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Abstract: The preparation of one monomeric [MoO2(L)](acac)2 having a Schiff base came by 

condensation of di-2-furanylethanedione with 2,3-diaminotoluene and 4 different complexes having 

formulation [MoO2(ML)](acac)2, from the result of [MoO2(L)](acac)2 with 1,3-diketones will be 

described with this paper. The preparation of each of these five MoO2 (VI) complexes was symbolized 

by thermal studies, UV-Vis, IR, elemental analyses, NMR, and molar conductance. The coordination 

number of molybdenum metal will be six. All 5 complexes of MoO2(VI) have a geometry of distorted 

octahedral arrangement. The octahedral arrangement of Mo-metal in prepared complexes is finished by 

2 oxo O-atoms and 4 N-atoms from the synthesized ligand. All of the synthesized complexes 

demonstrated moderate action against S. aureus and S. typhi. The progression inside the antibacterial 

task being defined on the thought of chelation speculation. 

Keywords: dioxomolybdenum(VI); di-2-furanylethanedione;1,3-diketones;macrocyclic complexes; 

Schiff base. 
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1. Introduction 

The macrocyclic complex is a cyclic complex that contains at least 9 atoms, including 

all heteroatoms. In such complexes, at least 3 donor atoms will be present. The discipline of 

the chemistry of macrocyclic complexes possesses experienced development amid the prior 

past hundred years [1-5]. Ligands containing N-atom and Schiff bases and their complexes 

assumed a significant job in improving coordination chemistry. Several research papers have 

been published, ranging from physicochemical and biochemically pertinent be taught of metal 

complexes and driven extensive selection of applications [6-11]. Schiff-based compounds were 

applied as medicines and had worthwhile antifungal, antiviral, anti-inflammatory, and 

antitumor properties [12-20]. Metal ions catalyzed the transamination reactions via the 

production of transitional Schiff bases formulated with vitamin B6 [15]. 

 Fascination with complexes of Schiff base in the bioinorganic field has directed at the 

purpose of such complexes in imparting manufactured models to the metal-containing positions 

in metalloproteins and enzymes [21]. Various Schiff bases have anticancer activity of that 

particular metal complex is greater in evaluation to the isolated ligand [22-24]. They endure 

durable catalytic fascination with various reactions in chemistry so when memory storage 

gizmos in consumer electronics [25-29]. 
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 Transition metal complexes with extreme denticity ligands have different 

configurations and coordination numbers [31]. Molybdenum can be adaptable due to its 

multiple oxidation states, ranging from –2 to +6. In the same way, coordination numbers vary 

from 4 to 8 [32]. The capability to connect molybdenum complexes with ligands containing N, 

O- and S-atoms induced growth of Mo Schiff base edifices, which are productive impetuses in 

homogeneous and heterogeneous reactions [33-39]. MoO2(VI) complexes with multidentate 

ligands have super value in the theoretical and functional region predominantly for biological 

functions. Mo(VI) can be acquired as an effortless [MoO4]2- ion in an aqueous medium. 

[MoO4]2- ion can be based on the concentration and pH of the solution. The [MoO4]2- ion can 

perform as an oxygen transfer template [40-41]. Their oxygen transfer qualities play a negative 

role in the performing mechanism of molybdenum oxotransferase [42,43]. Several redox 

enzymes are present in a fully oxidized state. In such cases, their active sites consist of a cis-

dioxomolybdenum moiety [44-46].  

 In the second series of transition metals, entirely molybdenum is considered a biometal 

crucial for human, animal, and vegetation pathogenic microorganisms [47,48]. The 

coordination chemistry of Mo(VI) is of thriving interest for the present research because of 

their catalytic activities and biological properties [49-52]. Physiological functions of 

oxomolybdoenzymes are set up via molybdenum [53-55]. Di-2-furanylethanedione may be a 

versatile chelating agent. Di-2-furanylethanedione has two reactive carbonyl groups, which 

might be capable of undergoing Schiff base condensation with several di- and polyamines. 

Therefore, di-2-furanylethanedione has performed an essential function within the synthesis of 

macrocyclic ligands.  

