Effect of the Temperature and Solvents on the Solvolysis of Barium Bromide in Aqueous-Organic Solutions: Volumetric and Viscometric Study

Sudhansu Sekhar Pattnaik ¹, Binita Nanda ², Biswajit Dalai ¹, Braja B. Nanda ^{3,*}

- ¹ Department of Physics, GIET University, Gunupur, Odisha, India; sudh.pintu@gmail.com (S.S.P.);
- ² Department of Chemistry, ITER, Sikshya 'O' Anusandhan (Deemed to be University), Bhubaneswar-751030, India; binita.driems@gmail.com (B.N.);
- ³ P.G. Department of Chemistry, Vikram Deb Autonomous College, Jeypore-764001, Odisha, India; bbnanda.driems@gmail.com (B.B.N.);
- * Correspondence: bbnanda.driems@gmail.com;

Scopus Author ID 8431581400 aixed: 23 02 2021: Pavised: 2 04 2021: Accepted: 7 04 2021: Published: 20 04 2021

Received: 23.02.2021; Revised: 2.04.2021; Accepted: 7.04.2021; Published: 20.04.2021

Abstract: Volumetric and viscometric properties of solutions containing barium bromide in an aqueous solution of ethylene glycol and 1,4-dioxane have been discussed at different temperatures such as 298.15K 303.15K, 308.15K, and 313.15K. The Masson's equation was used to determine the apparent molar volume, V_{ϕ} , standard partial molar volume, V_{ϕ}^{0} , molar expansibilities, E_{ϕ}^{0} by taking the density data. The values of viscosity and density were used in the Jones-Dole equation to find the viscosity B coefficients, which were used to estimate the ion-solvent interactions. The values of Hepler's constant $(\partial^2 V_{\phi}^0/\partial T^2)_p$ and the viscosity B-coefficients have been used to deduce the solvent structure-promoting or structure breaking tendency of the salt in the studied mixtures. In the current study, the positive values of Hepler's constant and the negative values of dB/dT show that barium bromide in the considered solvents mainly behaves as a structure promoter.

Keywords: Apparent molar volume; Hepler's constant; barium bromide; Jones–Dole equation.

 \odot 2021 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

Partial molar volume and viscosity data provide valuable evidence about different types of forces of attractions present in the solutions [1-5]. The volumetric and viscometric studies of solutions help us illustrate solutes' organization and properties in mixed solvents [6-10]. Recently, many researchers have studied the solution properties of the different salts in mixed solutions [11-16]. Frank and Evan [17] have interpreted the thermodynamic properties of the aqueous-organic solutions in terms of water particles' organization about the non-polar solute. 1, 4-Dioxane is a heterocyclic colorless organic liquid having a faint sweet smell like to diether. It is used as a (i) versatile aprotic solvent for cellulose esters, inks, and adhesives, (ii) as a stabilizer for transporting chlorinated hydrocarbons in aluminum vessels. Due to its lower toxicity and higher boiling point, it substituted Tetrahydrofuran in some reactions and was used as an internal standard for NMR spectroscopy of deuterium oxide. It serves as a chelating diether ligand and can solvate many inorganic compounds due to the presence of two oxygen atoms in it. Similarly, ethylene glycol is used in many commercial and industrial applications, including antifreeze and coolant. The salt, barium bromide, BaBr₂ have many applications in

the field of chemical reactions. It is used as a precursor to chemicals used in photography and used to purify radium in the fractional crystallization process. This paper is dealt with the study of the ion-solvent, ion-ion, and solvent-solvent interactions of the barium bromide with the aqueous solutions of dioxane and ethylene glycol, as both the solute and the solvents are used for industrial processes. Therefore, the volumetric and viscometric properties of BaBr₂ in aqueous-organic solvents such as 1, 4-dioxane, and ethylene glycol, have been studied to evaluate the ion-solvent and ion-ion interactions existing among the solutes and solvents.

2. Materials and Methods

2.1. Chemicals.

Anhydrous barium bromide, ethylene glycol, and 1,4-dioxane used were taken from Sigma Aldrich, Germany, with more than 99% purity and then refined by standard methods [18]. The triply distilled water was used to prepare the solutions of 10, 20, and 30(v/v) % of each of ethylene glycol and dioxane solutions, which served as solvents. Barium bromide was further desiccated over anhydrous CaCl₂ before use [19]. The sample specification is given in Table 1.

Table 1. Specification of Chemicals.									
Chemicals	Source	Mass fraction purity ^a	Purification method	CAS No	Mol.Mass/ g mol ⁻¹	Structure			
Barium bromide	Sigma- Aldrich	0.99	Used as obtained	10553-31-8	297.14	BaBr ₂			
Ethylene Glycol	Sigma- Aldrich	>0.998	By standard methods[18]	107-21-1	62.07	ноон			
1,4-Dioxane	Sigma- Aldrich	>0.99	By standard methods[18]	123-91-1	88.11	\bigcirc			

^aAs declared by the supplier

2.2. Apparatus and procedure.

The masses of the solute and solvents were measured by electronic balance (KERN, model ABJ-220-4NM, made in Germany) with a precision of \pm 0.01mg. A double arm pycnometer was taken to determine the density (ρ) of the prepared solutions at *T*=(298.15-313.15) K, which was calibrated with deionized triply distilled water with 997.017 kg/m³ as its density at temperature 298.15 K. The measurement of viscosity of the solutions was done with the help of Ostwald viscometer with appropriately long reflux period greater than 200 seconds to avoid the corrections in kinetic energy. The average of three readings from the Ostwald viscometer was taken into consideration. The density bottle and viscometer were calibrated [20-21] using distilled water. All the measurements are carried out by clamping pyknometer and viscometer in a water bath maintained at constant temperatures ±0.01 K. The uncertainty in viscosity and density measurements were within ±0.003 mPa and ±1 ×10⁻⁵ g cm⁻³ respectively. The water's viscosity was taken to be 0.7194×10⁻³ kg m⁻¹ s⁻¹ (at 303.15K) [22]. The molar concentrations of the solutions were converted to molality using the standard formula using the density values.

3. Results and Discussion

3.1. Viscometric study:

The properties of electrolytic solutions in aqueous media are highly particular to the individual ions of the respective electrolyte, so it is difficult to generalize these properties. Another parameter to find the ion solvent interactions is the determination of transport property in terms of viscosity. The formula: $\eta/\eta_0 = (t \times \rho)/(t_0 \times \rho_0)$ was used to calculate the relative viscosity of the solutions, where η is the absolute viscosity, t is the time of flow and ρ is the density of solution respectively, while η_0 , t₀, and ρ_0 are the same measure for the solvent respectively. The densities of solutions are tabulated in Table 2.

