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Abstract: Here, we present a study on the regioselectivity cyclization of 5-amino-4-alkenyl-1,2,4-

triazole-3-thiones. The presence of various nucleophilic centers causes the possibility of cyclization of 

an alkenyl fragment on different heteroatoms and the formation of a few alternative structures. 

Elemental bromine was utilized as an electrophilic agent, and two 6-(bromomethyl)-6-R-5,6-

dihydro[1,3]thiazolo[2,3-c][1,2,4]triazol-3-amine hydrobromide salts were obtained as the only 

products when taking reaction in chloroform, acetic acid, or acetonitrile. The 1H and 13C APT NMR 

spectra analysis proved the formation of the 1,3-thiazolinium ring upon cyclization reaction. DFT 

calculations at the ωB97X-D3/6-311G(d,p) level of theory were utilized to analyze molecular 

electrostatic potential, electron localization function, and Hirshfeld atomic partial charges the 

intermediate bromonium cation. These theoretical calculations explain the experimentally observed 

regioselectivity.  
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1. Introduction 

One of the powerful methods for designing condensed heterocycles is electrophilic 

cyclization, widely used in modern synthetic organic chemistry [1–5]. In previous works, we 

presented a synthetic strategy for obtaining positive charge fused triazoles [6,7]. Moreover, we 

have established that the bromo-cyclization of 5-alkenylamino-4-alkenyl-1,2,4-triazole-3-

thione selectively leads to the condensed [1,3]thiazolo[2,3-c][1,2,4]triazole systems [8–10]. 

However, Ernst et al. have described methods for obtaining imidazo[2,1-c][1,2,4]triazoline-3-

thiones and [1,3]thiazolo[2,3-c][l,2,4]triazoles via the bromination of 4-methallyl-substituted 

1,2,4-triazole-3-thiones [11]. The authors have managed to obtain different products by 

variation of the nucleophilicity of the core 5-amino-1,2,4-triazole-3-thione system. Here we 

have to clarify that in our previous works, only 5-R-amino-substituted triazoles were utilized. 

Consequently, bearing in mind the exclusion of possible steric hindrance of the exocyclic 

amino group nitrogen atom, we have synthesized 4-allyl-5-amino-1,2,4-triazole-3-thione 2a 

and 5-amino-4-methallyl-1,2,4-triazole-3-thione 2b. The regioselectivity of the bromination of 

these two compounds in chloroform, acetonitrile, and acetic acid, was investigated. 

 

 

https://biointerfaceresearch.com/
https://biointerfaceresearch.com/
https://doi.org/10.33263/BRIAC121.498507
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-6583-3159
https://orcid.org/0000-0003-4788-0511
https://orcid.org/0000-0003-4809-3763


https://doi.org/10.33263/BRIAC121.498507  

 https://biointerfaceresearch.com/ 499 

2. Materials and Methods 

All reagents and solvents were purchased from Sigma-Aldrich, Acros Organics, or 

Sfera Sim companies and were used without additional purification. Varian VXR-300 

instrument was used to record NMR spectra in deuterated dimethyl sulfoxide (DMSO–d6). 

Tetramethylsilane (TMS) was used as an internal standard. Theoretical DFT calculations were 

performed with the Xeon 12 core workstation with 64 GB of RAM.  

The synthesis of 1-alkenyl-2,5-dithioureas 1a and 1b was performed starting from 

thiosemicarbazide and allyl isothiocyanate or methallyl isothiocyanate [12], respectively, via 

the known procedure [13]. 

2.1. 1-Allyl-2,5-dithiourea (1a).  

The yield is 58%; mp 180–181 °C; 1H NMR (300 MHz, DMSO-d6), δ (ppm): 9.38 (s, 

1H, NH2); 8.20 (br.s, 1H, NH-CH2), 8.07 (br.s, 1H, NH), 7.32 (br.s, 1H, NH), 5.86 (m, 1H, -

CH=), 5.07 (dd, J = 25.8, 13.6 Hz, 2H, =CH2), 4.08 (t, J = 5.0 Hz, 2H, NH-CH2); the elemental 

analysis: found: C, 31.61; H, 5.52; N, 29.21; S 33.46%; calc. for C5H10N4S2: C, 31.56; H, 5.30; 

N, 29.44; S, 33.70%.  

