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Abstract: Chalcones are precursors of the biosynthesis of flavonoids present in plants. These motifs 

serve a wide range of applications, from synthetic to pharmacological to physical spheres. Chalcone 

derivatives attracted the scientific community all over the world in recent times due to their diversified 

applications. The presence of reactive α,β-unsaturated carbonyl moiety in chalcones makes them a 

versatile intermediate in synthesizing various classes of compounds of biological and physical interest. 

More importantly, the chalcones themselves have been known to possess enormous biological activities 

and physical properties like semiconductor, non-linear optical, fluorescence, and electronic properties. 

In this context, the present review summarises the overall developments in the synthetic, 

pharmacological, and physical applications of chalcones in recent fast. The critical discussion was 

attempted on the synthetic applications and biological potencies as anti-cancer, antidiabetic, 

antimicrobial, antioxidant, and anti-inflammatory.  
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1. Introduction 

Chalcones are 1, 3-diphenyl-2-propen-1-ones consist of a three-carbon α, β-unsaturated 

carbonyl system, which exhibit a broad spectrum of biological activities. The natural and 

synthetic chalcones exhibit various pharmacological activities such as anti-inflammatory, 

antitumor, antibacterial, antifungal, antimalarial, antidiabetic, anti-cancer and anti-

tuberculosis. The promising activities, ease of synthesis, and simple and reactive chemical 

structure have significantly attracted chalcones [1]. This review focuses on the developments 

in the synthetic procedures, their utility as scaffolds in the synthesis of bioactive compounds, 

biological activity potentials, and their ability to form useful metal complexes, also physical 

properties associated with chalcone derivatives in the recent past. 

2. Synthesis and Synthetic Applications 

 Of the many methods, the Claisen-Schmidt condensation of aromatic aldehydes and 

aromatic ketones in acidic or basic conditions (Scheme 1) [2]. The MnO2 nanorods on graphene 

oxide act as excellent catalysts for chalcones synthesis via Claisen-Schmidt condensation. The 

catalyst showed recyclability up to six times without significant loss of activity [3]. A simple, 

expeditious, and greener synthetic approach for chalcone derivatives, involving p-

toluenesulfonic acid as a solid phase organocatalyst, accelerates Claisen–Schmidt condensation 

https://biointerfaceresearch.com/
https://biointerfaceresearch.com/
https://doi.org/10.33263/BRIAC121.180195
mailto:ajaykumar@ycm.uni-mysore.ac.in
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-4169-7962
https://orcid.org/0000-0002-3326-5115
https://orcid.org/0000-0003-0399-8091
https://orcid.org/0000-0003-0859-5486


https://doi.org/10.33263/BRIAC121.180195  

 https://biointerfaceresearch.com/ 181 

under mild and solvent-free reaction conditions was developed (Scheme 1) [4]. The method 

has advantages with short periods, desired products, simple workup, and easy purification, etc. 

The fluoro-substituted tris-chalcone derivatives were synthesized from phloroglucinol and 

benzaldehyde in three steps (Scheme 1) [5]. The tris-chalcones have shown inhibition of hCA 

I and II isoenzymes, acetylcholinesterase, butyrylcholinesterase. The base-catalyzed Claisen-

Schmidt condensation reaction between aromatic aldehydes and ketones in methanol produced 

corresponding chalcones in good yields [6-11]. 

 
Scheme 1. Synthetic route for chalcones. 