The dependence of viscosities of BaBr₂ solutions in aqueous dioxane and ethylene glycol with the molality can be expressed by the Jones-Dole equation [23] as given below:

$$\eta_r = \eta /\eta_0 = 1 + A \sqrt{m_A} + Bm_A \tag{1}$$

Where η_r is the relative viscosity of the studied solutions, η and η_0 are the viscosities of solutions and solvent, respectively. The constant *A* represents the interionic forces [24-25], and known as the Falkenhagen coefficient, the coefficient *B* is associated with the solute-solvent interactions and is understood as a degree of the structure-promoting or structure breaking nature of the ions in the said solutions [26]. The parameters A and B can be found by arranging equation 1 as follows:

$$(\eta/\eta_0 - 1) / \sqrt{m_A} = \eta_{sp} / \sqrt{m_A} = A + B \sqrt{m_A}$$
 (2)

 $(\eta/\eta_0 - 1)$ is known as specific viscosity and represented as η_{sp} . The values of $(\eta/\eta_0 - 1)/\sqrt{m_A}$ and the parameters A and B coefficients of the above equation are tabulated in Tables 3 and 4, respectively. The variation of $(\eta/\eta_0 - 1)/\sqrt{m_A}$ with molality ' $\sqrt{m_A}$ ' indicates the decrease of viscosity with the increase in temperature and viscosity increase with an increase of dioxane/ethylene glycol content in the solutions. The variation of viscosity with the molal concentration of solutions at 298.15 K is given in Figure 1.

Figure 1. The plot $(\eta/\eta_0 - 1)/m_A^{1/2} vs. m_A^{1/2}$ of BaBr₂ in (a) DO -Water and (b) EG -Water respectively at 298.15K.

The intermolecular force of attraction increases with an increase in the mass fraction of BaBr₂ in the solution; as a result, the viscosity of the solution increases. The positive values of

coefficient *A* at all temperatures for $BaBr_2$ prove the existence of substantial ion-ion interactions. The viscosity B coefficient of the Jones-Dole equation indicates the presence of ion-solvent interaction [22]. For all the solutions, the values of viscosity B coefficients may be positive or negative. If the solute attracts the water/solvent molecules, then its B coefficient value will be positive; otherwise, it will be negative. In the present study, the positive values of viscosity B coefficient for BaBr₂ in both dioxane-water and ethylene glycol-water media (Table 4) confirms the existence of ion-solvent interactions. The negative values of thermal coefficient (d*B*/dT) [25] indicate that there are strong ion-solvent interactions and the said solute is a structure promoter in the studied media. These data agree with the result obtained from the Hepler equation discussed in volumetric properties [27].

$m_{A}/$		ρ / kg	m^{-3}	(_		$V_{\phi} \times 10^{5}$ / m ³ mol ⁻¹				
mol kg ⁻¹	298.15K	303.15K	308.15K	313.15K	298.15K	303.15K	308.15K	313.15K		
			10:90 (v/v	v) 1,4-Dioxane-	Water					
0.0000	1013.3	1010.0	1007.0	1003.9						
0.0010	1013.5	1010.2	1007.2	1004.1	5.1502	4.9399	4.5451	4.1607		
0.0025	1013.9	1010.6	1007.6	1004.5	5.5678	5.3140	5.1351	4.8634		
0.0049	1014.4	1011.2	1008.2	1005.1	6.1043	5.7958	5.5075	5.2943		
0.0074	1015.0	1011.7	1008.7	1005.6	6.4401	6.2476	5.9790	5.6381		
0.0099	1015.6	1012.3	1009.3	1006.2	6.6259	6.4674	6.2703	6.1036		
0.0247	1019.0	1015.8	1012.8	1009.7	6.8233	6.6435	6.4444	6.2758		
0.0495	1024.7	1021.5	1018.6	1015.5	6.8233	6.6298	6.4279	6.2793		
0.0744	1030.4	1027.2	1024.4	1021.3	6.8233	6.6428	6.4505	6.2828		
0.0994	1036.1	1033.0	1030.1	1027.0	6.8233	6.6503	6.4535	6.2868		
			20:80 (v/v	y) 1,4-Dioxane-	Water		-			
0.000	1027.5	1024.2	1021.1	1018.2						
0.0010	1027.7	1024.4	1021.3	1018.4	5.0887	4.9308	4.8321	4.7113		
0.0024	1028.1	1024.8	1021.7	1018.8	5.5433	5.3440	5.2375	5.0741		
0.0049	1028.6	1025.3	1022.2	1019.3	6.0307	5.7412	5.5583	5.3740		
0.0073	1029.2	1025.9	1022.8	1019.9	6.3362	6.1568	5.8777	5.7248		
0.0097	1029.8	1026.5	1023.4	1020.5	6.5983	6.4128	6.2053	5.9554		
0.0244	1033.1	1029.8	1026.8	1023.9	7.1183	6.9642	6.8318	6.6776		
0.0488	1038.7	1035.5	1032.4	1029.5	7.1540	7.0025	6.8701	6.7172		
0.0734	1044.3	1041.1	1038.1	1035.2	7.1717	7.0325	6.8960	6.7786		
0.0980	1049.8	1046.6	1043.7	1040.8	7.2156	7.0743	6.9288	6.7949		
	30:70 (v/v) 1,4-Dioxane-Water									
0.0000	1040.6	1037.6	1034.5	1031.1						
0.0010	1040.8	1037.8	1034.7	1031.3	5.4409	5.1258	4.9442	4.7757		
0.0024	1041.2	1038.2	1035.1	1031.7	5.9635	5.7599	5.5382	5.3099		
0.0048	1041.7	1038.7	1035.7	1032.3	6.7727	6.5976	6.2695	6.0711		
0.0072	1042.3	1039.3	1036.2	1032.8	7.1435	6.9335	6.7532	6.6015		
0.0096	1042.8	1039.8	1036.7	1033.3	7.3617	7.2174	7.0618	6.8803		
0.0241	1046.1	1043.1	1040.0	1036.6	7.5650	7.4405	7.3320	7.1682		
0.0482	1051.5	1048.5	1045.5	1042.1	7.6052	7.4768	7.3510	7.2213		
0.0725	1056.9	1054.0	1051.0	1047.6	7.6259	7.5030	7.3692	7.2395		
0.0968	1062.4	1059.5	1056.5	1053.1	7.6052	7.4731	7.3718	7.2589		
			10:90 (v/v)	Ethylene glyco	l-Water	1	1	1		
0.0000	1029.3	1026.1	1022.9	1020.1						
0.0010	1029.5	1026.3	1023.1	1020.4	4.7909	4.6093	4.4940	4.2312		
0.0024	1029.9	1026.7	1023.5	1020.7	5.5514	5.3268	5.2447	5.1021		
0.0049	1030.5	1027.3	1024.1	1021.3	5.9678	5.7101	5.5781	5.4309		
0.0073	1031.0	1027.9	1024.7	1021.9	6.2968	6.0923	6.0090	5.9084		
0.0097	1031.6	1028.4	1025.2	1022.4	6.5556	6.3522	6.2673	6.1455		
0.0243	1035.0	1031.8	1028.7	1025.9	6.7251	6.5291	6.4054	6.2817		
0.0487	1040.7	1037.5	1034.4	1031.6	6.7496	6.5736	6.4268	6.3243		
0.0732	1046.4	1043.3	1040.2	1037.4	6.7578	6.5811	6.4219	6.3110		
0.0978	1052.1	1049.0	1045.9	1043.2	6.7578	6.5946	6.4304	6.3118		
0.0000	10/7 0	1044.0	20:80 (v/v)	Ethylene glyco	I-Water	[1			
0.0000	1047.9	1044.8	1041.5	1038.3	5.2452	4.7.00	1 (7 - 1	4.4070		
0.0010	1048.1	1045.0	1041.7	1038.5	5.2452	4.7600	4.6564	4.4079		