2.2. 1-Methallyl-2,5-dithiourea (1b).  

The yield is 70%; mp 195–196 °C; 1H NMR (300 MHz, DMSO-d6), δ (ppm): 9.36 (s, 

1H, NH2), 8.05 (br.s, 1H, NH), 7.94 (t, J = 5.2 Hz, 1H, NH-CH2), 7.28 (br.s, 1H, NH), 4.78 (s, 

1H, =CH2), 4.74 (s, 1H, =CH2), 4.02 (d, J = 3.5 Hz, 2H, NH-CH2), 1.66 (s, 3H, CH3); the 

elemental analysis: found: C, 35.42; H, 6.09; N, 27.21; S 31.05%; calc. for C6H12N4S2: C, 

35.27; H, 5.92; N, 27.42; S, 31.39%.  

The synthesis of 4-alkenyl-5-amino-1,2,4-triazole-3-thiones 2a and 2b was performed 

starting from 1-alkenyl-2,5-dithioureas 1a and 1b, respectively, via the basic-catalyzed 

cyclization following the known procedure [10, 13].  

2.3. 4-Allyl-5-amino-2,4-dihydro-3H-1,2,4-triazole-3-thione (2a).  

The yield is 78%; mp 124–126 °C; 1H NMR (300 MHz, DMSO-d6), δ (ppm): 6.15 (s, 

2H, NH2), 5.80 (m, 1H, –CH=), 5.10 (dd, J = 28.0, 13.3 Hz, 2H, =CH2), 4.47 (d, J = 5.1 Hz, 

2H, NCH2); the elemental analysis: found: C, 38.32; H, 5.42; N, 35.61; S 20.22%; calc. for 

C5H8N4S: C, 38.44; H, 5.16; N, 35.87; S, 20.53%.  

2.4. 5-Amino-4-methallyl-2,4-dihydro-3H-1,2,4-triazole-3-thione (2b).  

The yield is 80%; mp 158–159 °C; 1H NMR (300 MHz, DMSO-d6), δ (ppm): 6.08 (s, 

2H, NH2), 4.81 (s, 1H, =CH2), 4.44 (s, 1H, =CH2), 4.39 (s, 2H, NCH2), 1.68 (s, 3H, CH3); the 

elemental analysis: found: C, 42.22; H, 6.08; N, 32.77; S 18.65%; calc. for C6H10N4S: C, 42.33; 

H, 5.92; N, 32.91; S, 18.84%. 

2.5. The general procedure of bromo-cyclization.  

To a solution of the corresponding 4-alkenyl-5-amino-1,2,4-triazole-3-thione (0.02 

mol) in a solvent (50 ml), a solution of bromine (0.02 mol) in 20 ml of a solvent was added for 

30 min with constant stirring. The mixture was further stirred for another hour. The target 
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product was precipitated, filtered, washed with acetone, and recrystallized from ethanol. As 

solvents, we used chloroform, acetonitrile, and acetic acid. 

2.6. 6-(Bromomethyl)-5,6-dihydro[1,3]thiazolo[2,3-c][1,2,4]triazol-3-amine hydrobromide 

(3a).  

The yield is 78% (from chloroform), 77% (from acetonitrile), 65% (from acetic acid) ; 

mp 180–181 °C (recrystallized from ethanol); 1H NMR (300 MHz, DMSO-d6), δ (ppm): 8.38 

(br. s, 2H, NH2), 5.01–4.72 (m, 1H, SCH), 4.19 (ddd, J = 15.2, 11.5, 5.5 Hz, 2H, NCH2), 3.88–

3.68 (m, 2H, CH2Br), 3.85 (very br. s, water signal that overlapped with HBr proton); 13C APT 

NMR (75 MHz, DMSO-d6), δ (ppm): 154.3 (C), 149.4 (C), 48.6 (CH2N), 45.9 (CHS), 36.8 

(CH2Br); the elemental analysis: found: C, 18.92; H, 2.80; N, 17.56; S 10.02%; calc. for 

C5H8Br2N4S: C, 19.00; H, 2.55; N, 17.73; S, 10.15%. 