The bifunctional catalyst derived from a Cinchona alkaloid found it effective to 

perform the enantio- and diastereoselective Michael addition of α,α-dicyanoolefins chalcones 

in THF as solvent (Scheme 2) [12] to give the adducts in moderate yields, which exhibit 

antiplasmodial and cytotoxic activity. Chalcones have been efficiently transformed into 

pyrazoline carbothioamides [13] and pyrazoline carboxamides [14] through (3+2) annulation 

reactions with thiosemicarbazide and semicarbazide, respectively. The base mediated 

convenient method for the synthesis of 3-acylpyrazoles and pyrazole-3-carboxylates was 

developed, which involves diazosulfone as 1,3-dipole and arylidenemalonates and arylidene-

1,3-dicarbonyls as dipolarophiles in cycloaddition reaction (Scheme 2) [15]. An 

environmentally benign method involving citrus extract medium was adopted to transform 

chalcones by their reaction with hydroxylamine into isoxazoles of antioxidant and antifungal 

potencies [16-18]. 

 
Scheme 2. Cycloaddition and coupling reactions of chalcones. 

Indolizines were obtained through the one-pot cascade reaction between chalcone, 

pyridine, and benzyl bromide via [3 + 2] cycloaddition/oxidative aromatization promoted by 

Cu(OAc)2 in the presence of oxygen (Scheme 3) [19]. The method is convenient and does not 

require the isolation of intermediates.  

 
Scheme 3. Synthesis of fused pyrrolines from chalcones. 

Palladium-catalyzed cross-coupling of ethyl acetohydroxamate with 4-bromo 

chalcones was developed to synthesize functionalized chalcones, wherein the ligand tBuXPhos 
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found effective towards cross-coupling reaction to produce the product in good yields (Scheme 

4) [20]. The hybridization approach followed by tandem cyclization into quinolinone 

derivatives and then by aldol condensation produces chalcone-sulfonamide compounds. The 

method controlled the sequential preparation of chalcone-sulfonamide hybrids [21]. Chalcones 

undergo highly regio- and stereoselective Diels-Alder cycloaddition with dienophiles to give 

N-substituted exo-4,5,6,7-tetrahydrobenzoxazol-2-ones (Scheme 4) [22]. The endo/exo 

stereoselectivity is dependent on the solvent, polarity, and substituents. The chalcones have 

been efficiently transformed into isoxazolines [23] and pyrrolines [24] in good yields.  

The intermolecular [2 + 2] photocycloaddition of chalcones with 2,3-dimethyl-1,3-

butadiene under visible-light irradiation forms cyclobutane derivatives (Scheme 4) [25]. 

Without using any photosensitizer, metal catalyst, and solvent, the reaction proceeded with 

high regio- and stereoselectivity. Mild reaction conditions and no additives make the reaction 

easy to operate. Interestingly, chalcones undergo (2+2) cycloaddition themselves under thermal 

conditions to produce cyclobutane derivatives, whose structures are confirmed by XRD studies 

[26,27]. The regioselective synthesis of 1-alkyl-2-aryl-3-acyl pyrrolo[2,3-b]quinoxalines 

through Heck coupling reaction/heteroannulation was achieved by the Pd(OAc)2 catalyzed 

reaction of N-alkyl/benzyl-3-chloroquinoxaline-2-amines with chalcones in the presence of 

KOtBu in DMSO (Scheme 4) [28]. Chalcones efficiently undergo (3+2) annulation reaction 

with 2-aminothiophenol in the presence of acids to give benzothiazepines [29,30]. 

 
Scheme 4. Synthesis of functionalised compounds from chalcones. 

A simple and efficient protocol for preparing densely functionalized 3-

aroylimidazo[1,2-a]pyridines from 2-aminopyridines and chalcones using RuCl3-H2O/I2 

catalytic system was reported [31]. The method's advantages are low catalyst loading, broad 

substrate scope, stability of heterocycles, operationally simple procedure, and higher yields, 

making the approach remarkable. Heteroaryl chalcones found more susceptible to form 

pyrazole derivatives [32,33] by their reaction with hydrazines 

3. Pharmacological Applications 

Chalcone, a natural structure, demonstrates many pharmacological activities, including 

anti-cancer, antidiabetic, antimicrobial, anti-inflammatory, antitumor, anti-Alzheimer, etc., and 

plays pivotal roles in medicinal chemistry [34]. In cancer chemotherapy, multidrug 

resistance (MDR) is highly associated with ATP-binding cassette transport proteins' 

overexpression. The translocation of drugs from the inside to the outside of cancer cells is 

mediated at the expense of ATP. The chalcone-dithiocarbamate hybrids, of which (E)-2-oxo-
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2-((4-(3-(3,4,5-trimethoxyphenyl)acryloyl)phenyl)amino)ethyl-4-(2-hydroxyethyl)piperazine-

