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Abstract: Phosphodiesterase 5 (PDE5) inhibitor is a class of drugs currently used to treat erectile 

dysfunction. Physiologically, inhibition of PDE5 may lead to vasodilation, blood flow increment, and 

penile erection. However, PDE5 inhibitors have been reported not only to modify the function of the 

male reproductive organ but also to influence other physiological systems. To explore the effect of 

PDE5 inhibitor on metazoan physiological systems, a fruit fly (Drosophila melanogaster) model 

organism is used since the catalytic domain of fruit fly PDE5/6 shares a high similarity of amino acid 

sequence (58%) with the PDE5 of humans. This study aimed to investigate whether the effect of PDE5 

inhibition by sildenafil is phenotypically observable as changes in the behavioral states. Two behavioral 

phenotypes of D. melanogaster, negative geotaxis, and ethanol sensitivity, were used as test parameters 

in this explorative study. The results demonstrated that sildenafil had a significant effect on reducing 

locomotor activity, as reflected by negative geotaxis assay, but it had no influence on the fruit fly 

sensitivity to ethanol. Taken together, our results suggested that PDE5 inhibition might impair the 

physiological condition of the metazoan species. Also, an explorative study using D. melanogaster 

might offer valuable insight as a model organism in the discovery and repurposing approach of PDE5 

inhibitor. 
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1. Introduction 

Phosphodiesterase (PDE) is an enzyme that regulates cAMP and/or cGMP degradation 

at the cellular level [1]. Of the 11 classes of PDE found in humans, some are targeted for drugs, 

including phosphodiesterase 5 (PDE5) [2, 3]. One of the pharmacological applications related 

to PDE5 is the use of PDE5 inhibitors to treat erectile dysfunction (ED) [4, 5]. Since PDE5 

inhibitors have a similar structure with cGMP, these drugs competitively bind to PDE5 with 

cGMP, thus preventing cGMP degradation process [3, 6], which phenotypically observable as 

the state of penile erection [4]. At present, the most commonly used PDE5 inhibitor is sildenafil 

[4]. FDA approved this drug in 1998 following the success of clinical trials to demonstrate the 

efficacy of sildenafil in the treatment of ED [5, 6]. Also, sildenafil has been used to treat 

pulmonary hypertension due to its pharmacological properties to increase nitric oxide 

concentration, leading to vasodilation in the lung [7-9]. 
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At present, several PDE5 inhibitors, for example, sildenafil, tadalafil, and vardenafil 

have been widely marketed to treat ED [4, 10]. Apart from such main indication, PDE5 

inhibitors were previously reported to yield anti-inflammatory [11] and antioxidant [12, 13] 

properties, further suggesting the possibility to repurpose PDE5 inhibitors into drugs to treat 

different diseases. Recently, PDE5 inhibitors have been suggested to be used in the treatment 

of Alzheimer’s disease [14] and potentially beneficial in the management of Coronavirus 

disease (COVID)-19 [15]. However, much has not been known regarding the overall effect of 

PDE5 inhibitors on the human body, likely due to the difficulties in performing experimental 

research using human subjects. Also, our current pre-clinical platform using different types of 

mammalian animal models or even non-human primates’ present significant challenges to drug 

repurposing efforts, possibly due to the necessity of ethical clearance, the complexity of 

signaling pathways involved in such models, or at the very least, economic problems [16]. To 

overcome those hurdles, developing an in vivo platform system that is easier to use, faster, and 

economical is urgently required [16]. With a high degree of genetic similarity to humans 

(genetically-homolog), the fruit fly Drosophila melanogaster is highly likely to serve as a 

prospective model organism in this research field. 

The fruit fly, Drosophila melanogaster, is one of the model organisms that has been 

commonly used to explore the nature of numerous biological and physiological events [16-18], 

ranging from the investigation on the etiology and mechanistic basis of human diseases [19] to 

elucidation of the possible roles of an immune system malfunction in the emergence of sterile 

inflammation [20, 21]. Furthermore, due to the high similarity of genetic makeup (about 75%) 

between D. melanogaster and human [16], this insect has been used in the pharmacological 

testing of drug candidates from natural products [22-25]. Additional advantages of using D. 

melanogaster as an in vivo model system are a very fast life cycle (around 2 months) with 

relatively lower maintenance costs, the availability of diverse types of mutant flies, and the 

possibility of using large numbers of flies at once with less ethical issues [16, 18]. A particular 

point of view that agrees with our research's purpose is D. melanogaster has been reported to 

have PDE5/6 that is homologous to the PDE5 of humans [26].  