2.7. 6-(Bromomethyl)-6-methyl-5,6-dihydro[1,3]thiazolo[2,3-c][1,2,4]triazol-3-amine 

hydrobromide (3b).  

The yield is 68% (from chloroform), 69% (from acetonitrile), 59% (from acetic acid); 

mp 188–189 °C; 1H NMR (300 MHz, DMSO-d6), δ (ppm): 6.54 (br. s, 2H, NH2), 3.98 (dd, J 

= 68.3, 11.5 Hz, 2H, NCH2), 3.88 (s, 2H, CH2Br), 3.49 (very br. s, water signal that overlapped 

with HBr proton), 1.75 (s, 3H, CH3); 13C APT NMR (75 MHz, DMSO-d6), δ 155.5 (C), 143.0 

(C), 59.06 (CH2N), 54.9 (CS), 38.6 (CH2Br), 30.1 (CH3); the elemental analysis: found: C, 

21.59; H, 3.20; N, 16.71; S 9.56%; calc. for C6H10Br2N4S: C, 21.83; H, 3.05; N, 16.98; S, 

9.72%. 

Density functional theory calculations were performed in the ORCA 4.2 package [14, 

15] with the ωB97X-D3 [16–18] functional and 6-311G(d,p) basis set [19]. The "Resolution of 

identity" [20-22] and "Chain-of-spheres" [23–25] techniques were utilized to speed up all 

calculations. Visualization of isosurfaces was performed with VMD [26] and ChimeraX 

[27,28] packages. 

3. Results and Discussion 

Synthesis of 4-alkenyl-1,2,4-triazoles 2a,b was performed according to Scheme 1. The 

reaction of thiosemicarbazide with allyl isothiocyanate or methallyl isothiocyanate leads to 

corresponding 1-alkenyl-2,5-dithioureas 1a,b.  
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Scheme 1. Synthesis of 4-alkenyl-5-amino-1,2,4-triazole-3-thiones 2a,b. Numeration in the triazole ring is 

presented. 
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Further cyclization of 1a,b in a 25% water solution of sodium hydroxide under heating 

leads to the 4-alkenyl-5-amino-1,2,4-triazole-3-thiolate sodium salts. Direct acidification of the 

reaction mixture leads to the precipitation of target 4-alkenyl-5-amino-1,2,4-triazole-3-thiones 

2a,b. 

The synthesized triazoles 2a,b contain numerous nucleophilic centers, namely, alkenyl 

double bond, the thione sulfur atom, two pyridine-type endocyclic nitrogen atoms in positions 

1 and 2 of the triazole ring, and the exocyclic amino group nitrogen connected with carbon 5. 

Nitrogen in position 4 of the ring cannot be considered a nucleophilic center because it is 

pyrrole-type nitrogen. Its electron pair is involved in the triazole ring aromatic conjugation. All 

these present nucleophilic centers make these triazoles interesting objects for investigating the 

regio-direction of the interaction with electrophilic reagents. In the current work, elemental 

bromine was selected as an electrophilic agent.  

The formation of bromine-sulfur/nitrogen charge-transfer complexes is described in the 

literature [29–32]. Possible ways of interaction of bromine with heteroatom-nucleophilic 

centers in thiones 2a,b are presented in Figure 1a. Moreover, taking into account thione-thiol 

tautomerism, the alternative structures are possible according to Figure 1b. Here we have to 

clarify that such complexes are not thermodynamically stable; Br–Br   S and Br–Br   N bonds 

can be broken easily. 

 
Figure 1. Possible Br–Br   S and Br–Br   N complexes of triazoles 2a,b with bromine: (a) in thione form; (b) in 

thiol form. 

Conversely, the interaction of bromine molecule with the double bond leads to the π-

complexes 2'a,b, which liberate the bromide anions and form bromonium cations 2" a,b (see 

Scheme 2). There must be considered five possible further transformations of 2" a,b. An attack 

of a lone electron pair of the nucleophilic sulfur atom on the bromonium cation can lead to the 

annulation of 1,3-thiazole (3a,b) or 1,3-thiazine (3'a,b) cycles. Interaction of bromonium cation 

with bromide anion leads to the vicinal dibromide 3" a,b. Finally, an attack of a lone electron 

pair of the exocyclic amino group on the bromonium cation can lead to the annulation of 1,3-

imidazole (3"’a,b) or pyrimidine (3””a,b) cycles.  