Table 2. Density, ρ , and apparent molar volume, V_{ϕ} of Barium bromide in ethylene glycol-water and 1,4dioxane-water respectively at T = (298.15 - 313.15)K.

https://doi.org/10.33263/BRIAC121.339350

$m_A/$		ρ / k g	m^{-3}		$V_{\phi} \times 10^5$ / m ³ mol ⁻¹			
$mol kg^{-1}$	298.15K	303.15K	308.15K	313.15K	298.15K	303.15K	308.15K	313.15K
0.0024	1048.5	1045.4	1042.1	1038.9	5.7054	5.1947	5.3334	5.2514
0.0048	1049.1	1046.0	1042.7	1039.5	6.0659	5.9152	5.7675	5.5599
0.0072	1049.6	1046.5	1043.2	1040.0	6.4556	6.2779	6.1835	6.0356
0.0095	1050.2	1047.1	1043.8	1040.6	6.6821	6.5313	6.3868	6.2443
0.0239	1053.5	1050.5	1047.2	1044.0	6.8675	6.7016	6.5560	6.4257
0.0479	1059.1	1056.1	1052.8	1049.7	6.9143	6.7278	6.6085	6.4789
0.0720	1064.7	1061.8	1058.5	1055.4	6.9210	6.7453	6.6276	6.4892
0.0961	1070.3	1067.4	1064.2	1061.1	6.9363	6.7617	6.6295	6.4892
			30:70 (v/v)	Ethylene glycol	-Water			
0.0000	1081.6	1064.0	1056.0	1047.9				
0.0009	1081.8	1064.2	1056.2	1048.1	5.3812	4.9981	4.8071	4.6325
0.0023	1082.2	1064.6	1056.6	1048.5	5.8372	5.5463	5.4131	5.4023
0.0046	1082.7	1065.1	1057.1	1049.0	6.2212	6.0071	5.9089	5.8170
0.0069	1083.3	1065.7	1057.7	1049.6	6.6128	6.3893	6.2976	6.1661
0.0093	1083.8	1066.2	1058.2	1050.1	6.8095	6.6536	6.6242	6.3898
0.0232	1087.1	1069.5	1061.5	1053.4	7.1047	6.8731	6.7934	6.5610
0.0464	1092.6	1075.0	1067.0	1058.9	7.1582	6.9222	6.8305	6.6052
0.0697	1098.1	1080.5	1072.5	1064.5	7.1716	6.9288	6.8644	6.6323
0.0932	1103.6	1086.0	1077.9	1070.0	7.1773	6.9353	6.8819	6.6478

Table 3. $(\eta/\eta_0-1)/m^{1/2}$ of BaBr₂ in 10-30 % (v/v) ethylene glycol-water and 1,4-dioxane-water respectively at T = (298.15-313.15) K and at atmospheric pressure.

$m_A/$	298.15K	303.15K	308.15K	313.15K	m_A	298.15K	303.15K	308.15K	313.15K
$mol \ kg^{-1}$		10:90 (v/v) 1,4-D	ioxane-Water		$mol \ kg^{-1}$	10	:90 (v/v) Ethyl	ene glycol-Wa	ter
0.0010	0.057	0.054	0.054	0.052	0.0010	0.061	0.059	0.055	0.052
0.0025	0.070	0.068	0.066	0.064	0.0024	0.075	0.072	0.067	0.063
0.0049	0.085	0.083	0.081	0.079	0.0049	0.092	0.088	0.082	0.077
0.0074	0.096	0.095	0.092	0.090	0.0073	0.105	0.101	0.093	0.087
0.0099	0.107	0.105	0.102	0.099	0.0097	0.116	0.111	0.102	0.097
0.0247	0.150	0.147	0.142	0.138	0.0243	0.163	0.156	0.143	0.134
0.0495	0.199	0.195	0.188	0.183	0.0487	0.216	0.206	0.189	0.177
0.0744	0.236	0.231	0.223	0.217	0.0732	0.256	0.246	0.225	0.211
0.0994	0.267	0.261	0.252	0.245	0.0978	0.290	0.278	0.254	0.238
	20:80	(v/v) 1,4-Dioxane	-Water			20:80 (v/v)) Ethylene glyc	ol-Water	
0.0010	0.058	0.058	0.058	0.058	0.0010	0.065	0.062	0.058	0.055
0.0024	0.073	0.071	0.071	0.070	0.0024	0.082	0.078	0.072	0.068
0.0049	0.090	0.087	0.086	0.084	0.0048	0.101	0.097	0.087	0.083
0.0073	0.103	0.099	0.097	0.094	0.0072	0.117	0.111	0.105	0.093
0.0097	0.113	0.110	0.107	0.104	0.0095	0.129	0.122	0.119	0.103
0.0244	0.160	0.155	0.151	0.146	0.0239	0.183	0.173	0.166	0.144
0.0488	0.212	0.205	0.200	0.194	0.0479	0.244	0.230	0.212	0.191
0.0734	0.252	0.244	0.238	0.230	0.0720	0.290	0.274	0.250	0.227
0.0980	0.286	0.277	0.270	0.261	0.0961	0.330	0.311	0.285	0.256
	30:70	(v/v) 1,4-Dioxane	-Water			30:70 (v/v)) Ethylene glyc	ol-Water	
0.0010	0.061	0.061	0.058	0.057	0.0009	0.072	0.069	0.066	0.062
0.0024	0.078	0.075	0.075	0.074	0.0023	0.089	0.085	0.083	0.079
0.0048	0.097	0.094	0.092	0.090	0.0046	0.112	0.106	0.103	0.099
0.0072	0.111	0.107	0.106	0.103	0.0069	0.128	0.121	0.119	0.113
0.0096	0.123	0.119	0.117	0.114	0.0093	0.142	0.135	0.131	0.124
0.0241	0.175	0.169	0.166	0.161	0.0232	0.202	0.191	0.186	0.175
0.0482	0.233	0.224	0.220	0.213	0.0464	0.269	0.254	0.248	0.234
0.0725	0.277	0.267	0.262	0.254	0.0697	0.321	0.303	0.295	0.278
0.0968	0.315	0.303	0.298	0.288	0.0932	0.364	0.344	0.328	0.315