1-carbodithioate (Fig. 1A) exhibited antiproliferative activity against MCF7, and PC3 

(IC50 = 1.05 μM) cancer cell lines [35]. The cellular mechanism indicated that it could inhibit 

colony formation, arrest cell cycle at G2/M phase, induce DNA damage against PC3 cells, and 

mitochondrial apoptosis by caspase activation, and therefore would be a lead for treatment of 

human prostate cancer. The xanthine/chalcone hybrids, of which chalcone derivative (Fig. 1B) 

[36] acts as anti-cancer agents with potent inhibition of cancer cell growth (IC50: 1.0 ± 0.1 to 

3.5 ± 0.4 μM). Further, its EGFR inhibitory effect shown that IC50 = 0.3 µM on the target 

enzyme was more potent than staurosporine reference drug (IC50 = 0.4 µM). The 4′-alkoxy 

chalcones possess antiproliferative activity against PC-3, MCF-7, and HF-6 with IC50 values 

of 8.08 to 13.75 μM [37].  

 
Figure 1. A) Chalcone-piperazine-1-carbodithioate that shows antiproliferative activity; B) xanthine/chalcone 

hybrid that possesses EGFR inhibitory effect. 

The chalcone derivative (Fig. 2A) [38] bearing an α,β-unsaturated ketone acts as the 

most potent inhibitor against NCI-H460, A549, and H1975 cells. It has antiproliferative ability 

against NCI-H460 cells in a time- and concentration-dependent manner through modulating 

ROS to induce caspase-3-mediated pyroptosis. The chalcone (Fig. 2B) induced apoptosis of 

human hepatic and lung cancer cells, which prevented cancer cell migration and invasion. It 

strongly suppressed tumor growth in a mouse model of xenograft tumors [39]. The pyrazoles 

derived from chalcones have excellent anti-cancer properties [40]. The enhancement of drug 

efflux caused by ATP-binding cassette transporters overexpression is an important factor for 

multidrug resistance (MDR) in cancers. It was found that chalcone and bis-chalcone derivatives 

displayed the reversal activities of MDR cancer cell lines. The chalcone (Fig. 2C) exhibited the 

most potent reversal activities against ABCG2- and ABCB1-mediated MDR [41]. The 

mechanistic studies indicate that it can increase anti-cancer drugs in ABCG2- and ABCB1-

overexpressing cancer cell lines. 

 
Figure 2. The chalcone analogs with: A) antiproliferative activity against NCI-H460 cells; B) induced apoptosis 

of human hepatic and lung cancer cells; C) reversal activities against ABCG2- and ABCB1-mediated MDR. 

Overexpression of P-glycoprotein (P-gp) is one of the major causes of multidrug 

resistance (MDR), which has become a major obstacle in cancer therapy. The compound (Fig. 

3A) [42] displayed the highest activity (RF = 50.19) in reversing DOX resistance in MCF-

7/DOX cells, and increase the intracellular accumulation of DOX and inhibit the expression of 

P-gp at mRNA and protein levels. The α-substituted chalcones (Fig. 3B) [43] possess markable 

antiproliferative activities with GI50 values of 0.63 µM in the HCC1954 cell line and 0.69 µM 

in HCT116 cell lines, and it overcomes multidrug resistance. The chalcone pyrido[4,3-
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b]pyrazin-5(6H)-one (Fig. 3C) [44] displayed anti-cancer activities against human cancer cell 

lines such as MCF-7, A-549, Colo-205, A2780, and DU-145 by MTT assay.  

