
 

https://biointerfaceresearch.com/ 465 

Article 

Volume 12, Issue 1, 2022, 465 - 469 

https://doi.org/10.33263/BRIAC121.465469 

 

A Search of the Efficient S-Hetarylsuccinate Landscape 

Design Plant Growth Stimulators  

Svitlana O. Yakovleva-Nosar 1, Natalia P. Derevyanko 1,2, Alina S. Yevlash 1, Oleksandr A. Brazhko 1, 

Mykhailo P. Zavhorodnii 1,2, Volodymyr V. Tkach 3,* , Petro  I. Yagodynets´3 

1 Zaporizhzhya National University, 69095, Zhukovs'ky Str. 66, Zaporizhzhya, Ukraine 
2 Khortytsia National Academy, 69017, Naukove Mistechko Str., 55, Khortytsia Island, Zaporizhzhya, Ukraine 
3 Chernivtsi National University, 58012, Kotsyubyns'ky Str., 2, Chernivtsi, Ukraine 

* Correspondence: nightwatcher2401@gmail.com (V.V.T.); 

Scopus Author ID 55758299100 

Received: 15.03.2021; Revised: 12.04.2021; Accepted: 14.04.2021; Published: 20.04.2021 

Abstract: The 4-thioquinolinic succinate derivatives with potential growth-stimulating activity has 

been investigated. The monitoring of carbohydrate concentration has confirmed its stimulation of the 

metabolism in saffron and sugarbeet. This lets us conclude that it may be an excellent growth stimulator. 
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1. Introduction 

The search for new ways and methods of plant growth stimulation and quality enhance 

is one of the most important tasks of modern plant physiology and biochemistry [1-2]. The 

condition of the achievements, in this case, is the realization of plant genetic potential and 

diminishing the negative influences of the ambient factors in their ontogenesis [3-4]. 

The growth and productivity regulators permit us to regulate plant productivity, the 

reason why they are widely used in agriculture. These substances are natural plant hormones 

and their synthetic analogs. They possess a vast and rich spectrum of action over plant 

organisms, and their use permits the regulation of the behavior on some plant growth and 

development stages to mobilize the plants' possibilities.  

First of all, it has to let it use the light energy efficiently to enhance the plastic 

substances' synthesis with their further delivery to the agriculturally precious tissues and organs 

[5-7]. 

The development of new plant growth regulators for gardening is based on the synthetic 

modification of the natural or known synthetic structures, taking into account the enhancement 

of their activity and diminishing the adverse negative effects. Aza-heterocycles form one of the 

most studied effective and less-toxic groups of substances, widely investigated in this aspect 

[1–9]. 

Nowadays, our interest in succinic acid and derivatives as growth regulators has been 

enhanced. Its growth stimulation, bioavailability, and biodegradability rates are very high. The 

substance has a positive effect on the soil microflora. 

Unfortunately, the succinic acid exact mechanism of action over plant organisms hasn't 

been depicted yet. On the other hand, the influence of the succinic acid on the growing seed 
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metabolism has already been illustrated in literature, including its influence on phosphorus 

metabolism [9 – 20], enhancing the oxygen absorption by plant organism.  

Thus, our work aims to synthesize the investigation of the succinate derivative growth 

regulator. Also, the work includes the experimental verification of the use of the (disodium 2-

2-methylquinolin-4-yl)thio)succinate in landscape design plant growth 

2.Materials and Methods 

 The salt has been obtained by a known procedure, described in [1]. The 

physicochemical and spectral data are correspondent to the literature data [1]. 

The investigation objects included the plant species Crocus chrysanthus, Romance, 

Crocus grandiflora, Grandmaitre, and C. Grandiflora Mix. The glucose, fructose, and 

saccharose concentration in Crocus have been described following the methodology of 

Pochynok, and the amylum content was detected per the methodology of Yastrembovych and 

Kalinin [2, 3]. The analyses were carried on after the massive blossoming in 2018. All the 

experimental matrixes were composed of 12 variants. The experimental data were treated by 

statistical methods. 

3. Results and Discussion 

As it is known, the succinic acid is Krebs cycle intermediate. Nevertheless, its 

mechanism of action has not been studied enough. The seed metabolism activation during the 

growth has already been described in the literature. It also confirms the 6 to 8% enhancement 

of field similarity of the sugar beet, like enhancing the harvest mass and leaf area.  The sugar 

yield per area was also enhanced due to more fertile harvest and better sugar content. The 

conclusion was that it was possible to use the succinic acid for pre-seed treatment of both seeds 

and vegetating plants.  

Тable 1. The influence of growth stimulator on carbohydrate content in saffron (% per dry substance n = 3, х ± 

SD) 

Specimen                   Values 

Variants 

Reducing carbohydrates Starch Total carbohydrates 

 

І 

Reference 3,35±0,054 4,81±0,513 43,06±2,878 

25 3,32±0,059 4,13±0,212 35,64±1,781 

50     2,01±0,095*** 4,00±0,031  30,70±1,342* 

100     1,75±0,129*** 4,75±0,119    27,89±1,865** 

ІІ Reference 2,69±0,095 5,06±0,031 34,22±1,067 

25     0,85±0,151*** 5,00±0,244   24,81±0,977** 

50     0,71±0,046*** 6,88±0,506*    17,15±1,111*** 

100    0,52±0,069*** 5,31±0,394    15,93±1,045*** 

ІІІ Reference 2,68±0,105 5,06±0,031 36,90±1,343 

25  2,29±0,087* 5,06±0,163   48,11±1,123** 

50   1,68±0,109** 6,88±0,506*  31,89±1,779* 

100    1,04±0,079*** 5,31±0,388    19,49±1,505*** 

Herein: * – Р < 0,05; **– Р < 0,01; ***– Р < 0,001 

We have analyzed a succinic acid derivative influence to reduce sugars content, starch 

content, and total carbohydrate concentration. 

The results of the investigation, shown in Table 1, let us conclude that in either reference 

or the stimulated specimen, the fructose amount is higher than the glucose amount. By an 

increase of the concentration of the stimulator, the reducing carbohydrates content decreases. 
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The same trend is observed by the evaluation of saccharose content and total carbohydrate 

content. Yet, the starch content in the treated and reference specimen remains nearly the same.  

Therefore, it is possible to conclude that the succinate-derived stimulator activates the 

metabolism in plants. 

4. Conclusions 

 The results of investigations let us conclude that the S-hetarylsuccinate derivatives are 

effective growth regulators. Their use for the development of vegetating plants of landscape 

design enhances the product quality. 

Therefore the search for the growth-stimulating action among the S-hetaryl-substituted 

derivatives may be useful for modern agriculture. 
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