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Abstract: ZnO-Polystyrene nanoparticles doped with Fe2O3  were prepared by the casting method. Both 

Ed and Eo were calculated. εL and N/m* increase with filler concentrations for these samples. On the 

other hand, both M-1, M-3, decreased with increasing filler. The filler concentrations affected on 

determined values of both of ε\ and ε\\. These values increase with filler, and also the same result was 

achieved for both σ1 and σ2, which also increases with filler. The relation between VELF and SELF was 

determined. χ(1) increases with increasing filler ratio. n2, χ(3), βc, were determined theoretically. The 

electrical susceptibility χe and relative permittivity εr increase with the increase of filler concentration 

as a result of increasing electron mobility. 
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1. Introduction 

have a great interest due to their properties and wide electronic applications [1–4]. Polymer 

composites are widely used as electrically conductive glues. Polystyrene has high transparency 

and is used for industrial applications [5, 6] such as chromatography [7], sorption processes 

[8], sensors [9, 10], biomedical applications [11–12], and other electronic applications [13–14]. 

Polymers' matrix properties can be improved by the dispersion  of metals in the polymer matrix 

[15, 16]. Zinc Oxide is a magic material as a result of its properties [17–19]. It has a direct 

bandgap (Eg = 3.25 eV) [20], which is a promising material for optoelectronic applications [21, 

22]. On the other hand, ZnO material had some disadvantages, such as a low quantum 

efficiency [23], so reinforcing particles must be added to ZnO matrix composite, such as Fe2O3 

because of its thermodynamic stability, high resistance to photo-corrosion, and narrow  bandgap 

of 2.2 eV. So, Fe2O3 is an important member of visible-light-responsive  semiconductor 

photocatalysts [24–27]. Different methods have been used to synthesize various metal-polymer 

composites, such as the sol-gel process [28], mixing route of polymer with metal solution [29], 

chemical oxidation [30], and in-situ techniques [31]. The optical properties of ZnO-Polystyrene 
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had been studied [32–36]. It was found that the transmitted spectra are increased with ZnO 

ratio [32], ZnO percentage had increased absorption ratio for polystyrene [34], ZnO-PS 

nanocomposite is highly transparent throughout the visible region [35], the energy gap 

decreased with ZnO ratios for ZnO/PS composite [36]. The doping effect on the optical 

properties of ZnO/ Polystyrene films had been studied [37]. The direct energy gap decreased 

with increasing Fe2O3 for ZnO Polystyrene. The nonlinear optical properties of ZnO-

Polystyrene composites had been investigated [38–39]. It was noticed that PS had good 

applications for nonlinear optical devices [39]. In this work, we investigated the effect of 

Fe2O3dopant on nonlinear optical properties such as (nonlinear refractive index, nonlinear 

absorption coefficient, third-order nonlinear optical susceptibility, and semiconducting results 

for ZnO/Polystyrene composites films. 

2. Materials and Methods 

Fe2O3 doped ZnO powder was prepared by auto combustion method through mixing 

zinc nitrate, iron nitrate,  and urea as an oxidizing agent with a certain calculated ratio. The 

mixed powders were placed in porcelain crucible  to be burned in the furnace at about 370°C 

until the mixture homogenates, self-sustaining and rather fast  combustion with enormous 

swelling producing white foamy and voluminous Fe2O3doped ZnO. Then, furnace's 

temperature was increased up to 500°C, and the mixture was heated at this temperature for two  

hours before the furnace is switched off. Polystyrene (PS) was used as received without further 

purification  with (MW= 35000 softening point (ASTM 28) 123-128 °C, density 1.06 g/mL at 

25 °C from Sigma-Aldrich  ,Germany). The appropriate weight (5gm) of PS was dissolved in 

100 ml of chloroform. The mixture was  magnetically stirred continuously at room temperature 

for 2 hours until the mixture solution has a homogenous  viscous appearance. The solution was 

left for 3 days before the addition of metal oxides filler to it. Different weights of the prepared 

powder with (5, 7.5, 10, and 12.5 wt. %) were added to the chloroform and magnetically  stirred 

vigorously to ensure a high dispersion of the added nanoparticles for 1 hour and then ultra-

sonication for  another 1 hour to prevent the agglomeration of the nanoparticles. The mixture 

was then mixed with the PS solution and  stirred again for 1 hour, then ultra-sonication for 1 h. 

The polymers PS's final product reinforced with Fe2O3  doped ZnO nanoparticles was cast in 

glass Petri dishes and left 1 day for drying. The optical measurements of the prepared films 

were investigated using UV- Vis spectrophotometer type JASCO 570.   

3. Results and Discussion 

3.1. Dielectric, optical conductivity, and linear optical susceptibility results. 

The films based on polystyrene (PS) filled with different concentrations of ZnO doped 

with Fe2O3 had a polycrystalline structure [37]. The oscillator energy Eo and is the dispersion 

energy Ed were expressed as [40]: 
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E is the photon energy. The dependence of (n2-1)-1 on (photon energy)2 (hν)2 is shown 

in figure 1(a). The behavior of (n2-1)-1 is the same for all studied samples. The values for both 

Eo and Ed decreased with increasing the filler concentration. This is due to decreasing the Egdir 

for these samples with filler [37], which allows electrons to absorb energy with lower values, 

and the vibration of these electrons decreases.  Figure 1(b) shows the relation between n2 and 

λ2, N/m* values were determined using [41]: 

 
Figure 1. (a) The relation of (n2-1)-1 and (hν)2; (b) the relation of n2 and λ2 for ZnO films doped with Fe2O3. 