 
Figure 3. The chalcone analogs with: A) reversing DOX resistance; B) antiproliferative activities in HCC1954 

cell line; C) anti-cancer activities against human cancer cell lines. 

1,3,5-Triazinyl chalcone hybrids (Fig. 4A) inhibited A549 cancer cells viability with 

IC50 value of 24.5µM, about cisplatin (IC50 = 21.5 µM). The combined effect of cisplatin with 

the compound indicated that the combination with cisplatin promoted more cells to enter late 

apoptosis and necrosis [45]. 1,2,3-Triazole chalcone hybrids (Fig. 4B) [46] possess admirable 

cytotoxicity against MCF-7, HeLa, and MDA-MB-231 cell lines with lower IC50 value 

compared to cisplatin and were less toxic effect on normal cells. The 1,2,4-triazole/chalcone 

hybrids of which compound (Fig. 4C) has potent cytotoxicity against A549 cancer cell lines 

with IC50 values of 4.4 μM. It showed an increase in the number of apoptotic cells in a dose-

dependent manner and induced apoptosis via an increased level of pro-apoptotic protein g Bax, 

the release of cytochrome c, and activation of caspase-3/8/9 proteins [47] 

 
Figure 4. The chalcones displays; A) inhibition against A549 cells; B) cytotoxicity against MCF-7, HeLa; C) 

cytotoxicity against A549 cell lines. 

Hepatocellular Carcinoma is extremely aggressive and presents low rates of response 

to chemotherapeutic agents. The quinoline/chalcone/1,2,4-triazole hybrids (Fig. 5A) [48] 

displayed good activity on different NCI 60 cell lines in a single-dose assay with a growth 

inhibition rate ranging from 50% to 94% and antiproliferative activities against human cancer 

cell lines. Thienoquinoline carboxamide-chalcones (Fig. 5B) [49] have an antiproliferative 

effect and acts as EGFR inhibitors with IC50 values of 0.5 - 3.2 µM. The binding mode of the 

EGFR inhibitor in the EGFR active site revealed that the thienoquinoline ring occupied the 

ATP-binding site while the chalcone moiety is located in the allosteric site is responsible for 

enhanced activity.  

 
Figure 5. The chalcones demonstrate: A) antiproliferative activities against NCI 60 cell lines; B) inhibition 

against EGFR cell lines. 

The compounds 1,3,4-oxadiazole/chalcone hybrids have shown promising anti-cancer 

activity against leukemia. The compound (Fig. 6A) of the series had strong cytotoxic activities 

with IC50 of 1.95 µM, 2.36 µM and 3.45 µM against K-562, KG-1a, and Jurkat leukemia cell 

lines, effectively inhibit EGFR (IC50 = 0.24 μM), Src (IC50 = 0.96 μM), and decreased STAT3 
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activation [50]. The sulfonamide chalcone derivative (Fig. 6B) [51] possesses anti-cancer 

properties at 10 μM against sixty human cancer cell lines. It satisfied the pre-determined 

threshold inhibition criteria. Further, it displayed inhibition against M. tuberculosis H37Rv 

with MIC values between 14-42 μM.  

 
Figure 6. The chalcones show: A) cytotoxicity against K-562, KG-1a, and Jurkat leukemia cell lines; B) 

antiproliferative activity against NCI 60 cell lines. 

Diabetes mellitus (DM) is a serious chronic metabolic disorder that occurs due to 

dysfunction of insulin and poor therapeutic approaches. It necessitates discovering novel drugs 

to control amplified diabetic populations. The amino and hydroxy chalcones with alloxan-

induced diabetic rats (100 mg/kg) indicated their antidiabetic efficacy with decreased blood 

glucose levels in the diabetic rats compared to control rats [52]. The α-amylase inhibitory effect 

was shown by chalcones (Fig. 7A) (IC50 = 1.25 ± 1.05 µM), and bis-chalcones (Fig. 7B) 

(IC50 = 2.40 ± 0.09 µM) as compared acarbose, the thiomethyl and methoxy groups are 

effective on the activity [53]. The coumarin-triazole hybrids derived from chalcones 

demonstrated excellent antidiabetic properties [54]. 