Table 4. The values of A and viscosity B-coefficient of $BaBr_2$ in 10-30 % (v/v) ethylene glycol-water and 1,4dioxane-water respectively at T = (298,15-313,15) K and at atmospheric pressure.

		dioxane-water	respectively at 1 =	= (298.15-313.15) .	K and at atmosphe	eric pressure.	
T/K	Parameters	10:90 DO-	20:80	30:70	10:90	20:80	30:70
		Water	DO-Water	DO-Water	EG-Water	EG-Water	EG-Water
10	Α	0.033±0.000	0.033 ± 0.000	0.034 ± 0.000	0.036 ± 0.0003	0.036 ± 0.000	0.039 ± 0.0004
3.15	В	0.743±0.001	0.809 ± 0.002	0.906 ± 0.002	0.813±0.0017	0.949±0.002	1.066 ± 0.0021
298.	σ	0.0004	0.0005	0.0006	0.0005	0.0005	0.0006
10	Α	0.032±0.000	0.033 ± 0.000	0.034 ± 0.000	0.034 ± 0.0002	0.035 ± 0.000	0.038 ± 0.0003
3.15	В	0.730±0.002	0.778 ± 0.001	0.867 ± 0.002	0.778±0.0012	0.891±0.002	1.004 ± 0.0020
30:	σ	0.0005	0.0004	0.0005	0.0004	0.0006	0.0006
30 8. 15	A	0.032±0.000	0.033±0.000	0.033±0.000	0.032±0.0001	0.035±0.002	0.038±0.0014

https://biointerfaceresearch.com/

T/K	Parameters	10:90 DO-	20:80	30:70	10:90	20:80	30:70
		Water	DO-Water	DO-Water	EG-Water	EG-Water	EG-Water
	В	0.700±0.001	0.755 ± 0.002	0.851±0.003	0.710 ± 0.0006	0.811±0.012	0.964 ± 0.0082
	σ	0.0002	0.0005	0.0007	0.0002	0.0035	0.0023
10	Α	0.031±0.000	0.033±0.001	0.033 ± 0.000	0.031±0.0001	0.033 ± 0.000	0.035 ± 0.0004
3.1.5	В	0.681±0.001	0.726±0.003	0.820 ± 0.003	0.663 ± 0.0008	0.723±0.001	0.919±0.0023
313	σ	0.0004	0.0009	0.0007	0.0002	0.0002	0.0007

https://doi.org/10.33263/BRIAC121.339350

3.2. Volumetric study.

Apparent molar volume is the change in the volume of the solute molecules due to the interaction with the solvents in a solution. From the experimentally obtained density data, we can calculate the apparent molar volume, V_{ϕ} of the solute using the equation as follows [28]:

$$V_{\phi} = \frac{M_2}{\rho} + \frac{(\rho^0 - \rho)}{m_A \rho \rho^0}$$
(3)

Where $\rho_0 / \text{kg m}^{-3}$ is the density of the pure solvent, $\rho / \text{kg m}^{-3}$ is the solution's density, m_A/mol kg⁻¹ is the molality, and $M_2 / \text{kg mol}^{-1}$ is the molecular weight of solute. The V_{ϕ} values (Table 2) have been found to be positive and increase with an increase in solute concentration and decrease with rising in temperature. V_{ϕ} values of BaBr₂ in aqueous solvents increase in the following order: ethylene glycol-water<1,4-dioxane-water. The Masson-type equation can be employed to calculate the partial molar volume, $V_{\phi}^0/\text{m}^3\text{mol}^{-1}$, [29] as given below:

$$V_{\phi} = V_{\phi}^0 + S_{\nu}^{ex} \sqrt{m_A} \tag{4}$$

The values of V_{ϕ}^0 and the coefficients S_v^{ex} of equation (4) are obtained by plotting the graph $V_{\phi} vs \sqrt{m_A}$ at four different temperatures are given in Table 5. The plot of V_{ϕ}^0 vs. m_A are presented in Figure 2.

Figure 2. Plot of V_{ϕ} vs. m_A of BaBr₂ in (a) 10% (v/v) 1,4-dioxane –water, (b) 20% (v/v) 1,4-dioxane –water, (c) 30% (v/v) 1,4-dioxane –water, (d) 10% (v/v) ethylene glycol –water, (e) 20% (v/v) ethylene glycol –water, (f) 30% (v/v) ethylene glycol-water solutions at T=(298.15 – 313.15) K.

