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Abstract: Alzheimer's disease (AD) is a type of functional impairment of the brain, which gently 

degrades the patients' mental potency. The goal pursued in this study is to introduce novel drug 

candidates as acetylcholinesterase (hAChEIs) and butyl cholinesterase (hBuChE) inhibitors in the 

treatment of AD. In this study, more than 100 Vilazodone-Tacrin hybrids have been designed to inhibit 

hAchE and hBuChE. A series of chemical methods such as multiple linear regression (MLR) and GA-

PLS were used to create relationships between structural features in these compounds and their hAchE/ 

hBuChE inhibitory activity. Molecular docking studies against hAChE (PDB ID: 1ACJ) and hBuChE 

(PDB ID: 4BDS) indicates the important amino acids inside the active site cavity that are responsible 

of essential interactions were Gly441, Ser122, Trp84, Asp72, Tyr130, and Gly117 for hAChE and 

Glu197, Thr120, Gly121, Asn83, Tyr332, Trp430, Trp82 and Asp70 for hBuChE. The best regression 

equation was obtained from GA-PLS, which predicts 92% of variances. Molecular dynamic (MD) 

simulations were also studied. The reliability, accuracy, and predictability of the proposed QSAR 

models were evaluated. Finally, an in silico screening study was conducted, and some compounds were 

introduced as logical candidates as novel anti-Alzheimer agents. 

Keywords: anti-Alzheimer; cholinesterase (hAchE and hBuchE) inhibitors; molecular docking; 

QSAR; Molecular Dynamic (MD) simulation. 
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1. Introduction 

Alzheimer's Disease (AD) is a brain disease that gradually degrades the patients' mental 

abilities [1]. According to published reports, the number of people affected by AD is expected 

to increase to 63.37 million in 2030 [2]. With the advancement of the disease, brain neurons 

are more likely to be harmed, which results in the destruction of nerve cells in the parts involved 

in thinking, learning, and memory. Other changes that occur after losing a nerve cell are 

inflammation and atrophy [1,2]. 

The cause of AD is based on three hypotheses, including cholinesterase enzymes, beta-

amyloid (βA) protein, and chronic inflammatory theory. Several studies have shown that 

amyloid plaques may be the only contributing factor to AD disease [3, 4]. Based on existing 

assumptions, various types of drugs, including Aβ accumulation inhibitors, anti-Tau drugs, and 

anti-inflammatory and cholinergic enhancers, are available. 
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Since the reduction of cholinergic neuronal activity is an apparent feature of AD, 

cholinesterase drugs greatly treat this disease [5]. Currently, acetylcholinesterase inhibitors 

(AChEI) and butyrylcholinesterase (BuChEI) inhibitors are known as the primary treatment 

line [6]. By inhibiting acetylcholinesterase and butyrylcholinesterase, the tacrine increases the 

rate of acetylcholine (ACh) and butyrylcholine (BuCh) availability in which the cholinergic 

neurotransmitter increases. However, its high side effects and toxicity cannot be extensively 

used in the treatment [3]. Studies have shown that by synthesizing the tacrine derivatives, its 

safety can increase and can be used as a scaffolding to expand anti-Alzheimer factors [6]. 

Today, due to time-consuming and expensive experimental study methods, drug design 

techniques are considered by computer software as one of the most important and useful tools 

for rational drug development [7, 8]. 

In this paper, molecular modeling techniques including MD simulation, molecular 

docking, and QSAR were used to institute a meaningful relationship between Vilazodone-

Tacrine hybrids structures and their inhibitory activity on hAChE and hBuChE targets. To 

achieve the exact molecular connection models, molecular modeling simulation techniques 

were performed on all the data set components and designed compounds. Finally, using in 

silico screening study, some novel compounds were introduced as logical candidates as anti-

Alzheimer agents. 