Drosophila melanogaster has five PDE types, namely PDE1, PDE5/6, PDE8, PDE9, 

and PDE11 [26]. Sildenafil, a widely used PDE5 inhibitor, has interacted with the PDE 5/6 of 

D. melanogaster [26]. However, the effects of such drug-enzyme interaction on behavioral 

phenotypes of D. melanogaster have not been reported yet. To explore the effect of PDE5 

inhibitors on metazoan behaviors, we used fruit fly D. melanogaster as the model organism 

since the catalytic domain of fruit fly PDE5/6 shared a high similarity of amino acid sequence 

(58%) with the PDE5 and the PDE6 (51%) of humans [26]. In this study, two behavioral 

properties of D. melanogaster, negative geotaxis and sensitivity of fly to ethanol, were used to 

observe the effect of sildenafil on Drosophila behaviors. Negative geotaxis is a term used to 

reflect the upward vertical movement of fruit fly in the vial [27], and the ethanol sensitivity 

assay is widely used to assess the effect of certain stimulation/destimulation on the central 

nervous system of Drosophila concerning its locomotor [28]. The purpose of these tests was to 

determine whether Drosophila can experience changes in either locomotor speed or ethanol 

sensitivity after the drug has been introduced. This study serves as a proof-of-concept proxy to 

investigate behavioral changes of D. melanogaster in response to the introduction of sildenafil, 

a widely used PDE5 inhibitor. 
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2. Materials and Methods 

2.1. Fly stock maintenance and treatment. 

Males of the Drosophila melanogaster w1118 line were used in the entire experiment 

performed in this study. Males of D. melanogaster were discriminated from their females’ 

counterparts by straightforward observation on the genital and dorsal-posterior features 

(segments A5 and A6) of the corresponding flies using a stereomicroscope.  

Fruit fly D. melanogaster was divided into five groups. Each group consisted of ten 

male flies at the age of 1-2 days determined from their pupal case's first day of emergence. 

Flies in the healthy control group were fed with standard food, and flies in the vehicle control 

group were incubated in a mixture of standard food and DMSO. Treatment groups were fed 

with standard food containing sildenafil at concentrations of either 1 µM, 10 µM, or 100 µM. 

Each group was treated for five days, and flies were maintained in standard conditions (25°C, 

12 hours light, and 12 hours dark cycles) until the end of observation. 

2.2. Locomotor assay. 

All fly groups were incubated at 25°C and monitored for locomotor (Fig. 1). Locomotor 

testing was performed by a negative geotaxis method on flies placed in a marked empty vial, 

designated as the locomotor testing vial, as described previously [29], with slight 

modifications. The testing vial was placed in an upright standing position in front of a climbing 

wall. Briefly, this test was started by firmly tapping off the locomotor testing vial at the start to 

ensure all flies started the movement from the bottom of the vial. To obtain the data, we 

observed and recorded events that happened in the testing vial for up to 30 seconds. Flies were 

assigned based on their position on the climbing wall, and the data were further analyzed using 

a custom-made Excel spreadsheet as used in [29].  
 

 
Figure 1. Timeline of the experimental design. Adult flies of each group were given normal fly food or fly food 

containing either sildenafil with different concentrations of DMSO. Fly locomotor was assessed using negative 

geotaxis assay after five days of treatment in the presence or absence of sildenafil at different concentrations. The 

end of each bar means all flies in that group were subjected to negative geotaxis and ethanol sensitivity assay. 

DMSO, dimethyl sulfoxide  

2.3. Ethanol sensitivity assay.  

All fly groups were incubated at 25°C and monitored for their ethanol sensitivity (Fig. 

1). Ethanol sensitivity assay was conducted on flies placed in marked empty vials (in the 

absence of fly food), as described previously [30], with slight modifications.  Briefly, ten males 
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of D. melanogaster at the age of 1-2 days were used in this assay. These flies were placed in 

an empty vial, designated as the ethanol testing chamber, for several minutes for adaptation 

and then subjected to the ethanol exposure protocol. At the end of the experiment, flies that 

were still alive after being exposed to the 96% ethanol were then counted. Results obtained 

from each group were then analyzed and compared statistically. 

2.4. Data analysis. 

All data obtained in this study were subjected to statistical analysis using the GraphPad 

Prism®8 application, based on a One-Way ANOVA followed by a suitable post hoc approach. 

For all statistical analyses, data were presented as mean ± S.D., and p values of less than 0.05 

were considered statistically significant. 

3. Results and Discussion 

3.1. Effect of sildenafil on the locomotor of Drosophila. 

Locomotor testing was performed to observe changes in the Drosophila movement after 

sildenafil ingestion at different concentrations. In humans, sildenafil has been shown to 

increase protein synthesis in the muscle, thus presumably leads to the reduction of muscle 

fatigue [31]. Therefore, we hypothesized that Drosophila locomotor might be increased or 

steadily maintained in response to sildenafil ingestion in Drosophila. To test this hypothesis, 

we carried out a negative geotaxis assay. Results obtained from this experiment (Fig. 2) showed 

that the locomotor of flies in the groups of sildenafil-treated Drosophila at concentrations of 

10 µM and 100 µM was reduced compared to the healthy control or the DMSO control, 

suggesting that Drosophila locomotor was negatively impaired in the presence of sildenafil. 