 
Figure 7. The chalcones displays: A) α-amylase inhibitory effect; B) α-amylase inhibitory effect. 

The chalcones were designed to investigate the antibacterial activity, modulatory 

potential, and efflux pump inhibition against S. aureus multi-resistant strains. Compound (2E)-

1-(4′-aminophenyl)-3-(phenyl)-prop-2-en-1-one (Fig. 8A) [55] has reduced the MIC of 

gentamicin by 70%, and on comparison of the effects of the modified antibiotic activity indicate 

a loss of synergism with gentamicin due to the addition of chlorine to the substance structure. 

The chalcone-1,2,3-triazole conjugates (Fig. 8B) [56, 57] have exhibited significant efficacy 

against bacterial and fungal strains, wherein the synergistic effect associated with chalcone and 

1,2,3-triazole moieties. The cationic chalcone analogs (Fig. 8C) [58] displayed good 

bactericidal activity against tested bacteria, including the drug-resistant species. These 

membrane-active antibacterial compounds did not allow bacteria to develop resistance and 

exhibited negligible toxicity toward mammalian cells, reduce the viable cell counts in bacterial 

biofilms effectively and have low toxicity toward mammalian cells. A series of pyrazole-pyran 

hybrids [59], pyrazole-oxadiazole conjugates [60] derived from chalcones displayed good 

antimicrobial activities. 

 
Figure 8. The chalcones shows: A) antibiotic activity; B) antibacterial and antifungal activity; C) bactericidal 

activity against the drug-resistant species. 
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The fungi and mycobacteria are the culprits to cause infectious diseases in human 

beings. The need of an hour is to develop potent agents that overcome cancer and fungal 

infections. The synthesized dihydropyrazoles (Fig. 9A) [61] and thienyl-pyrazoles [62] and 

substituted pyrazoles [63] derived from chalcones showed excellent antifungal and 

antitubercular activities. Prenyloxylated chalcones display metabolic inhibition against L. 

mexicana and T. cruzi. The studies on leishmanicidal and trypanocidal activity of prenyloxy 

chalcones (Fig. 9B), and (Fig. 9C) [64] exerted metabolic inhibition for L. mexicana, and for 

T. cruzi; with selectivity index (SI =IC50/CC50) values of 80.9, 1.24, and 75.1, 1.43µM, 

respectively.  

 
Figure 9. The chalcones exert: A) antitubercular activity; B) metabolic inhibition for T. cruzi; C) metabolic 

inhibition for L. mexicana. 

Alzheimer's disease (AD) is a common neurodegenerative disease characterized by 

progressive degeneration and neuronal cell death, resulting in neural network dysfunction. The 

underlying mechanisms, oxidative damage, and neuroinflammation have contributed to the 

deterioration of AD. The Nrf2, a transcription factor, regulates the cellular redox balance and 

is primarily involved in anti-inflammatory responses and is a pivotal cellular defense 

mechanism against oxidative stress. The lignan conjugates [65], pyrazoles [66], and 

oxadiazoles/thiadiazoles [67] prepared from various chalcones exhibited markable antioxidant 

activities comparable to ascorbic acid. The chalcone derivatives (Fig. 10A) [68] found a highly 

potent Nrf2 activator, which activates Nrf2 and induces expression of the Nrf2-dependent 

enzymes HO-1 and GCLC at both mRNA and protein levels, and also suppressed the 

production of nitric oxide and downregulated inflammatory mediators in BV-2 microglial cells. 