2. Materials and Methods 

2.1. Data set. 

The data used in this study included 39 derivatives of the Vilazodone-Tacrine hybrids 

as choline esterase inhibitors [3]. The biological activity and structural characteristics of these 

compounds are listed in Table 1. The data are transformed into a logarithmic scale of the pIC50, 

which is ultimately used for QSAR studies. 

 
Figure 1. Chemical structure of the compounds used in this study. R1, R2, R3, X, n are shown in Table 1. 

Table 1. The cross-validated predicted and experimental activity of compounds, as well as docking binding 

energy on hAchE and hBuchE targets. 

Name Linker R1 R2 R3 X n 

hAChE hBuChE 

pIC50 

pred 
leverage 

∆E 

(kcal/

mol) 

pIC50 

pred 
leverage 

∆E 

(kcal/

mol) 

 

A1 

 

 

 

CN 

 

H 

 

H 

 

H 

 

4 

 

5.757 

 

0.124 

 

-14.38 

 

 

5.200 

 

0.052 

 

-12.55 

 

A2 

 

 

 

CN 

 

H 

 

H 

 

N 

 

4 

 

5.867 

 

0.131 

 

-15.39 

 

4.581 

 

0.219 

 

-13.31 

 

A3 

 

 

 

CN 

 

H 

 

H 

 

H 

 

3 

 

5.597 

 

0.152 

 

-15.3 

 

5.376 

 

0.029 

 

-11.07 

 

A4 

  

CN 

 

H 

 

H 

 

H 

 

5 

 

5.712 

 

0.125 

 

-16.45 

 

5.548 

 

0.227 

 

-11.31 
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Name Linker R1 R2 R3 X n 

hAChE hBuChE 

pIC50 

pred 
leverage 

∆E 

(kcal/

mol) 

pIC50 

pred 
leverage 

∆E 

(kcal/

mol) 

 
 

A5 

 

 

 

CN 

 

H 

 

H 

 

H 

 

4 

 

6.211 

 

0.056 

 

-15.63 

 

4.907 

 

0.088 

 

-12.22 

 

A6 

 

 

 

CN 

 

H 

 

H 

 

H 

 

4 

 

7.157 

 

0.315 

 

-14.94 

 

_ 

 

_ 

 

_ 

 

A7 

 

 

 

CN 

 

H 

 

H 

 

H 

 

4 

 

6.709 

 

0.219 

 

-14.88 

 

_ 

 

_ 

 

_ 

 

A8 

 

 

 

CN 

 

H 

 

H 

 

H 

 

4 

 

6.656 

 

0.166 

 

-15.62 

 

4.832 

 

0.120 

 

-10.98 

 

A9 

 

 

 

CN 

 

H 

 

H 

 

H 

 

4 

 

5.820 

 

0.130 

 

-14.9 

 

5.071 

 

0.082 

 

-11.74 

 

A10 

 

 

 

CN 

 

H 

 

 

 

H 

 

H 

 

4 

 

6.569 

 

0.263 

 

-13.88 

 

5.386 

 

0.403 

 

-12.74 

 

A11 

 

 

 

CN 

 

H 

 

H 

 

H 

 

4 

 

6.171 

 

0.110 

 

-13.05 

 

5.022 

 

0.225 

 

-11.63 

 

A12 

 

 

 

H 

 

H 

 

H 

 

H 

 

4 

 

5.863 

 

0.190 

 

-15.47 

 

4.606 

 

0.118 

 

-11.13 

 

A13 

 

 

 

Cl 

 

H 

 

H 

 

H 

 

4 

 

5.483 

 

0.029 

 

-13.42 

 

_ 

 

_ 

 

_ 

 

A14 

 

 

 

F 

 

H 

 

H 

 

H 

 

4 

 

5.892 

 

0.077 

 

-13.85 

 

5.090 

 

0.079 

 

-10.83 

 

A15 

 

 

 

CO

OC

H3 

 

H 

 

H 

 

H 

 

4 

 

6.232 

 

0.198 

 

-11.54 

 

_ 

 

_ 

 

_ 

 

A16 

 

 

 

OC

H3 

 

H 

 

H 

 

