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Abstract: The flow behavior in the continuous casting tundish dominates the quality and cleanliness of 

steel production. In this research, the single strand tundish's fluid flow behavior with different flow 

modifiers is investigated through numerical and experimental simulation. The numerical; simulation is 

performed in ANSYS FLUENT 19.2 (commercial package) and experimental through physical water 

model technique. The flow behaviors of bare tundish and tundish with three different flow modifiers 

are investigated. The three different flow modifiers deployed are the dam, baffle, and turbulence 

inhibiter (TI). Fluid flow performance is examined through residence time distribution (RTD) curves, 

which are derived from the measurement of the tracer concentration at the outlet. Good agreement 

between the CFD simulation and physical water model experiments is discovered. The results show 

there is an improvement in residence time and fluid flow (also improved inclusion removal) after the 

deployment of flow modifiers. There is a 20% improvement in peak and minimum residence time of 

RTD curves due to flow modifiers application. It is also discovered that the tundish configuration in 

this research, the tundish with turbulence inhibiter, provides optimal flow characteristics and eventually 

intended to promote a better level of inclusion removal. 
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1. Introduction 

In the continuous casting process, the tundish provides a continuous flow of molten 

metal and acts as a secondary refining device. The refinement of molten metal in tundish is 

carried through floatation on non-metallic inclusions at the upper surface during residence. 

These floated inclusions are removed over from the surface. The tundish fluid flow plays an 

essential role in controlling the inclusion removal and residence time calculation. For achieving 

the tundish's optimum flow characteristics, the flow modifiers such as the dam, weir, baffle, 

turbulence inhibiter, impact pad, etc., are deployed [1-2]. In this research, the flow 

characteristics of the tundish with different flow modifiers are investigated. The investigation 

was performed through numerical simulation and water model methods. The authors have 

performed fluid flow analysis for different tundish configurations through the water model 

method and numerical simulation by utilizing ANSYS FLUENT 6.0. They deployed a k-ε two-

equation model of turbulence and RTD curves for analyzing the fluid flow behavior. They 

utilized tundish configurations as bare tundish and tundish with weir and dam. The optimum 

configuration for removing non-metallic inclusions was the tundish with weir and dam 

configuration [1-6]. The inlet cooling rate of the molten from ladle to tundish is analyzed 
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through numerical simulation, and the flexible thin slab casting (FTSC) tundish is utilized. It 

was concluded that there was unstable when the stream temperature drops and stable when the 

temperature is heightened. This also presents that the inlet cooling rate affects the inclusion 

removal and the fluid flow in the tundish [3-10]. Numerical simulation on tundish consisting 

of some flow modifiers, they focused on the small addition of KCI solution to water effect on 

tundish. The carried out the density-coupled mixed composition fluid model methods like 

LVEL, Chen–Kim k–ε, MMK k–ε, Explicit Algebraic Reynolds Stress Model (EARSM), and 

Large Eddy Simulation (LES) in Wall-Adapting Local Eddy-viscosity (WALE), for the 

numerical; simulation. They concluded that the slighter change in the quantity of addition of 

KCI solution affects the fluid flow behavior [7-18]. The numerical simulation and scaled water 

model are performed as an experimental simulation of the four-strand tundish with different 

flow modifier configurations. They concluded that the tundish configuration with flow 

modifiers show better fluid flow and inclusion removal, and the bare tundish was prostrate 

short-circuiting [19-25]. The numerical and experimental simulation is performed on 3-strands 

tundish with and without flow modifiers. They concluded that flow modifier deployment 

results in better fluid flow and promotes inclusion removal, eventually outputs more cleanliness 

in steel [24-29]. The fluid flow simulation is performed in two different tundish configurations 

as single-strand and three strands tundish with flow modifiers. The numerical simulation was 

performed through ANSYS FLUENT 14.0 and experimental through water model method 

comprising tracer injection for RTD curves evaluation. They concluded that utilization of flow 

modifiers resulted in better RTD and inclusion removal, but some caused an increase in dead 

volume fraction [28-32]. The authors performed fluid flow analyses on tundish with different 

flow modifiers configurations through ANSYS FLUENT 14.0 and the water model method. 