 With on pinnacle of context, some dioxomolybdenum(VI) complexes with excessive 

denticity ligands can synthesize from the condensation of di-2-furanylethanedione with a 

diamine. The synthesized complex has the ability to undergoing cyclization with 1,3-diketones 

via the metal template impact. They can be prepared, characterized and their provisional 

structures are supported by molar conductivity, elemental analysis, electronic, infrared, and 

nuclear magnetic resonance spectroscopy. 

 Retaining because of the importance of Mo2(VI) cations, a new sequence of 

dioxomolybdenum(VI) macrocyclic complexes were synthesized. Those 

dioxomolybdenum(VI) macrocyclic complexes with new chelate ligands derived from the 

condensation of di-2-furanylethanedione with 2,3-diaminotoluene successful in presenting 

process cyclization with 1,3-diketones through the metallic template impact have been 

synthesized. Herein, the synthesis and ascertaining structures based totally on molar 

conductivity, elemental analyses, electronic IR, NMR, and TGA/DTA are reported. 

2. Materials and Methods 

 All chemicals utilized for the preparation of Schiff base (ligands) and complexes had 

been of reagent grade and utilized as obtained from business resources. Molybdenyl 

acetylacetonate, 2,3-diaminotoluene, di-2-furanylethanedione and 1,3-diketones (2,4-

pentanedione, 1-phenyl-1,3-butanedione, 4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedione, and 

1,3-diphenyl-1,3-propanedione) were obtained from Aldrich and utilized without similarly 

purging. 
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2.1. Analytical methods and physical measurements. 

Examinations of C, H and N for the complexes were done at important CRF, NERIST, 

Nirjuli, Itanagar, Arunachal Pradesh, India by using CHN analyzer. Kjeldahl’s method 

becomes used to assess nitrogen for the synthesized complexes. After the decay of the complex, 

molybdenum was assessed gravimetrically via standard technique [56]. Estimation of sulfur 

progressed toward becoming accomplished as barium sulfate [57]. The general method 

changed into utilized for deciding uncorrected melting factors with the assistance of sulfuric 

acid bath. The electronic absorption spectral computation (the UV-Visible spectra) of the 

complexes was recorded on Labinda-UV 3000+ UV/VIS spectrophotometer inside the reaches 

1100 - 220 nm by utilizing ethanol as solvent at UPTTI Kanpur, U.P., India. The infrared 

spectra of MoO2(VI) complexes (4000-400 cm-1) had been recorded in KBr on Perkin-Elmer 

Spectrum model 10.03.06 spectrophotometers at IIT Kanpur. NMR spectra of MoO2(VI) 

complexes were procured on JMM ECS-400 (JEOL) spectrometer with 400 MHz for proton 

(1H NMR). Thermograph of the produced parent complex [MoO2(L)](acac)2 was done under 

nitrogen atmosphere in the temperature extend 50 - 600 0C at the heating rate 10 0C min-1 

utilizing TG/DTA - Perkin Elmer, USA thermal analyzers. 

2.2. In-situ synthesis of dioxomolybdenum(VI) complexes with ligands derived by 

condensation of di-2-furanylethanedione with 2,3-diaminotoluene with 1,3-diketones. 

Schemes 1, 2and 3 display the synthesis way of [MoO2(ML)](acac)2. An ethanolic 

solution of molybdenyl acetylacetonate (2.5 mmol, 0.81537 g) was brought drop smart to a 

refluxing solution of di-2-furanylethanedione (2.5 mmol, 0.5570 g) and 2,3-diaminotoluene (5 

mmol, 0.61164 g) in ethanol (50 mL) in RB flask. The resulting reaction mixture was slightly 

refluxed for 3 h. The coloration of the solution becomes brown. The received solid product was 

filtered off, washed with ethanol, and isolated beneath in vacuo over silica gel. TLC method 

was employed for checking the purity of the prepared complex. The yield became 46 % (type 

A).  
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Scheme 2.  Synthesis of [MoO2(L)](acac)2. 
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Scheme 3.  Synthesis of [MoO2(ML)](acac)2 where, L= difuranylethanedione+2,3-diaminotoluene; ML= 

macrocyclic ligands carried out from condensation of L with 1,3-diketones in presence of 

dioxomolybdenum(VI) cation. 