H 

 

4 

 

5.793 

 

0.046 

 

-13.9 

 

_ 

 

_ 

 

_ 

 

A17 

 

 

 

CN 

 

H 

 

H 

 

H 

 

3 

 

6.083 

 

0.057 

 

-14.04 

 

_ 

 

_ 

 

_ 

 

A18 

 

 

 

CN 

 

H 

 

H 

 

H 

 

3 

 

6.531 

 

0.158 

 

-12.69 

 

_ 

 

_ 

 

 

_ 

 

A19 

 

 

 

CN 

 

H 

 

H 

 

H 

 

3 

 

6.279 

 

0.056 

 

-13.56 

 

_ 

 

_ 

 

_ 

 

A20 

 

 

 

CN 

 

H 

 

H 

 

H 

 

3 

 

5.706 

 

0.139 

 

-13.81 

 

5.030 

 

0.080 

 

-10.38 
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Name Linker R1 R2 R3 X n 

hAChE hBuChE 

pIC50 

pred 
leverage 

∆E 

(kcal/

mol) 

pIC50 

pred 
leverage 

∆E 

(kcal/

mol) 

A21 

 

F H H H 3 5.736 0.054 

 

-14.83 _ _ _ 

 

A22 

 

 

 

CO

OC

H3 

 

H 

 

H 

 

H 

 

3 

 

6.117 

 

0.209 

 

-14 

 

_ 

 

_ 

 

_ 

 

A23 

 

 

 

OC

H3 

 

H 

 

H 

 

H 

 

3 

 

5.661 

 

0.034 

 

-14.76 

 

_ 

 

_ 

 

_ 

 

B1 

 

 

 

CN 

 

H 

 

2 

_  

1 

 

5.198 

 

0.181 

 

-16.53 

 

6.318 

 

0.123 

 

-12.14 

 

B2 

 

 

 

CN 

 

H 

 

2 

_  

2 

 

5.635 

 

0.023 

 

-10.35 

 

6.483 

 

0.048 

 

-12.46 

 

B3 

 

 

 

CN 

 

H 

 

2 

_  

3 

 

5.357 

 

0.095 

 

-13.75 

 

6.509 

 

0.055 

 

-10.25 

 

B4 

 

 

 

CN 

 

H 

 

2 

_  

4 

 

5.504 

 

0.055 

 

-15.45 

 

6.480 

 

0.044 

 

-10.93 

 

B5 

 

 

 

CN 

 

H 

 

2 

_  

1 

 

5.650 

 

0.067 

 

-13.51 

 

6.064 

 

0.047 

 

-11.39 

 

B6 

 

 

 

CN 

 

H 

 

2 

_  

2 

 

5.922 

 

0.046 

 

-15.04 

 

6.221 

 

0.053 

 

-13.27 

 

B7 

 

 

 

CN 

 

H 

 

2 

_  

3 

 

5.764 

 

0.046 

 

-6.51 

 

6.295 

 

0.089 

 

-11.73 

 

B8 

 

 

 

CN 

 

H 

 

2 

_  

4 

 

5.764 

 

0.031 

 

-13.83 

 

6.491 

 

0.384 

 

-14.19 

 

B9 

 

 

 

CN 

 

H 

 

1 

_  

4 

 

5.631 

 

0.062 

 

-14.65 

 

6.415 

 

0.091 

 

-11.62 

 

B10 

 

 

 

CN 

 

H 

 

3 

_  

4 

 

5.217 

 

0.097 

 

-13.71 

 

6.827 

 

0.365 

 

-12.86 

 

B11 

 

 

 

CN 

 

CH

3C

O 

 

2 

_  

4 

 

5.508 

 

0.122 

 

-12.26 

 

5.534 

 

0.964 

 

-12.8 

 

B12 

 

 

 

CN 

 

H 

 

2 

_  

4 

 

5.702 

 

0.145 

 

-13.02 

 

5.874 

 

0.737 

 

-13.09 

 

B13 

 

 