The standard deviation was calculated as per the formula, $\sigma = \sqrt{\left[\frac{(Y_{cal} - Y_{exp})^2}{f}\right]}$. It has

been found that V_{ϕ}^{0} for the investigated BaBr₂ solutions in the said solvents decrease with the concentration of dioxane and glycol. All the V_{ϕ}^{0} values are found to be large and positive for all the solutions(Table 5). It is known the properties like density, viscosity, etc., are influenced by the presence of –OH group or oxygen atom in a molecule. The presence of such groups increases the hydrophilicity and electrostriction between water and solute particles. The decreasing trend of V_{ϕ}^{0} values in dioxane-water and glycol-water indicate the ion-solvent interactions. In very dilute solutions, the ions are encircled by the solvent molecules so they are present far away from each other. So V_{ϕ}^{0} is affected by ion-solvent interactions only. With an increase in temperature, some of the solvent molecules are freed from the loose solvation layers; as a result, the values of V_{ϕ}^{0} decrease with an increase in temperature. With the addition of organic solvents, there will be the formation of strong solvation layers around the ions resulting increase in V_{ϕ}^{0} values. In this case, the values of V_{ϕ}^{0} of BaBr₂ in DO-water/EG-water is in the order:

In Water <10:90 DO-Water <20:80 DO-Water <30:70 DO-Water In Water<10:90 EG-Water <20:80EG-Water <30:70EG-Water

	, 1,4-dioxane-v	water, and ethy	lene glycol-wat	er at T=(298.1	5 – 313.15)K	and at and 0.1	MPa Pressure	
	Parameters	In Water	10:90 DO-	20:80	30:70	10:90	20:80	30:70
			Water	DO-Water	DO-Water	EG-Water	EG-Water	EG-Water
	$V_{\phi}^0 imes 10^5$ / $m^3 \ mol^{-1}$	5.312 ± 0.16	5.67±0.25	5.818±0.25	6.145±0.33	5.498±0.28	5.720±0.23	5.838±0.24
3.1	$S_v imes 10^5 / m^{9/2} mol^{-3/2}$	3.651 ± 0.78	4.667±1.45	6.637±1.47	6.044±1.93	5.154 ± 1.64	4.924±1.36	5.492 ± 1.40
298 7	$\sigma imes 10^5 / m^3 mol^{-1}$	0.301	0.422	0.423	0.553	0.474	0.390	0.394
2	$V_{\phi}^0 imes 10^5$ / $m^3 \ mol^{-1}$	5.221 ± 0.12	5.437±0.26	5.602±0.25	5.908±0.35	5.272±0.28	5.369±0.30	5.567±0.27
3.15	$S_v \times 10^5 / m^{9/2} mol^{-3/2}$	4.102 ±0.59	4.903±1.50	6.899±1.45	6.493±2.06	5.347±1.61	5.689±1.76	5.664±1.60
303	$\sigma imes 10^5$ / $m^3 mol^{-1}$	0.222	0.436	0.420	0.591	0.464	0.503	0.450
10	$V_{\phi}^0 imes 10^5$ / $m^3 \ mol^{-1}$	5.103 ± 0.12	5.147±0.28	5.133±0.24	5.671±0.36	5.188±0.29	5.318±0.28	5.435±0.29
3.15	$S_v imes 10^5 / m^{9/2} mol^{-3/2}$	4.230 ± 0.57	5.281±1.61	6.980±1.36	6.954 ± 2.07	5.088 ± 1.65	5.366±1.64	5.945±1.72
308	$\sigma imes 10^5$ / $m^3 \ mol^{-1}$	0.2	0.469	0.392	0.595	0.476	0.469	0.485
2	$V_{\phi}^0 imes 10^5$ / $m^3 \ mol^{-1}$	5.001 ± 0.12	4.837±0.31	4.954±0.22	5.465±0.36	5.013±0.31	5.143±0.30	5.336±0.28
3.15	$S_v \times 10^5 / m^{9/2} mol^{-3/2}$	5.32 ± 0.57	5.869 ± 1.76	7.121±1.28	7.254 ± 2.07	5.351±1.79	5.528 ± 1.72	5.411±1.66
313	$\sigma \times 10^5 / m^3 mol^{-1}$	0.235	0.512	0.371	0.595	0.515	0.492	0.469

Table 5. Partial molar volume, V_{ϕ}^{0} , experimental slope, S_{v} , and their standard deviations for BaBr₂ in pure water , 1,4-dioxane-water, and ethylene glycol-water at T=(298.15 – 313.15)K and at and 0.1 MPa Pressure.

3.3. The temperature dependency of partial molar volume.

The temperature dependency of V_{ϕ}^{0} values of BaBr₂ in aqueous solutions of dioxane and ethylene glycol can be evaluated from the following polynomial equation [30].

$$V_{\phi}^{0} = a_0 + a_1 T + a_2 T^2 \tag{5}$$

The value of coefficient a_0 , a_1 , and a_2 in equation(5) has been evaluated from the leastsquares fitting of the V_{ϕ}^0 values at T=(398.15-313.15)K and are presented in Table 6. The partial molar isobaric expansivity, E_{ϕ}^0 , is the factor that gives the change of partial molar volume with temperature can be found by different V_{ϕ}^0 concerning T at constant pressure is given below as:

$$E_{\phi}^{0} = (\partial V_{\phi}^{0} / \partial T)_{p} = a_{1} + 2a_{2}T$$
(6)

The extent of solute-solvent interactions and solvation nature of the solute can be found from the values of E_{Φ}^{0} [31]. On the rising temperature, certain water molecules may be freed from the solvation sheet and hence increasing the volume of solution and E_{Φ}^{0} values become negative. It has been observed that the E_{Φ}^{0} values rise with rising temperatures that indicate the absence of caging effect.

uloxulie w	ater respectively at	$I = (290.15 \ 515.15)$	ix and at 0.1 will a	pressure.
Solvents	$a_0 \times 10^5$ / $m^3 \ mol^{-1}$	a ₁ × 10 ⁵ / m ³ mol ⁻¹ k ⁻¹	a2 × 10 ⁹ / m ³ mol ⁻¹ K ⁻²	$\sigma \times 10^{5/}$ $m^3 mol^{-1}$
10:90 DO-W	40.9±16.8	-0.20±0.11	2.764±1.80	0.009
20:80 DO-W	44.7±24.1	-0.22±0.16	3.100±2.58	0.013
30:70 DO-W	57.3±30.1	-0.30±0.20	4.361±3.23	0.016
10:90 EG-W	14.3±14.4	-0.03±0.09	-0.164±1.54	0.008
20:80 EG-W	50.3±23.1	-0.26±0.15	3.610±2.48	0.012
30:70 EG-W	49.1±12.8	-0.24±0.08	3.153±1.37	0.007

Table 6. Values of various coefficients (Equation (5)), of $BaBr_2$ in 10-30 % (v/v) ethylene glycol-water and 1,4-
dioxane-water respectively at T = (298.15-313.15) K and at 0.1 MPa pressure.

