Concentration and Temperature. 

 

Figure 9. Ohmic number (Oh) effect on Concentration and Temperature. 
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Figure 10. Effect of Ohmic number (Oh) on velocity. 

 
Figure 11. Prandtl number (Pr) effect on concentration and temperature. 

 
Figure 12. Prandtl number (Pr) effect on velocity. 
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Figure 13. Reynolds number (R) effect on concentration and temperature. 

 

 
Figure 14. Schmidt's number (Sc) effect on concentration and temperature. 

 

 
Figure 15. Viscous dissipation (Vi) effect on concentration and temperature. 
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Figure 16. Effect of perturbation parameter (𝜀) on concentration and temperature. 

 

 
Figure 17. Amplification parameter (a) effect on concentration and temperature. 

4. Conclusions 

 Due to the above assumptions, the physical parameters show more effect on concentration 

and temperature than velocity. Temperature, concentration, and velocity profile decrease with 

Casson's increase because of the Casson fluid's non-Newtonian character. Darcy number, 

Buoyancy parameter, Concentration buoyancy parameters enhance concentration and temperature 

profiles. Hartmann number and Prandtl number lowers the profiles because of the presence of 

magnetic field and high viscosity, respectively. The ohmic effect on temperature, concentration 

and velocity profiles enhances with an increase in ohmic number, whereas temperature and 

concentration profiles enhance with increases in viscous dissipation. Schmidt's Number, Reynold's 

number, amplification and perturbation parameters enhance the concentration, temperature 

profiles.  Our results coincide with the earlier work carried out by Shilpa et al. [26] in the absence 

of ohmic effect, viscous dissipation and porous medium. 
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Appendix 
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