The value of N/m* increases with filler concentrations because of the increased free 

electrons with filler. The M-1 and M-3 derived from the relations [41]: 

 

                                  

 

 

 

Table 1 shows the values of M-1 and M-3 for these thin films. 

Table 1. Results table for ZnO-polystyrene composites films doped with Fe2O3. 

The oscillator strength f was calculated as following [42]: 

 

 

The values of f decrease with filler, as a result of decreasing both of Eo and Ed. Another 

important parameter depending on Eo and Ed is that static refractive index no, which was 

determined as [43]: 

N/m* no (f) (eV)2 M-3 (eV) M-1 (eV) (eV) dE Eo (eV) Lε Sample 

9.1E+50 1.55 47.79 2.85 6.91 8.30 6.10 0.20 PS 

1.5E+51 1.54 35.91 2.51 5.99 8.10 5.90 0.28 S1 

3.1E+51 1.45 28.60 2.28 5.35 6.30 5.70 2.10 S2 

4.9E+51 1.39 21.07 2.21 4.59 5.20 5.50 2.25 S3 

6.2E+51 1.46 21.07 2.21 4.59 4.90 4.30 2.30 S4 
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The dielectric loss ε\ and dielectric tangent loss ε\\ for these films were calculated as 

follows [44]: 

 

 

                                            

The effect of hν on both of ε\ and ε\\ is shown in Figures 2(a,b),  from this figures both 

of ε\ and ε\\ had the same behavior with hν for all these samples, while ε\ and ε\\ increase with 

filler concentration, due to increasing the packing density[37].  

 

Figure 2. Dependence of (a) ε\; (b) ε\\ on hν for ZnO films doped with Fe2O3. 

The optical conductivity was calculated from the following equations [45]: 

 

 

                       

 

Figures 3(a,b) show σ1 and σ2 dependence on hν for these films, σ1 and σ2 increase 

with filler ratios and hν for these samples, this due to increasing the electron mobility's with 

filler.  

 
Figure 3.  Influence of hν on (a) σ1; (b) σ2 for  ZnO films doped with Fe2O3. 

Both of (VELF) and (SELF) for these samples were determined using [41]: 
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The relation between VELF/SELF for these thin films is shown in Figure 4(a).  Linear 

optical susceptibility χ(1) describes the response of the material to an optical wavelength, χ(1) 

was determined as[46]: 

 

 

The relation between χ(1) and hν for these films is shown in Figure 4(b). χ(1) increased 

with increasing filler ratio. This means that there is a possibility for changing optical properties 

with slight doping for these samples. 

 

Figure 4. (a) Relation between (VELF/SELF) and (hν); (b) relation between χ(1) and hν for ZnO films doped 

with Fe2O3. 

3.2. Nonlinear optical properties. 

The nonlinear refractive index n2 was determined as [48–49]:  
( )( )
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n
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The dependence of n2 on λ is in figure 5(a).  n2 increase with filler due to an increase in 

the packing density [37]. An important parameter is the third-order nonlinear optical 

susceptibility χ(3), which was determined as [50]: 

                    

 

 

where, A =1.7 x 10-10 e.s.u [50]. χ(3) dependence on and hν is shown in figure 5(b).  χ(3) increases 

with hν and also with filler concentrations. On the other hand, nonlinear absorption coefficient 

βc was determined as follows [51]: 
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Figure 5(c) shows the influence of hν on βc, βc increase with filler because of high 

values of filler concentrations, the access number of electrons, and a large number of excited 

electrons. 

 

 
Figure 5. (a) Relation between n2 and λ; (b) dependence of (χ(3)) on hν; (c) The influence of hν on βc for ZnO 

films doped with Fe2O3. 

3.3. Electrical results.  

Electrical susceptibility χ(e) means that the materials' ability for changing its electrical 

properties under the action of the electric field, and was determined as [52]:  

 

 

 

Figure 6(a) shows the relation between χ(e) and hν, χ(e) increases with filler this is due 

to increasing the electron mobility. The relative permittivity εr was calculated using the 

following relation [53] 

 

 

The relation between εr and hν for these films is shown in Figure 6(b). It is clear that 

the values of εr increase with filler concentrations. This could be attributed to the electron 

mobility increases with filler. 
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Figure 6. The influence of hν on both of (a) χe; (b) on εr for ZnO films doped with Fe2O3. 

4. Conclusions 

 Ed and Eo values for ZnO/Polystyrene composite films decreased with Fe2O3 dopants 

(Ed from 8.30 to 4.90 eV), and also Eo had the values from (6.10 to 4.30 eV). The values of 

N/m* increased with filler, which increases free carrier. The values of M-1 and M-3 decrease 

with filler and also no decrease slightly with filler ratios. ε\ and ε\\ increase with filler ratios due 

to increasing packing factor of these samples with filler. Both σ1 and σ2 increase with filler as 

a result of increasing electron mobility. Moreover, χ(1) and the values of n2 increase with filler 

ratios as a result of increasing the packing density of the investigated samples. The filler ratios 

affected χ(3) values which increased with filler due to the increase of excited electrons. This 

means that these samples highly responded to change their optical properties with filler. The 

nonlinear absorption coefficient βc increased with hν for these samples. Also, both χ(e) and εr 

increase with increasing filler. This means that the samples' ability to change their electrical 

properties with electric field increases with filler concentrations increment. Finally, it is clear 

that the filler ratios play a very important role in enhancing most of the samples' transparent 

properties, especially nonlinear optical properties. Therefore, these samples could be 

considered a promising material for nonlinear optical applications such as optical signal 

processing, optical computers, ultrafast switches, ultra-short pulsed lasers, sensors, laser 

amplifiers. 
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