Where, L = di-2-furanylethanedione + 2,3-diaminotoluene; ML = macrocyclic ligands 

carried out from condensation of L with 1,3-diketones in presence of dioxmolybdenum(VI) 

cation. 

Table 1. Physical and analytical data of the ligand and complexes. 

Complex 

 

Empirical Formula 

 

 

F.W. 

 

 

Yield 

(%) 

m.p. 

(0C) 

 

C% 

Calcd. 

(found) 

H% 

Calcd. 

(found) 

N% 

Calcd. 

(found) 

Mo% 

Calcd. 

(found) 

S% 

Calcd. 

(found) 

L C24H22N4S2 

 

430.59 45 115 66.94 

(66.93) 

5.14 

(5.15) 

13.01 

(13.00) 

-- 14.89 

(14.87) 

[MoO2(L)] 

(acac)2 

C34H36N4MoS2O6 756.75 50 

 

125 

 

53.96 

(53.98) 

4.79 

(4.78) 

7.40 

(7.41) 

12.67 

(12.64) 

8.47 

(8.46) 

[MoO2(ML1)](ac

ac)2 

C39H40N4MoS2O6 

 

820.84 

 

52 

 

110 

 

57.06 

(57.05) 

4.91 

(4.91) 

6.82 

(6.81) 

11.68 

(11.69) 

7.81 

(7.80) 

[MoO2(ML2)](ac

ac)2 

C44H42N4MoS2O6 

 

882.91 

 

53 

 

120 

 

59.85 

(59.86) 

4.79 

(4.78) 

6.34 

(6.34) 

10.86 

(10.85) 

7.26 

(7.24) 

[MoO2(ML3)](ac

ac)2 

C42H37N4MoO6S3F3 

 

942.91 

 

58 

 

118 

 

53.50 

(53.48) 

3.95 

(3.96) 

5.94 

(5.95) 

10.17 

(10.16) 

10.20 

(10.22) 

[MoO2(ML4)](ac

ac)2 

C49H44N4MoS2O6 

 

944.98 55 

 

122 

 

62.28 

(62.29) 

4.69 

(4.67) 

5.92 

(5.90) 

10.15 

(10.14) 

6.78 

(6.75) 

Table 1’. Description. 
For macrocyclic R R’ 1,3-diketone Structure 

ML1 CH3 CH3 2,4-pentanedione  OO

CH3
CH3  

ML2 C6H5 CH3 1-phenyl-1,3-butanedione OO

CH3
H5C6  

ML3 C4H3S CF3 4,4,4-trifluoro-1-(2-thienyl)-

1,3-butanedione 

OO

CF3SH3C4  
ML4 C6H5 C6H5 1,3-diphenyl-1,3-

propanedione  

OO

C6H5H5C6  
L= ligand derived via condensation of di-2-furanylethanedione with 2,3-diaminotoluene (1:2);  

ML1 = macrocyclic ligand derived via condensation of ligand (L) with 1,3-diketone-2,4-pentanedione ;  

ML2 = macrocyclic ligand derived via condensation of ligand (L) with 1,3-diketone-1-phenyl-1,3-butanedione;  

ML3 = macrocyclic ligand derived via condensation of ligand (L) with 1,3-diketone-4,4,4-trifluoro-1-(2-thienyl)-

1,3-butanedione;  

ML4 = macrocyclic ligand derived via condensation of ligand (L) with 1,3-diketone-1,3-diphenyl-1,3-

propanedione.  

The solution of Kind A suspended in ethyl alcohol uniformly reacted for three h with 

1,3-diketones viz. 2,4-pentanedione, 1-phenyl-1,3-butanedione, 4,4,4-trifluoro-1-(2-thienyl)-

1,3-butanedione or 1,3-diphenyl-1,3-propanedione (1:1) to gain macrocyclic dirty yellow solid 

stable products (type B). The purity of the macrocyclic complexes turns into checked by way 

of TLC. 
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Elemental analyses (Table 1) of the complexes revealed 1:1 metal to ligand 

stoichiometry. 