Hepler's equation[27] can be calculated by differentiating E_{Φ}^{0} w.r.t temperature T and given as follows:

$$(\partial E_{\phi}^{0}/\partial \mathbf{T})_{p} = (\partial^{2} V_{\phi}^{0}/\partial \mathbf{T}^{2})_{p} = 2a_{2}$$
(7)

For deciding whether the solute is a structure promoter or structure breaker, the sign of $(\partial^2 V_{\phi}^0 / \partial T^2)_p$ value is a better criterion [25]. The positive or small negative values of $(\partial^2 V_{\phi}^0 / \partial T^2)_p$ shows that the solute is a structure promoter, and the negative value indicates the reverse. In the present study, it has been found that the values of $(\partial^2 V_{\phi}^0 / \partial T^2)_p$ are all positive (Table 7), which indicates that BaBr₂ mostly acts as a structure promoter in the studied solutions over the entire ranges of temperature studied.

Table 7. Values of Limiting partial molar expansibilities (Equation 6)) and Hepler's constant (Equation (7)) of
BaBr2 in aqueous solutions of 1,4-dioxane(DO) and ethylene glycol (EG) at T=(298.15 to 313.15) K.

Solvents	$E_{\phi,v}^0 imes 10^7/m$	$\phi_{\phi,\nu}^{0} imes 10^{7} / \text{m}^{3} \text{mol}^{-1} \text{K}^{-1}$						
	298.15 K	303.15 K	308.15 K	313.15 K	$(m^3 \text{ mol}^{-1})$			
10:90 DO-W	-3.62	-3.34	-3.07	-2.79	5.528			
20:80 DO-W	-3.84	-3.53	-3.22	-2.91	6.201			
30:70 DO-W	-4.27	-3.83	-3.39	-2.96	8.722			
10:90 EG-W	-3.54	-3.56	-3.58	-3.59	-0.328			
20:80 EG-W	-4.26	-3.90	-3.54	-3.18	7.219			
30:70 EG-W	-5.02	-4.71	-4.39	-4.08	6.305			

The isobaric thermal expansion coefficient (α) can be calculated from equation 8 and presented in Table 8:

$$\alpha = (E_{\Phi}^0 / V_{\Phi}^0) \tag{8}$$

The structure–making or structure-breaking nature of a solute in an aqueous mixed solvent can best be understood by an equation given by L. G. Hepler[27].

$$\left(\frac{\partial C_p^0}{\partial P}\right) = -T\left(\frac{\partial^2 V_\phi^0}{\partial T^2}\right)_p \tag{9}$$

From this expression, it can be calculated that structure–making solutes have a negative value of $(\partial C_p^0 / \partial P)$, whereas the structure-breaking solutes have positive values. The values

of $(\partial C_p^0 / \partial P)$ are found to be negative (Table 8) for both solvents. This indicates that BaBr₂ is a structure promoting solutes in the studied solutions.

3.4. Transport behavior.

The standard partial molar volumes of transfer, $\Delta_t V_{\Phi}^0$ and *B*-coefficient of transfer $\Delta_t B$ of BaBr₂ from water to an aqueous solution of DO/EG were computed using the following equations:

$$\Delta_t V_{\phi}^0 = V_{\phi}^0 (\text{BaBr}_2 \text{ in aqueous DO or EG}) - V_{\phi}^0 (\text{in water})$$
(10)

$$\Delta_t B = B(BaBr_2 \text{ in aqueous DO or EG}) - B (\text{in water})$$
(11)

By definition, the values of $\Delta_t V_{\Phi}^0$ deliver ideas about the ion-solvent interactions. The values of $\Delta_t V_{\Phi}^0$ and $\Delta_t B$ obtained from equations (10 and 11) are listed in Table 9. The plot of $\Delta_t V_{\Phi}^0$ and $\Delta_t B$ with percentage composition of DO and EG are given in Figure 3. The positive values of $\Delta_t V_{\Phi}^0$ and $\Delta_t B$, can be interpreted by Krishnan and Friedman's cosphere overlap model [32]. The existence of ion-solvent interfaces is due to positive values of transfer volume. The increased value of $\Delta_t V_{\Phi}^0$ and $\Delta_t B$ with an increase of the percentage of DO/EG in solution represents the presence of attraction of DO/EG with BaBr₂. The values of $\Delta_t V_{\Phi}^0$ also, increases with the rise of temperatures are due to the lessening of electrostriction of BaBr₂ at higher values of temperature.

Table 8. The values of α and $(\partial C_p^0 / \partial P)$ of BaBr₂ in ethylene glycol- -water and 1,4-dioxane- water at T=(298.15-313.15) K.

		$\alpha_1 \times 1$	10 ³ / K		$(\partial C_p^0/\partial P) \times 10^9/\mathrm{m}^3 \mathrm{mol}^{-1}\mathrm{K}^{-1}$			
Solvents	298.15K	303.15K	308.15K	313.15K	298.15K	303.15K	308.15K	313.15K
10:90 DO-W	-6.91	-6.60	-6.29	-5.93	-0.165	-0.168	-0.170	-0.173
20:80 DO-W	-6.40	-6.07	-5.67	0.13	-0.185	-0.188	-0.191	-0.194
30:70 DO-W	-6.23	-5.75	-5.22	0.16	-0.260	-0.264	-0.269	-0.273
10:90 EG-W	-6.48	-6.73	-6.95	-0.01	0.010	0.010	0.010	0.010
20:80 EG-W	-6.90	-6.49	-5.99	0.14	-0.215	-0.219	-0.222	-0.226
30:70 EG-W	-8.06	-7.81	-7.46	0.12	-0.188	-0.191	-0.194	-0.197

Figure 3. The Plot of $\Delta_t V_{\phi}^0$ and $\Delta_t B$ vs % (v/v) composition of (a) 1,4-dioxane –water and (b) ethylene glycol-water at T=298.15K respectively.