Interestingly, this result was different from our expectation, suggesting that our findings in 

Drosophila might not result in an agreement to the results previously obtained from humans 

[31]. Mechanisms on how sildenafil can impair fly locomotor in such trend, as measured using 

negative geotaxis assay, remain elusive. Possible explanations for such events might be related 

to the local influence of sildenafil on Drosophila muscle cells or a more systematic effect of 

the drug on the fly central nervous system (CNS). Either way or another, this might lead to 

impairment in the fly locomotor ability. However, this remains speculative as more 

experiments are required to answer this question. 

 
Figure 2. Negative geotaxis assay on the males of w1118 Drosophila in the presence or absence of sildenafil. (A) 

Design of fly climbing wall and testing vials used in the negative geotaxis assay. (B) Results obtained from 

negative geotaxis assay. Adult flies at the age of 1-2 days were fed with fly food containing either 1 µM, 10 µM, 

or 100 µM sildenafil. Flies incubated in DMSO-containing fly food were used as the vehicle control in this 

experiment. All flies were subjected to a negative geotaxis assay, and results were analyzed accordingly. DMSO, 

dimethyl sulfoxide; Statistical significance * = p<0.05, ** = p<0.01, NS = not significant.  
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3.2. Effect of sildenafil on the sensitivity of Drosophila to ethanol. 

Drosophila has been known to be attracted to foods containing a low level of alcohol, 

mainly in the form of ethanol, as a result of the fermentation process [32, 33]. Ethanol itself 

has been reported to induce genetic and phenotypical changes in Drosophila [34]. A high level 

of ethanol could promote the death of exposed Drosophila [35], similar to those reported in 

humans [36]. In light of results obtained from previous experiments, D. melanogaster has been 

suggested as a suitable model organism to study the genetics of alcoholism in humans [37, 38]. 

A previous experiment on eight healthy male subjects demonstrated that sildenafil and 

alcohol (in the form of red wine) did not show important hemodynamic interaction clinically 

[39], suggesting the safe use of sildenafil under alcohol presence. Alternatively, one may 

assume that sildenafil and alcohol might involve a complex interaction in the metazoan 

biochemical process. Previous studies have shown that sildenafil could induce the expression 

of endogenous antioxidants, such as superoxide dismutases and catalases, in healthy men [40] 

and rodent [41] subjects. While the detail of the mechanisms remains elusive, it is tempting to 

speculate that increased expression of endogenous antioxidants can prevent negative alcohol 

effects on the metazoan cells. 

Ethanol sensitivity assay has been demonstrated as one of the easiest and cheapest 

methods to examine certain exogenous substances' effect on fly behavior [28, 30, 42]. Owing 

to that, we intended to assess whether oral administration of sildenafil into flies would induce 

changes in flies’ behavior towards ethanol. To achieve that, we performed an ethanol sensitivity 

assay using methods described previously [30]. As seen in Fig. 3, the results showed that oral 

administration of sildenafil at different concentrations before ethanol sensitivity assay did not 

change the time flies succumbed to ethanol, suggesting that sildenafil treatment did not induce 

phenotypical changes in Drosophila sensitivity to ethanol. In the healthy control group, the 

time required for Drosophila to undergo 100% ethanol-induced fly death was about 733 

seconds, while flies treated with sildenafil per oral at concentrations of 1 µM, 10 µM, or 100 

µM, underwent 100% death at around 700 seconds. Moreover, all flies in the negative control 

group also similarly underwent mortality at around 650 seconds. Statistically, there is no 

significant difference in terms of fly behavior towards ethanol from one group to others, 

suggesting that administration of sildenafil to flies has less or even no effect on the fly 

sensitivity to ethanol.   

 
Figure 3. Result of ethanol sensitivity assay on the males of w1118 Drosophila in the presence or absence of 

sildenafil. Adult flies at the age of 1-2 days were fed with fly food containing either 1 µM, 10 µM, or 100 µM 

sildenafil. Flies incubated in DMSO-containing fly food were used as the vehicle control in this experiment. All 

flies were subjected to ethanol sensitivity assay, and results were analyzed accordingly. DMSO, dimethyl 

sulfoxide; Statistical significance * = p<0.05, ** = p<0.01, NS = not significant. 
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It is important to note that the test was performed by pipetting the ethanol on the vial 

cap as described previously [30]; thus, ethanol might fill in space in the vial, thus reducing the 

chance of ethanol to yield the expected effect to Drosophila. Nevertheless, our results in this 

study provide a hint for sildenafil effect on Drosophila behaviors previously unaware. We 

believe that the number of phenotypical characteristics to be observed in the future study shall 

be increased with this preliminary data. It might be possible to use phenotypical characteristics 

as high-throughput screening parameters in the discovery of new PDE5 inhibitors or drug 

repurposing campaigns in the long run. 

4. Conclusions 

 Based on our results, we concluded that the oral administration of sildenafil, a PDE 5 

inhibitor, at a concentration of 100 µM resulted in reducing Drosophila locomotor but had no 

effect on the Drosophila sensitivity to ethanol. In the long run, these preliminary data, in 

addition to results obtained from other behavioral assays, might hold a potential impact on the 

PDE5 inhibitors repurposing effort. 
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