2.3. Antibacterial activity assay. 

The antibacterial interest of the synthesized dioxomolybdenum(VI) complexes was 

examined in vitro against four bacterial strains, i.e., Staphylococcus aureus, Bacillus subtilis, 

Enterobacter aerogene, and Salmonella typhi, utilizing a cup and agar-well diffusion method 

[58-60]. Doxycycline drug changed into used as the identical general antibacterial agent. Wells 

having dimensions of 6 mm in diameter were dug inside the agar media with the help of a 

metallic borer. The density of each bacterial suspension in each well turned into adjusted to 3 

× 105 colony-forming units (CFU) mL-1. The standardized suspensions were expanded on the 

surface of the agar. The produced complexes have been dissolved in 1 % DMSO, and the 

concentration of the examined sample was 300 µg mL-1. The examined samples were added 

within the corresponding wells. The rest wells were packed with DMSO and antibacterial 

medium doxycycline (0.05 %). Growth inhibition becomes tested after 30 h incubation at 35 
oC. 

3. Results and Discussion 

3.1. Infrared spectra. 

The dioxomolybdeum(VI) had been prepared via the use of an in-situ approach to reflux 

the reaction mixture of di-2-furanylethanedione 2,3-diaminotoluene, and molybdenyl 

acetylacetonate in 1:2:1 molar ratio in aqueous ethanol, which results in macrocyclic 

complexes in the scheme. Remarkable infrared spectral bands of the isolated ligand and the 

MoO2(VI) complexes and their provisional assignments are given in table 2. The bonding of 

N-atoms of groups azomethine to the molybdenum in all macrocyclic complexes was 

evidenced with the aid of using the move of νC=N to lower frequencies [61-64]. The spectral 

bands place 1604-1645 cm-1arecoupled to >C=N absorption, which usually seems at 1665 cm-

1 in isolated ligands [61-63]. The new band at around 508-591 cm-1may be assigned to νMo-N 

vibration [65], i.e., not present in free ligands. The bonding of both keto groups of di-2-

furanylethanedione via carbonyl oxygen with diamines becomes supported via the presence of 

>C=N band and the absence of the > C=O band around 1710 cm-1 [66,67]. Infrared spectra of 

the isolated ligand and its complexes of dioxomolybdeum(VI) are complex because of the 

appearance of diverse ring vibrations and C-H vibrations. A wideband targeted at 3433 cm-1 

for νasym (N-H) and 3065 cm-1 for νsym (N-H). Within the complex [MoO2(L)](acac)2 bands live 

unchanged however absent in complex [MoO2(ML)](acac)2 because this implies non-

participation of the NH group in the bonding [68]. The dioxomolybdenum(VI) complexes 

create a cis-dioxo group preferentially because of the d-orbital for bonding. The 

dioxomolybdenum(VI) complexes revealed two Mo=O stretching bands at 893-910 cm-1 and 

964-981 cm-1 due to asymmetric and symmetric stretching vibrations of the cis-[MoO2]2+ 

moiety in C2V symmetry [69]. Those two infrared spectral bands are allocated toνasym(O=Mo=O) 

and νsym(O=Mo=O) vibrations, respectively [69-76]. νasym(O=Mo=O)vibrations are lower than ones of 

νsym(O=Mo=O)[77,78]. The presence of acetylacetonate group found in the outer coordination 

sphere is affirmed using the bands performing around 1552 - 1569 cm-1, and 1467 - 1480 cm-1 

are appointed to νC=O and νC=C vibrations [79]. Infrared spectral bands of the macrocyclic 
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complexes exhibit unequal fashion of spectral bands. The asymmetrical and symmetrical N-H 

stretching vibrations of terminal amino groups disappear because of the binding of those amino 

groups with a carbonyl group of 1,3-diketones in cyclization methods [79,80]. 

Table 2. IR spectral bands (ν / cm-1) of ligand and dioxomolybdenum complexes. All spectra had been 

recorded using KBr within the variety 4000 - 400 cm-1. 