The flow modifiers utilized were a dam, baffle, and turbulence inhibiter (TI), and it is 

concluded that the tundish with turbulence inhibiter (TI) comprises a better level of inclusion 

removal than others [30]. The five-strand bloom tundish is utilized with five baffles and two 

types of turbulence inhibitors (TIs) investigated through a metaphysical model for fluid flow 

behavior and RTD curves. It was concluded that there is a decrease in residence time, increase 

in inclusion removal efficiency and consistency in the strands of the tundish due to utilization 

of flow modifiers [31-48]. Sheng Chang et al. have performed fluid flow analysis of delta shape 

tundish through full-scale water model, with microbubbles injection in the ladle strand. The 

impact pad is also deployed for achieving enhancements in the fluid flow and inclusion 

removal. It was concluded that there was an increase in inclusion removal due to the dispersion 

of the micro-bubbles [49-67]. 

2. Materials and Methods 

     2.1. Numerical simulation.  

This study focuses on the molten metal flow in the tundish, which is simulated through 

utilizing the ANSYS FLUENT 19.2 software (commercial package). The geometry model of 

tundish with boundary conditions and geometry features used in the numerical simulation is 

shown in Figure 1. These boundary conditions are the inlet, outlet, and the tundish walls, which 

are considered in the numerical simulation. A symmetry plane is also utilized at the vertical 

longitudinal direction of tundish for exhibiting the inlets and outlet locations.  
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Figure 1. Boundary conditions and dimensions of tundish. 

The water level (tundish height) in the tundish is 173 mm; the length is 1000 mm, and 

the width is 250 mm. The inlet and outlet cross-sectional diameter are 12 mm, and the area 

is113.097 mm2. The tundish also has a 15° draft with a lower surface. The other boundary 

conditions comprise the inlet velocity of 2 m.s-1 and flowrate of 0.2 Kg.s-1. Reynolds-Averaged 

Navier-Stokes (RANS) modeling is utilized for the numerical simulation [51]. The realizable 

k-ε model and the SIMPLEC algorithm (with a second-order scheme) are applied for numerical 

simulation [52]. The assumptions deployed during the simulation are isothermal conditions and 

transient during the tracer injection process. The fluid phenomena description in this study is 

presented by following basic continuity equations: 

∇(𝜌𝑢) = 0 (1) 

∇(𝜌𝑢𝑢) = −∇𝑝 + ∇(𝑡 ̿eff) + 𝜌𝑔 (2) 

𝑡 ̿eff= (𝜇 + 𝜇t)[(∇𝑢 + ∇𝑢T) −
2

3
∇𝑢𝑙] (3) 

Where 𝜌: density in kg.m-3, 𝑢: velocity in m.s-1, t: time in s, g: gravitational acceleration in m.s-

2, T: fluid temperature in K, 𝜇: dynamic viscosity in kg.m-1.s-1, 𝜇t: turbulent viscosity in kg.m-

1.s-1, 𝑙: unit tensor, 𝑡 ̿eff: effective stress tensor in Pa, 𝑝: pressure Pa, the Eq.1 is the mass 

conservation equation, Eq. 2 is the momentum conservation, and Eq. 3 depicts the effective 

stress tensor. 