Analysis of NMR data testifies the selective formation of 3a,b products. For example, 

the alternative structures 3”’a,b and 3””a,b have to be discarded as the 1H NMR spectra contain 

only one signal that according to chemical shift can be related to NC-H, namely the split 

doublet of doublets at 4.19 ppm (ddd, J = 15.2, 11.5, 5.5 Hz) in the case of 3a, and the split 

doublet of doublets at 3.98 ppm (dd, J = 68.3, 11.5 Hz, 2H, NCH2) in the case of 3b. 

The 1H NMR spectrum of the 2a cyclization product contains a multiplet at 4.86 ppm 

related to a methine group connected with two methylene groups. According to the literature 

data [9,10], a multiplet with such chemical shift corresponds to HC–S group. In the case of 

3”a,b, the NCH2 and CH2Br groups in the linear 2,3-dibromopropyl chain would be shown as 

a doublet. However, the NCH2 group signal is split considerably, which testifies to the 

endocyclic nature of the NCH2 group, and axial- and equatorial-hydrogen atoms give different 

signals. The signal of the CH2Br group is a multiplet at 3.68–3.88 ppm instead of an expected 
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doublet. This can be explained by the chiral HC–S group and numerous conformers due to 

hindered rotation in the CH2Br group. The 3’a,b, and 3”’a,b forms with six-membered cycles 

can be excluded due to the absence of considerable splitting of the signals analogously to the 

above-discussed endocyclic NCH2 splitting.  

The 13C APT NMR spectra analysis also confirms the formation of the 3a,b structures 

– the downfield methylene group signals related to CH2Br groups. In the case of the 3a 

compound, the positive signal at 45.9 ppm corresponds to an HC–S group, whereas, in 3b, the 

negative signal of C–S carbon is located at 54.9 ppm. The acidic proton assignment to the first 

nitrogen atom of the triazole ring is based on literature data, where it was shown that triazolium 

salts contain protons near that nitrogen [33,34]. 
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Scheme 2. Possible mechanisms of bromination of triazoles 2a,b. 

To explain the observed regioselectivity of bromination of 2a,b, we have calculated 

various reactivity descriptors via a DFT method. At first, the gas-phase geometry of the four 

most plausible structures of cation 2”a was optimized at ωB97X-D3/6-311G(d,p) level of 

theory (Figure 2). We considered thione form with the bromine atom attached from the amino 

group side (Figure 2a) and the sulfur atom side (Figure 2b). Similarly, the thiol tautomers with 

the bromine atom attached from the amino group side (Figure 2c) and the sulfur atom side 

(Figure 2d) were considered. The electrostatic potential (ESP) isosurface was generated with 

the Multiwfn program [35] via the Libreta algorithm [36] using the electron density generated 

with the ωB97X-D3/6-311G(d,p) method in gas-phase, chloroform, and acetonitrile medium; 

however, for clarity, only the gas-phase calculation shown in Figure 2. Red areas are related to 

low values of ESP (30–70 kcal/mol), whereas the green and blue regions correspond to medium 

(70–130 kcal/mol) and high (130–170 kcal/mol) ESP values, respectively. As can be seen, the 

https://doi.org/10.33263/BRIAC121.498507
https://biointerfaceresearch.com/


https://doi.org/10.33263/BRIAC121.498507  

 https://biointerfaceresearch.com/ 503 

lowest values of ESP are located over the exocyclic sulfur atom, exocyclic amino group 

nitrogen, and pyridinium-type endocyclic nitrogen atoms. 

 
Figure 2. ESP isosurface of four structures of bromonium cation 2”a. 