 

Complex 

ν
C

=
N
 

ν
 M

o
-N

 

ν
C

=
O

 o
f 

a
ce

ty
la

ce
t

o
n

a
te

 

ν
C

=
C

 o
f 

a
ce

ty
la

ce
t

o
n

a
te

 

ν
a
sy

m
 

(O
=

M
o
=

O
) 

ν
sy

m
 

(O
=

M
o
=

O
) 

ν
a
sy
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 (

N
-H

) 

ν
sy

m
(N

-H
) 

 

L 1665s --- --- --- --- --- 3323br 3130br 

[MoO2(L)](acac)2 1604s 508m 1569s 1467m 893s 981s 3433br 3065br 

 [MoO2(ML1)](acac)2 1645m 580m 1555m 1470m 902s 975s   

[MoO2(ML2)](acac)2 1640s 591s 1564s 1480s 905m 964s   

[MoO2(ML3)](acac)2 1644m 585s 1552m 1475m 910s 965m   

[MoO2(ML4)](acac)2 1640s 524m 1560s 1472m 902m 968s   

3.2.1H NMR spectra. 

Spectra1H NMR of ligand and all prepared MoO2(VI) complexes were executed in 

DMSO-D6. 
1H NMR spectrum of produced free ligand proposes signal because of NH2 at δ 

(10.20) which is additionally present in [MoO2(L)](acac)2 at δ (10.12) yet missing in various 

four macrocyclic complexes [MoO2(ML)](acac)2 which recommend the cyclization by 1,3-

diketones. The ten protons present as multiplets inside the range δ (7.06-7.84) for the isolated 

ligand and molybdenum complexes. The protons of the aromatic ring appeared by peaks about 

δ (7.26). 1H NMR spectrum about δ (3.29-3.82) allotted to the CH2N fragment. The appearance 

of these chemical shifts might directly result from the arrangement of two types of azomethine 

that is engaged in the preparation of the macrocyclic complex. The sharp singlet signal situated 

at δ (2.47) might be because of the water present in DMSO-D6 sample used. 

Table 3.1HNMR Spectral Data of prepared ligand and dioxomolybdenum complexes (in δ ppm). 

Complex HC-Ar N-H C-H3  C-H  

L     7.12 10H 10.20 4H -- -- 

[MoO2(L)](acac)2 7.74 10H 10.12 4H 2.46 12H 5.71 2H 

[MoO2(ML1)](acac)2 7.42 10H -- 2.69 12H 5.58 2H 

[MoO2(ML2)](acac)2 7.06 10H -- 2.45 12H 5.70 2H 

[MoO2(ML3)](acac)2 7.84 10H -- 2.70 12H 5.52 2H 

[MoO2(ML4)](acac)2 7.15 10H -- 2.49 12H 5.58 2H 

3.3. UV - Visible spectra. 

The Ultraviolet-Vis spectra of tetradentate tetraaza ligand and the 

dixomolybdenum(VI) complexes had been recorded in ethanol and those spectral bands are 

measured consistent with the suggested strength energy level scheme [81-83]. The spectra of 

the dixomolybdenum(VI) complexes with tetradentate ligand are comparable, thereby 

suggesting a widespread structure for all. In view that Mo(VI) ion has no d- electron, the 

absorption bands of pure d-d origins do now not appear to be expected to appear. The bands 

for all complexes may additionally perhaps be appointed as charge transfer transition from 

nitrogen orbital to a molybdenum metal d-orbital [N(π)→d(Mo)]. The Ultraviolet - Vis spectra 

are homogeneous to rest complexes of dioxomolybdenum(VI) having nitrogen donor atoms. 

The Ultraviolet - Vis spectra of those complexes are distinguished by strong absorption bands 

within the UV region at ≈ 292 nm and at ≈ 311 nm appear to be due to intraligand transition 
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and n → π* / π → π* transitions. A fairly intense band that appeared in the vicinity ≈ 380 nm 

- 395 nm is attributed to N(π)→d(Mo). The band due to the transition 2B2→2A1 (dxy→dx2-y2) is 

perhaps covert through the above bands and ought to be appointed for L→M charge-transfer 

transition among the lowest unoccupied molybdenum d-orbital and highest occupied ligand 

molecular orbital [84-86]. Ballhausen - Gray energy level diagram has supplied energy level 

scheme for these complexes. The electronic spectra represent a distorted octahedral 

configuration for all the complexes [87]. 

The dioxomolybdenum(VI) complexes are diamagnetic, as pointless to mention for d0 

configuration. Since there is no electron present in the d-orbital, no d-d transitions are decided 

for those complexes. The molar conductivity (ΛM) values for all dioxomolybdenum(VI) 

complexes in DMF at ca. 10-3 M endorse 1:1 sort electrolytes. The molar conductance values 

of those complexes lie between the ranges of 100 - 115 Ω-1 cm2 mol-1. In final, the on top molar 

conductance values aid the tentative structures of dioxomolybdenum(VI) complexes of the type 

(I) and macrocyclic complexes of type (II) as shown in the schemes. 