 

CN 

 

H 

 

2 

_  

4 

 

5.747 

 

 

0.049 

 

-12.82 

 

6.436 

 

0.054 

 

-11.66 

 

B14 

 

 

 

CO

OC

H3 

 

H 

 

2 

_  

4 

 

5.039 

 

0.444 

 

-15.22 

 

6.583 

 

0.062 

 

-11.77 

 

B15 

 

 

 

H 

 

H 

 

2 

_  

4 

 

5.556 

 

0.122 

 

-13.62 

 

6.198 

 

0.075 

 

-11.75 

 

B16 

 

 

 

CH3 

 

H 

 

2 

_  

4 

 

5.494 

 

0.137 

 

-13.47 

 

6.588 

 

0.074 

 

-11.77 
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2.2. Molecular descriptors. 

Two-dimensional structures of the ligands were created using ChemBioDraw 12.0 

software [9]. The ligands were subjected to minimization procedures using an in-house TCL script 

using Hyperchem (Version 8, Hypercube Inc., Gainesville, FL, USA). Each ligand was optimized 

with different minimization methods such as molecular mechanics (MM+) followed by a quantum-

based semi-empirical method (AM1) using the Hyperchem package. Z-matrices of the structures 

were processed by the software and transferred to the Gaussian 98 program [10]. An outsized 

number of molecular descriptors were computed using Gaussian 98, Hyperchem, and Dragon 

package [11]. Some chemical parameters containing molecular volume (V), hydration energy 

(HE), hydrophobicity (LogP), molecular surface area (SA), and molecular polarizability (MP) 

were calculated using Hyperchem Software. Highest occupied molecular orbital (HOMO) and 

lowest unoccupied molecular orbital (LUMO) energies, the foremost positive and also the most 

negative net atomic charges, the average absolute atomic charge, and molecular dipole moment 

were calculated by Gaussian98 software. Quantum chemical indices hardness (η = 0.5 

(HOMO+LUMO)); softness (S = 1⁄η); electronegativity (χ = -0.5 (HOMO-LUMO)); and 

electrophilicity (ω = χ2⁄2η) were calculated consistent with the equations proposed by 

Thanikaivelan et al. [12]. Dragon calculated different topological, geometrical, empirical, and 

constitutional descriptors for every molecule. 2D autocorrelations, atom-centered fragments, and 

functional groups were also calculated using the Dragon.  

2.3. Variable importance in the projection (VIP). 

Variable important in projection (VIP) was employed to survey the relative importance of 

the variable that appeared within the final model obtained by the GA-PLS method [13]. The 

importance of terms within the PLS model is reflected in VIP values. Because it was explained by 

Erikson et al., X-variables (predictor variables) may be classified under their relevance in 

explaining y (predicted variable), so that VIP > 1.0 and VIP < 0.8 mean highly or less influential, 

respectively, and 0.8 < VIP< 1.0 means moderately influential [14]. 

2.4. Docking procedure. 

The docking studies were executed utilizing an in-house batch script (DOCKFACE) [15, 

16] of Autodock 4.2. For the docking procedure, each ligand was optimized with MM+, then the 

AM1 minimization method using HyperChem 8. The atoms' partial charges were calculated using 

the Gasteiger Marsili procedure implemented within the AutoDock Tools package [17]. Non-polar 

hydrogens of compounds were merged, and so rotatable bonds were assigned. The output 

structures were converted to PDBQT using MGLtools 1.5.6 [18]. 

The three-dimensional crystal structure of hAChE (PDB ID:1ACJ), and hBuChE (4BDS) 

were derived from protein data bank (http://www.rcsb.org/pdb/home/home.do) [19]. Water and 

co-crystal ligand molecules were eliminated from the structures, and missing hydrogens were 

added and after determining the Kollman united atom charges, non-polar hydrogens were elided 

into their corresponding carbons using Autodock Tools [20]. Then, solvation parameters were 

appointed to every protein atom. Among the three different search algorithms accomplished by 

Autodock 4.2, the commonly used Lamarckian Genetic Algorithm (LGA) was applied [21, 22]. 