The electron localization function (ELF) isosurface with an isovalue of 0.89 was also 

analyzed as a regioselectivity descriptor. A larger ELF isosurface corresponds to a higher 

probability of electron pairs' location and higher nucleophilicity. In Figure 3, the ELFs of the 

four forms of cation 2”a are shown. Hydrogen atoms are represented as large green domains, 

the large blue blobs correspond to lone pair domains, and covalent bond domains are presented 

as relatively small yellow areas. Atom center domains are shown as red balls. Taking into 

account the areas of lone pair domains, the heteroatoms can be ordered according to their 

nucleophilicity as follows: (a) the S1 sulfur atom is the most nucleophilic; (b) N1 and N2 (only 

in the case of thiols c, d) nitrogen atoms are slightly less nucleophilic; (c) bromine atom of the 

bromonium cycle; (d) the exocyclic amino group nitrogen atom shows the lowest 

nucleophilicity. A notable decrease of the ELF near the sulfur atom in thiol forms c, d is caused 

by the sharing of S1 electron density with the attached hydrogen atom. 
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Figure 3. ELF isosurface of four structures of bromonium cation 2”a. 

For a more precise grading of the above-mentioned nucleophilic centers, the Hirshfeld 

[35–38] atomic partial charges were calculated. The choice was dictated by the well-known 

use of Hirshfeld charges in reactivity prediction [39, 40]. As can be seen from Table 1, for all 

studied geometries and in all phases, the C4 atom is more electrophilic than C5, which explains 

the preferred form of the five-membered cycle. In turn, thione forms a and b are characterized 

with a lower charge on the sulfur atom, which testifies the preferred cyclization on the S1 atom. 

However, in thiol forms c and d, N4 nitrogen has a lower charge than the S1 atom, which 

predicts the formation of imidazole systems 3””a,b (Scheme 2), contradicting the experimental 

data. 

Table 1. Hirshfeld atomic partial charges on S1, N4, C4, and C5 atoms in a-d forms of 2”a cation. 

Cation  

geometry 

Phase Atom 

S1 N4 C4 C5 

a 

gas –0.2876 –0.1841 0.1067 0.0815 

chloroform –0.3724 –0.1799 0.1111 0.0941 

acetonitrile –0.3959 –0.1780 0.1120 0.0976 

b 

gas –0.3036 –0.1807 0.1039 0.0786 

chloroform –0.3885 –0.1739 0.1128 0.0933 

acetonitrile –0.4126 –0.1712 0.1158 0.0978 

c 

gas –0.0117 –0.1971 0.1057 0.0811 

chloroform –0.0117 –0.1894 0.1119 0.0952 

acetonitrile –0.0097 –0.1867 0.1137 0.0995 

d 

gas –0.0201 –0.1836 0.1033 0.0821 

chloroform –0.0207 –0.1752 0.1106 0.0968 

acetonitrile –0.0193 –0.1721 0.1129 0.1013 

To resolve this contradiction, we have to compare the relative Gibbs free energies of 

the a-d forms. The data calculated at the ωB97X-D3/6-311G(d,p) level of theory is summarized 

in Table 2. Obviously, the quantity of the thiol forms of c and d is negligible due to the thione 

form's much higher stability.  

Table 2. Relative Gibbs free energy (kcal/mol) at 298.15 K, and Boltzman distribution (%) of forms of cation 

2”a. 

Phase Cation 2”a form Relative Gibbs free 

energy, kcal/mol 

Boltzmann distribution, 

% 

Gas a 0.00 83.78 

b 0.97 16.22 

c 18.94 1.09×10–12 

d 18.51 2.27×10–12 

Chloroform a 0.00 52.72 

b 0.06 47.28 

c 15.77 1.46×10–10 

d 15.83 1.32×10–10 

Acetonitrile a 0.23 40.42 

b 0.00 59.58 

c 15.06 5.47×10–10 

d 15.25 3.96×10–10 
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4. Conclusions 

The syntheses of new 5-amino-4-alkenyl-1,2,4-triazole-3-thiones were performed. The 

reaction of these thiones with elemental bromine in chloroform, acetic acid, or acetonitrile 

selectively leads to the formation of 6-(bromomethyl)-6-R-5,6-dihydro[1,3]thiazolo[2,3-

c][1,2,4]triazol-3-amine hydrobromide salts. The detailed analysis of 1H and 13C APT NMR 

spectra were used for the determination of the structure. A few alternative pathways have been 

proposed in this study; however, investigation of molecular electrostatic potential, electron 

localization function, and Hirshfeld atomic partial charges of the intermediate bromonium 

cation clearly shows the preferred attack of the more nucleophilic sulfur atom and consequent 

formation of the 1,3-thiazoline cycle.  
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