3.5. Thermogravimetric analyses. 

The thermogravimetric investigation of [MoO2(L)](acac)2 complex has been governed 

in the temperature range 50 - 600 °C with a 10 °C min-1 temperature in-between. No transparent 

decomposition was remarked beneath 145 °C (Figure 1). The thermograph of the 

[MoO2(L)](acac)2 complex is shown in Figure 1. The [MoO2(L)](acac)2 complex undergoes 

decay in two levels: (a) first degree of decay (145 - 250 °C) is because of the loss of ligand 

(mass loss obs. 45 %, calcd. 48 %) (b) in the second degree, the second successive weight loss 

of at raised temperature (300 - 450 °C) giving a mass loss over 42 % against calculated mass 

loss of 48 %.  

 
Figure 1. TG and DTA thermographs of [MoO2(L)](acac)2. 

At final, a residue obtained generally compares to MoO3 (obs. residual mass = 14.50 

%, calcd. = 15.75 %) were left after 450 °C. Two vertexes had been gotten in the DTA curve. 

The first vertex is endothermic decay due to the melting of the complex (145 °C). The second 

vertex is because of the exothermic effect. Close to this exothermic vertex in the DTA curve, 

an exothermic hump was also observed at 435 °C, which may also be due to the exothermic 

decay of the leftover mass in the second step. 
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3.6. Antibacterial activity. 

The consequences of the antimicrobial activity of the prepared dioxomolybdenum(VI) 

complexes are given in Table 3. The synthesized dioxomolybdenum(VI) complexes had been 

attempted towards Staphylococcus aureus, Bacillus subtilis, Enterobacter aerogenes,and 

Salmonella typhi. The improvement in the antibacterial interest of dioxomolybdenum(VI) 

complexes can be clarified on the idea of the chelation hypothesis [79,80]. The reference 

material is doxycycline remedy. Nearly all the complexes specified low to modest activity 

towards S. aureus and S. typhi. 

Table 4. Antibacterial activities ofmacrocyclic complexes of dioxomolybdenum(VI). 

Complex Staphylococcus 

aureus 

Enterobacter 

aerogenes 

Salmonella 

typhi 

Bacillus 

subtilis 

Doxycycline  

[MoO2(L)](acac)2 17 17 19 20 26 

[MoO2(ML1)](acac)2 14 20 17 22 23 

[MoO2(ML2)](acac)2 14 17 16 20 24 

[MoO2(ML3)](acac)2 15 19 19 -- 25 

[MoO2(ML4)](acac)2 17 19 -- 22 25 

4. Conclusions 

 As the crystals of complexes were not isolated, we cannot put forward the crystal 

structures of the respective complexes. From the above elemental and spectral studies, we may 

also advise that all the complexes synthesized can be represented as [MoO2(L)](acac)2 and 

[MoO2(ML1)](acac)2. The antibacterial activity has been carried out on these complexes, which 

screen that the complexes are biologically active.The present study manifest primary synthetic 

paths to get new dioxomolybdenum(VI) with Schiff base. The applied spectroscopic methods 

have affirmed the Schiff base condensation of di-2-furanylethanedione, a flexible chelating 

agent with two responsive carbonyl groups with diamines, and their cyclizations 1,3-diketones 

present process formation of macrocyclic products to assure managed geometry around 

MoO2(VI) center. The shape around Mo is distorted octahedral geometry. The kinetic template 

impact of dioxomolybdenum(VI) cation assumes a considerable function in the condensation 

of Schiff base using di-2-furanylethanedione and diamines in ethanol medium. Synthesized 

Schiff bases behave as tetradentate ligands by binding to the metal ion along with the 

azomethine nitrogen atoms. The existence of one metal ion per ligand molecule is declared by 

analytical data. The mononuclear six coordination of all the prepared cis- 

dioxomolybdenum(VI) complexes and the six-coordinate distorted octahedral shape have been 

suggested for these complexes. 
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