%		1,4-Dioxane-	Water		Ethylene glycol -Water				
(v/v)	$10^5 V_{\phi}^0/(m^3 mol^{-1})$	$10^5 \Delta_t V_{\phi}^0$ /(m ³ mol ⁻¹)	В	$\Delta_{t}B$	$10^5 V_{\phi}^0/(m^3 \text{ mol}^{-1})$	$\frac{10^5 \Delta t V_{\phi}^0}{(\mathrm{m}^3 \mathrm{mol}^{-1})}$	В	$\Delta_t B$	
	. ,			T=298.1	5K		•		
0	5.312	0.00	0.721	0.00	5.312	0.00	0.721	0.00	
10	5.677	0.36	0.743	0.02	5.498	0.19	0.813	0.09	
20	5.818	0.51	0.809	0.09	5.720	0.41	0.949	0.23	
30	6.145	0.83	0.906	0.18	5.838	0.53	1.066	0.35	
				T = 303.	15K				
0	5.221	0.00	0.712	0.00	5.221	0.00	0.712	0.00	
10	5.446	0.23	0.730	0.02	5.316	0.09	0.778	0.07	
20	5.602	0.38	0.778	0.07	5.460	0.24	0.891	0.18	
30	5.908	0.69	0.867	0.16	5.621	0.40	1.004	0.29	
				T = 308.	15K				
0	5.103	0.00	0.692	0.00	5.103	0.00	0.692	0.00	
10	4.876	-0.23	0.700	0.01	5.168	0.06	0.710	0.02	
20	5.133	0.03	0.755	0.06	5.308	0.21	0.811	0.12	
30	5.671	0.57	0.851	0.16	5.462	0.36	0.964	0.27	
				T =313.	15K				
0	5.001	0.00	0.674	0.00	5.001	0.00	0.674	0.00	
10	4.703	-0.30	0.681	0.01	5.013	0.01	0.663	-0.01	
20	4.954	-0.05	0.726	0.05	5.143	0.14	0.723	0.05	
30	5.465	0.46	0.820	0.15	5.288	0.29	0.919	0.25	

Table 9. Values of $\Delta_t V_{\phi}^0$ and $\Delta_t B$ of BaBr₂ in ethylene glycol- -water and 1,4-dioxane- water at *T*=(298.15-313.15) K and 0.1 MPa Pressure.

4. Conclusions

The results obtained in the above discussions represent that the densities increase when the concentration of BaBr₂ and temperature increase. It has been observed that the density of the solutions increases with an increase in the mass fraction of DO and EG. The positive values of *B* coefficient at all temperatures represent the structure promoting the nature of the solute. The negative value of dB/dT may be attributed to the solid interactions between ions and solvents at the lower temperature. The positive values of V_{Φ}^0 may be due to the existence of strong ion-solvent interactions. The negative values of E_{Φ}^0 and the positive values of Hepler's constant say that the solute is a structure promoter. The negative values of isobaric thermal expansion, α_1 and the positive values of $(\partial C_p^0/\partial P)$ support the results obtained from the volumetric and viscometric studies.

Funding

This research received no external funding.

Acknowledgments

One of the authors (BBN) thankful to the Principal of Vikram Deb Autonomous College, Jeypore for providing the laboratory facility.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Cui, W.; Hou, H.; Chen, J.; Guo, Y.; Meng, L.; Deng, T. Apparent molar volumes of sodium arsenate aqueous solution from 283.15 K to 363.15 K at ambient pressure: an experimental and thermodynamic modeling study. *Pure and Applied Chemistry* **2020**, *92*, 1673-1682, https://doi.org/10.1515/pac-2019-1102.

- Langore, K.; Nikumbh, A.; Patil, S.; Gaikwad, S. Apparent Molar Volumes And Viscosity B Coefficients Of Chlorothalonil Pesticide In Binary Mixture DMF And DMSO At Different Temperatures. *International Journal of Scientific Research* 2019, 8, 1489-1498, https://doi.org/10.7897/2230-8407.110661.
- 3. Kaur, A.; Bansal, S.; Chauhan, D.; Bhasin, K.K.; Chaudhary, G.R. The study of molecular interactions of aqueous solutions of Choline Acetate at different temperatures. *Journal of Molecular Liquids* **2019**, *286*, https://doi.org/10.1016/j.molliq.2019.110878.
- Ivanov, E.V. Note on "The interpretation of the parameters of the equation used for the extrapolation of apparent molar volumes of the non-electrolyte (solutes) to the infinite dilution" by J. Wawer and J. Krakowiak [J. Mol. Liq. 296 (2019) 111765]. *Journal of Molecular Liquids* 2020, 314, 111765-113637, https://doi.org/10.1016/j.molliq.2020.113637.
- Abella, J.S.; Romero, C.M. Preferential Interaction of Chymotrypsinogen in Aqueous Solutions of Polyols at 298.15 K. *Journal of Solution Chemistry* 2019, 48, 1591-1602, https://doi.org/10.1007/s10953-019-00936-5.
- 6. Zhao, K.; Li, L.; Guo, Y.; Meng, L.; Li, M.; Duo, J.; Deng, T. Apparent Molar Volumes of Aqueous Solutions of Lithium Pentaborate from 283.15 to 363.15 K and 101.325 kPa: An Experimental and Theoretical Study. *Journal of Chemical & Engineering Data* **2019**, *64*, 944-951, https://doi.org/10.1021/acs.jced.8b00814.
- Hnedkovsky, L.; Rasanen, L.; Koukkari, P.; Hefter, G. Densities and Apparent Molar Volumes of Aqueous Solutions of Zinc Sulfate at Temperatures from 293 to 373 K and 0.1 MPa Pressure. *Journal of Chemical & Engineering Data* 2021, 66, 38-44, https://doi.org/10.1021/acs.jced.0c00766.
- 8. Chakraborty, N.; Juglan, K.C.; Kumar, H. Study of Thermodynamic and Acoustic Properties of Niacin in Aqueous Hexylene Glycol and Propylene Glycol at Different Temperatures. *ACS Omega* **2020**, *5*, 32357-32365, https://doi.org/10.1021/acsomega.0c04292.
- Patyar, P.; Kaur, G.; Kaur, T. Volumetric Investigations on Molecular Interactions of Glycine/I-alanine in Aqueous Citric Acid Solutions at Different Temperatures. *Journal of Solution Chemistry* 2018, 47, 2039-2067, https://doi.org/10.1007/s10953-018-0829-6.
- 10. Warmińska, D. Effect of Amino Acids and Sodium Chloride on d-Sorbitol in Aqueous Solutions at Different Temperatures: Volumetric and Acoustic Approach. *Journal of Solution Chemistry* **2018**, *47*, 1794-1823, https://doi.org/10.1007/s10953-018-0820-2.
- 11. Sarmad, S.; Zafarani-Moattar, M.T.; Nikjoo, D.; Mikkola, J.-P. How Different Electrolytes Can Influence the Aqueous Solution Behavior of 1-Ethyl-3-Methylimidazolium Chloride: A Volumetric, Viscometric, and Infrared Spectroscopy Approach. *Front Chem* **2020**, *8*, https://doi.org/10.3389/fchem.2020.593786.
- 12. Shi, Y.; Zhu, C.; Fu, T.; Gao, X.; Ma, Y. Volumetric and Viscometric Properties of Maltitol in Glycylglycine Aqueous Solutions at T = 293.15–333.15 K. *Journal of Chemical & Engineering Data* **2021**, *66*, 360-367, https://doi.org/10.1021/acs.jced.0c00731.
- 13. Chen, J.; Cui, W.; Guo, Y.; Meng, L.; Hou, H.; Deng, T. Apparent Molar Volumes for the Binary Systems (NaI + H2O) and (NaIO3 + H2O) at Temperatures from 283.15 to 353.15 K at Ambient Pressure. *Journal of Chemical & Engineering Data* **2020**, *65*, 3510-3518, https://doi.org/10.1021/acs.jced.0c00102.
- 14. Zhang, T.; Li, D.; Meng, L. Recent progresses on the boron species in aqueous solution: structure, phase equilibria, metastable zone width (MZW) and thermodynamic model. *Reviews in Inorganic Chemistry* **2021**, *41*, 49-60, https://doi.org/10.1515/revic-2020-0012.
- Kumar, H.; Kumar, V.; Sharma, S.; Katal, A.; Alothman, A.A. Volumetric and acoustic properties of amino acids L-Leucine and L-Serine in aqueous solution of ammonium dihydrogen phosphate (ADP) at different temperatures and concentrations. *The Journal of Chemical Thermodynamics* 2021, 155, https://doi.org/10.1016/j.jct.2020.106350.
- Kaur, H.; Thakur, R.C.; Kumar, H. Effect of proteinogenic amino acids l-serine/l-threonine on volumetric and acoustic behavior of aqueous 1-butyl-3-propyl imidazolium bromide at T = (288.15, 298.15, 308.15, 318.15) K. *The Journal of Chemical Thermodynamics* 2020, *150*, https://doi.org/10.1016/j.jct.2020.106211.
- 17. Frank, H.S.; Evans, M.W. Free Volume and Entropy in Condensed Systems III. Entropy in Binary Liquid Mixtures; Partial Molal Entropy in Dilute Solutions; Structure and Thermodynamics in Aqueous Electrolytes. *The Journal of Chemical Physics* **1945**, *13*, 507-532, https://doi.org/10.1063/1.1723985.
- Weissberger, A. Technique of Organic Chemistry. In: *Organic Solvents*. Edn. Inter Science, NY: Volume 7, 1955.
- 19. Nanda, B.B.; Nanda, B.; Mohanty, P.C. Effect of concentration on thermo acoustic and nonlinearity parameters (B/A) of barium chloride solutions in glycol–water mixtures at 303.15K. *Journal of Molecular Liquids* **2012**, *171*, 50-53, https://doi.org/10.1016/j.molliq.2012.03.011.
- 20. Kitchner, J.S. Findlay Practical Physical Chemistry. 8th Edn, London Longman, 1954; pp.70.
- 21. Shoemeker, G. Experiment in Physical Chemistry. New York: Mac Grew Hill, Volume 131, 1967.
- 22. Stokes, R.H.; Mills, R. *The International Encyclopedia of Physical Chemistry and Chemical Physics*. Pergamon:London, Volume 39, **1965**.
- 23. Jones G, Dole M. The viscosity of aqueous solutions of strong electrolytes with special reference to barium chloride. J Am Chem Soc , 1929, 51:2950–2964