The chalcone-Mannich base analogs of which the compound (Fig. 10B) [69] exerted potent 

multifunctional properties, viz. inhibits AChE (IC50 = 0.44 μM) and MAO-B (IC50 = 1.21 μM), 

self-induced Aβ1−42 aggregation (55.0%, 25 μM), and also antioxidant activity.  

 
Figure 10. The chalcones exhibit; A) potent Nrf2 activator; B) inhibits AChE and MAO-B. 

Amongst the chalcone-O-alkylamine derivatives, compound (Fig. 11A) [70] exhibited 

a good inhibitory effect on acetylcholinesterase (IC50 = 1.3 μM) and butyrylcholinesterase 

(IC50 = 1.2 μM). Selective MAO-B (IC50 = 0.57 μM), also showed antioxidant and 

neuroprotectant activity, indicating that it might be a potential multifunctional agent for AD 

treatment. The compound (Fig. 11B) [71] has inhibited selective BuChE (IC50 = 2.6 μM) and 

MAO-B (IC50 = 5.3 μM). It also showed good antioxidant and neuroprotectant properties. A 

series of benzothiazepines derived from furanyl chalcones potently inhibited VRV-PL-8a and 

H+/K+ ATPase [72]. 
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Figure 11. The chalcones; A) inhibit acetylcholinesterase; B) inhibits BuChE and MAO-B. 

Ferroptosis is associated with the accumulation of lipid hydroperoxides and amyloid 

cascade hypothesis, the main forms of cell death in Alzheimer's disease. Hydroxylated 

chalcones (Fig. 12A) [73] inhibited amyloid-β peptide (Aβ) aggregation and ferroptosis 

simultaneously. In human neuroblastoma SH-SY5Y cells, these chalcones exhibit 

neuroprotection against Aβ1-42 aggregation-induced toxicity and are good inhibitors of 

ferroptosis induced by the hydroperoxide-detoxifying enzyme Gpx4 using 

cystine/glutamate antiporter system. The [18F]4-dimethylamino-4′-fluoro-chalcone (Fig. 12B) 

[74] showed a higher initial uptake (4.43% ID/g at 2 min) into and more rapid clearance (0.52% 

ID/g at 30 min) from the brain than FDA-approved drugs, indicating the improvement of the 

probability of detecting Aβ plaques and the reduction of non-specific binding in the brain. The 

series of 4′-OH-flurbiprofen-chalcone hybrids (Fig. 12C) [75] exhibited good multifunctional 

activities, showing the best inhibitory effects on self-induced Aβ1–42 aggregation (60.0% and 

78.2%,) and Cu2+-induced Aβ1–42 aggregation (52.4% and 95.0%) and therefore these are 

promising candidate against AD. 

 
Figure 12. The chalcones possess; A) inhibit amyloid-β peptide (Aβ) aggregation; B) probable detection of Aβ 

plaques; C) inhibitory effects on self-induced Aβ1–42 aggregation. 

The development of novel neuroprotective agents is urgently needed to treat 

neurodegenerative diseases affecting aging individuals worldwide. The set of chalcone-triazole 

hybrids (Fig. 13A) [76] displayed neuroprotection in oxidative stress-induced neuronal cell 

damage, significantly improved neurons' morphology, and increased the cell survival rate of 

neuronal cells induced by oxidative stress, and promoted neuroprotection via the SIRT-

FOXO3a signaling pathway.  The oxygenated chalcones (Fig. 13B) [77] have their abilities to 

inhibit monoamine oxidases, in particular against MAO-B with an IC50 value of 0.0021-

0.0034µM, and against MAO-A with an IC50 value of 0.029-0.072 µM. Oxidative stress-

induced degeneration of retinal pigment epithelial cells is known to be a key contributor to the 

development of age-related macular degeneration (AMD). The pyrazoline derived from 

chalcones through (3+2) annulation reactions has shown potent affinity anti-inflammatory 

effect mediated by inhibition of phospholipase A2 [78,79].   