     2.2. Tracer injection simulation and RTD analysis. 

The RTD curves of the tundish in the presence and absence of flow modifiers are 

analyzed. Tracer comprising similar properties as domain fluid is introduced at the inlet, and 

the variation in the amount of tracer with respect to time is monitored at the output after 3 

seconds. After examining the steady-state flow, the tracer injection through the transient mode's 

species transport model is numerical simulation. Further, for 20 minutes, the tracer injection is 

discontinued, and only the domain fluid characteristics are examined. The flow characterization 

comprises the initial step of evaluating the dimensionless C-curve for tundish is derived in the 

following [53-54]:  

The dimensionless time, θ, was calculated as Eq. 4: 

𝜃 =
𝑡

𝑡 ̿
 

(4) 

where t̅ is the theoretical mean residence time as Eq. 5: 
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𝑡 ̿ =
𝑣

𝑄
 (5) 

The dimensionless concentration of strand i (the outflow at outlet i) can be calculated 

as Eq. 6: 

𝑐i = 
𝑐i V

𝑀
 (6) 

where V: complte volume, Ci: concentration, and M: the amount of tracer injected. 

Consequently; mean residence time of flow, tmean, is calculated as Eq. 7: 

𝑡mean = 
∫ 𝑡𝐶(𝑡)𝑑𝑡

∞
0

∫ 𝐶(𝑡)𝑑𝑡
∞

0

 
(7) 

In the instant step, the tundish performance is classed by separating the flow volumes 

into three types: the plug flow (Vp), the well-mixed volume (Vm), and the dead volume (Vd) as 

Eq. 8 to 10: 

Vp = 𝜃min (8) 

Vd = 1 −
𝑄𝑎

𝑄
× 𝜃mean (9) 

Vm = 1 − Vp − Vd (10) 

     2.3. Experimental simulation setup. 

The water modeling system setup utilized for analyzing and investigating the tracer 

injection and the RTD is shown schematically in Figure 2. This system comprises a water 

feeding system along with a solenoid valve tracer injector. Usually, the tracer is introduced in 

the flow-through syringe, which affects the domain fluid velocity. The solenoid valve system 

provides a way to feed water, and also, after shifting, the tracer is feed into the tundish. The 

physical tracer structure comprises 70 ml of water, 9 g of NaCl (potassium chloride), and 10 

ml of red-colored dye. The electric conductivity meter is deployed at the outlet for measuring 

the tracer concentration about every single second. Flowmeter is deployed before the solenoid 

system for monitoring and regulating the flow rate of feed water. 

 
Figure 2. Schematic diagram of water modeling system setup. 

    2.4. Flow modifiers. 

The tundish configurations comprise three different flow modifiers and bare tundish, 

which are tundish with the dam, baffle, and turbulence inhibiter (TI). The dam consists of 100 

mm height and 15 mm thickness. It is located at the center of the tundish. The baffle has 15 

mm thickness and 9 holes of 30 mm diameter; it is also located at the center. The TI consists 

of rectangular dimensions as 120×120×30 mm3, which is located below the inlet. These tundish 

configurations are shown in Figure 3 (a-d). 
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Figure 3. Tundish configurations with the flow modification: (a) bare tundish; (b) baffle; (c) TI; (d) dam. 

3. Results and Discussion 

     3.1. Path-lines of particle and turbulence kinetic energy. 

The random injection of sampling particles comprising similar fluid properties, through 

the which the path-lines of fluid flow in tundish is simulated. The path-lines of particles in the 

tundish fluid flow with bare tundish, dam, baffle, and TI are shown in Figure 4 (a-d). The color 

variation of different particles shows the fluid flow pattern from beginning to end. In the bare 

tundish configurations, counter-rotating toroidal vortices presence at the inlet is observed, and 

there is gradual disappearance after flowing towards the outlet.  

 
Figure 4. Path-lines of particles in the fluid flow of (a) bare tundish; (b) dam; (c) baffle; (d) TI. 

(b) 
(a) 

(c) 
(d) 
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There is a change in the fluid flow after the fitment of the dam or baffle. In the case of 

a tundish with a dam, the swirls have occurred on both sides of the dam. The fluid flow contains 

fewer vortices after flowing through the baffle. In the tundish with TI configurations, the 

vortices only occur near the TI. 