- 24. Sarangi, D.; Samantaray, A.C.; Sahu, D.; Nanda, B. Interactions of Cetyltrimethylammonium Bromide with 1,3-Dioxolane in Water: A Study of Viscosity and Volumetric Properties. *Asian Journal of Chemistry* **2019**, *32*, 53-58, https://doi.org/10.14233/ajchem.2020.22248.
- 25. Nanda, B.B.; Pradhan, M.; Kar, P.; Nanda, B. Apparent molar volume and coefficients of Jones-Dole equation for the evaluation of ion-solvent interactions of barium chloride in aqueous 1, 4-dioxane and ethylene glycol solutions at T= (298.15 K to 313.15) K and at atmospheric pressure. *Biointerface Research in Applied Chemistry* **2020**, *10*, 5901-5909, https://doi.org/10.33263/briac104.901909.
- 26. Feakins, D.; Lawrence, K.G. The relative viscosities of solutions of sodium and potassium chlorides and bromides in N-methylformamide at 25, 35, and 45°. *Journal of the Chemical Society A: Inorganic, Physical, Theoretical* **1966**, 212-219, https://doi.org/10.1039/J19660000212.
- 27. Hepler, L.G. Thermal expansion and structure in water and aqueous solutions. *Canadian Journal of Chemistry* **1969**, 47, 4613-4617, https://doi.org/10.1139/v69-762.
- Sailaja, M.; Sarangi, D.; Dalai, B.; Mohapatra, P.; Nanda, B.B. Effect of presence of tetra alkyl ammonium bromides on solution behavior of 1-Butyl-2, 3-dimethylimidazolium chloride at different temperatures: Volumetric and acoustic studies. *Chemical Data Collections* 2020, 28, https://doi.org/10.1016/j.cdc.2020.100438.
- 29. Shakeel, M.; Mehmood, K. Use of Masson's and Jones–Dole equations to study different types of interactions of three pharmacologically important drugs in ethanol. *Journal of the Chinese Chemical Society* **2020**, *67*, 1552-1562, https://doi.org/10.1002/jccs.202000128.
- Choudhary, D.S.; Ladole, C.A.; Aswar, A.S. Interaction of 5-Chloro-2-hydroxy-3-nitroacetophenone in N,N-Dimethylformamide at Various Temperatures: A Viscometric, Volumetric and Ultrasonic Study. *Proceedings of the National Academy of Sciences, India Section A: Physical Sciences* 2015, 85, 221-226, https://doi.org/10.1007/s40010-014-0191-z.
- 31. Shekaari, H.; Mousavi, S.S.; Mansoori, Y. Thermophysical Properties of Ionic Liquid, 1-Pentyl-3methylimidazolium Chloride in Water at Different Temperatures. *International Journal of Thermophysics* **2009**, *30*, 499-514, https://doi.org/10.1007/s10765-009-0566-6.
- 32. Krishnan, C.V.; Friedman, H.L. Enthalpies of alkyl sulfonates in water, heavy water, and water-alcohol mixtures and the interaction of water with methylene groups. *Journal of Solution Chemistry* **1973**, *2*, 37-51, https://doi.org/10.1007/BF00645870.