 
Figure 13. The chalcones have; A) neuroprotection in oxidative stress-induced neuronal cell damage; B) 

inhibits monoamine oxidases. 
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4. Physical properties 

 Conformational differences in the chalcone compounds influence their physical-

chemical properties, and the comparative structural analysis is relevant to describe changes in 

their properties. The analysis of three 1-(4-nitrophenyl)-5-(2,6,6-trimethylcyclohex-2-en-1-

yl)penta-1,4-dien-3-ones shown that the polymorphism can affect the properties [80]. The 

compound 2E-1-(2ʹ-Hydroxy-3ʹ,4ʹ,6ʹ-trimethoxyphenyl)-3-(phenyl)-prop-2-en-1-one (Fig. 

14A) [81] has shown s. The azo group tethered chalcone (Fig. 14B) [82] showed good dyeing 

performance on polyester fibers and excellent fastness properties on PET fiber. The chalcone 

(2E)-1-(3′-methoxy-4′-hydroxyphenyl)-3-(3-nitrophenyl)prop-2-en-1-one (Fig. 14C) [83] 

displayed good NLO properties. The compound 2(E)-(4-N,N-dimethylaminobenzylidene)-5-

methylcyclohexanone [84], and 3-(benzo[d][1,3]dioxol-5-yl)-1-(3-chlorophenyl)-5-(2,4-

dichlorophenyl)-4,5-dihydro-1H-pyrazole [85] derived from chalcone showed good optical 

properties.  

 
Figure 14. The chalcones show; A) electrochemical behavior; B) dyeing performance on polyester fibers; C) 

non-linear optical properties. 

The compounds (E)-3-(4-methoxyphenyl)-1-(p-tolyl)prop-2-en-1-one, and (E)-3-(4-

(diethylamino)phenyl)-1-(p-tolyl)prop-2-en-1-one  have shown good corrosion mitigation of 

mild steel in 0.5 M H2SO4 medium [86]. The compounds 4-chloro-N-{3-[(2E)-3-

(methoxyphenyl)prop-2-enoyl]phenyl}benzamide [87], and pyrazolines derived from 

chalcones [88,89] indicated that these exhibit good NLO properties and were good material 

into fabrication for optoelectronic device applications. An oligo phenylene vinylene was 

prepared by the anodic oxidation of the 4-dimethylamino-4’-methoxychalcone (Fig. 15A) [90] 

at a constant potential in nitromethane on a platinum electrode, was thermally stable up to 

190°C, and it displayed optical and electrochemical properties. Tetraphenylene-chalcones 

hybrids (Fig. 15B) [91] exhibit Stokes shifts and solvation effects and significant fluorescence 

properties in both solution and solid states.  

 
Figure 15. The chalcones exhibit; A) optical and electrochemical properties; B) Stokes shifts and solvation 

effects. 

The chalcones, [(2E)-3-(3-chlorophenyl)-1-(3-nitrophenyl)prop-2-en-1-one and (2E)-

3-(4-fluorophenyl)-1-(4-nitrophenyl)prop-2-en-1-one and [(2E)-1-(9-anthryl)-3-(4-

fluorophenyl) prop-2-en-1-one [92] have exhibited third-order nonlinear optical limiting 

properties, and have some potential sites for electrophilic and nucleophilic attack. 
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4. Conclusions 

 The present review summarizes and focuses on the recent developments in the synthesis 

of chalcones, their versatility as scaffolds in the synthesis of varied classes of compounds of 

medicinal perspectives, and also describes their structure-activity relationship studies.  The 

discussion on physical properties like semiconductor, optical, and fluorescence properties 

explores the diverse applications in photosensing and optical switching devices. The structure 

and structural optimization is promising for potential drug design and discovery, and 

development. The critical discussion made on anti-cancer, antidiabetic, antimicrobial, anti-

inflammatory, antioxidant, anti-Alzheimer activities of chalcones in this review may surely 

help, particularly the young researchers working in this area. 
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