The turbulence kinetic energy of the particle path-lines in the different configurations 

of tundish is shown in Figure 5 (a-d). It can be observed that the flow modifier, particularly TI 

switches the nature of the turbulence. The high turbulence kinetic energy is encountered at the 

inlet zone. Bare tundish comprises a dam, baffle, and high turbulence zone initiated at the inlet 

zone and flourishes until the half section of the tundish. In the case of tundish with TI, the high 

turbulence zone is acute at the TI and humbler in other zones as compared to others. 

 
Figure 5. Path-lines of the turbulence kinetic energy in the fluid flow of (a) bare tundish; (b) dam; (c) baffle; (d) 

TI. 

     3.2. RTD curves. 

Figure 6 (a) and (b) show the simulation results and PWM results of RTD curves for 

the respective tundish model. The residence time curves comprise curves of dimensionless 

mass fraction of the tracer against dimensionless time (ɵ). The θstart, tstart, θmax, tmax, θmean, tmean 

of the RTD curves, plug volume (Vp), well-mixed volume (Vm), and dead volume (Vd) from 

simulation and water model experiment, which are also fundamental indicants for the flow 

characterization, are summed in Tables 1 and 2. Good agreement between the CFD simulation 

results and the experiment results is encountered.    

 
Figure 6. (a) Simulation and (b) experimental results of RTD curves for respective tundish model. 

 

(a) (b) 
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Table 1. Important terms of RTD curves and fraction flow data extracted from the CFD simulation results. 

Configuration 

Residence Time Indicators 
(Vp)  

(%) 

(Vm)  

(%) 

(Vd)  

(%) 
θStart tstart 

(sec) 

θMax t(Max) 

(sec) 

θMean t(Mean) 

(sec) 

Bare 0.09 21 0.37 94 0.84 213 9.20 64.60 27.80 

Dam 0.11 33 0.52 134 0.94 222 11.20 66.20 18.70 

Baffle 0.12 30 0.40 106 0.96 232 12.54 69.74 18.50 

TI 0.19 52 0.71 192 0.93 241 19.95 71.90 8.74 

After observing Tables 1 and 2, it is found that after implantation of the flow modifiers, 

there are improvements in the flow time indicators. There is 2 times improvement in θstart after 

deploying TI, which furnishes optimal flow characteristics. There are 10 % improvements in 

all the tundish configurations mean residence time (tmean and θmean). This result forbids the 

short-circuit flows and advances the floatation of inclusions. There area decrease and 

improvement in percentage fractions of stagnant flow or Vd after implementing these flow 

modifiers. 

Table 2. Important terms of RTD curves and fraction flow data extracted from the PWM experiment results. 

Configuration 

Residence Time Indicators 
(Vp)  

(%) 

(Vm)  

(%) 

(Vd)  

(%) 
θStart tStart 

(sec) 

θMax t(Max) 

(sec) 

θMean t(Mean) 

(sec) 

Bare 0.08 22 0.43 125 0.85 212 8.21 64.97 27.22 

Dam 0.13 30 0.63 156 0.91 224 12.54 69.03 18.85 

Baffle 0.13 36 0.55 147 0.91 227 12.90 67.74 17.95 

TI 0.17 48 0.54 150 0.88 228 18.87 65.16 15.98 

4. Conclusions 

The PWM experiment and the CFD numerical simulation are expended to prognosticate 

flow behavior and investigate the tundish flow characteristics. The deployment of a flow 

modifier is intended to improve the flow behavior in tundish models. The reduction of short-

circuiting of flows and improvement in RTD results in better inclusion removal in tundish 

operation. Default meshing was deployed for the CFD simulation, and better amalgamation 

with PWM was achieved. In the case of PWM experiments and CFD simulation with tracer 

injection, there is an improvement of more than 20 % in the peak (θmax and tmax) and the 

minimum residence time (θstart and tstart) of RTD curves. Among the entire tundish configuration 

in this research, the tundish with TI provides optimal flow characteristics and eventually 

promotes a better inclusion removal level.  
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