The enzymes were converted into PDBQT using MGLTOOLS 1.5.6. For Lamarckian GA, 100 

No. of GA run, 27000 maximum generations; the maximum number of 2,500,000 energy 

evaluations, 150 population size, the mutation rate of 0.02; and a crossover rate of 0.8 were applied. 
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The grid maps of the receptors were calculated using AutoGrid tools of Autodock 4.2. The grid's 

dimensions were set in an exceedingly include the active site and portions of the encircling surface. 

A grid box of 50× 46× 46 points in x, y, and z-direction with a grid spacing of 0.375 Å was built 

for all targets. The center of the grid box in x, y, and z was 4.39, 69.90, and 65.80 for hAChE, and 

133.07, 116.11, and 41.33 for hBuChE. Autodock Tools were occupied with providing both grid 

and docking parameter files, i.e., gpf and dpf. Ligand-receptor interactions were all detected based 

on docking results using the Autodock tools program (ADT, Version1.5.6), VMD software [23], 

and PLIP (fully automated protein-ligand interaction profiler) [24]. This software calculates 

hydrogen bonding, arene-arene, arene-hydrogen, and hydrophobic interactions established through 

the interaction of ligands to their receptors. 

2.5. Model development. 

Two different regression methods were practical for QSAR equations, including simple 

multiple linear regression with stepwise variable selection (MLR), and Genetic algorithm–partial 

least squares (GA-PLS). These known methods are well-practiced in QSAR studies [25].  Here, 

stepwise selection and elimination of variables were practical for developing QSAR models using 

SPSS software (version21; SPSS Inc., IBM, Chicago, IL, USA). The leave-one-out cross-

validation procedure accredited the resulted models to test their predictability and robustness using 

MATLAB 2011 software (version 8.5; Math work Inc., Natick, MA, USA). The partial least square 

(PLS) regression method was applied to the NIPALS-based algorithm that existed within 

MATLAB software's chemometrics toolbox. The MATLAB PLS toolbox was used for PLS and 

GA modeling. All calculations were run on a Core i7 computer with the Windows 10 software. 

2.6. Model validation. 

Statistical parameters such as standard error of the regression (SE), correlation 

coefficient (R2), variance ratio (F) at specified degrees of freedom, leave-one-out cross-

validation correlation coefficient (Q2), root mean square error of cross-validation (RMScv), 

and double cross-validation (Cvcv) were employed for the validity of regression equation [25]. 

To test the developed model efficiency, 20% of the molecules were selected as test set 

molecules. The predictive value of a QSAR model that was not considered during the 

development process has been evaluated on an external set of data. QSAR model was 

developed in more than three data sets, and the best equation was selected as the best model. 

2.7. Applicability domain. 

The uses of a QSAR model are predicated on its exact prediction ability for new 

compounds. Regardless of how considerable and accredit a QSAR could also be, it cannot be 

expected to reliably predict the modeled property for the whole space of chemicals. Before 

using QSAR for screening chemicals, its domain of application must be defined. Forecasts for 

chemicals during this area are reliable. The applicability domain is estimated by the leverage 

values for every compound. A Williams plot (the plot of standardized residuals versus leverage 

values (h)) can then be used for a moment and straightforward graphical detection of both the 

response outliers (Y outliers) and structurally influential chemicals (X outliers) in our model. 

During this graph, the applicability domain is appointed inside a squared area within ±x 

(standard deviations) and a leverage threshold h*. 

https://doi.org/10.33263/BRIAC121.588607
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The numerical value of leverage has certain characteristics: (a) the value is always 

greater than zero, (b) the lower the value; the upper is the confidence within the prediction. A 

worth of 1 indicates a very poor prediction. A price of 0 indicates perfect prediction and cannot 

be achieved. Another factor for analysis of the results is warning leverage (h*). The threshold 

h* is mostly fixed at 3 (k +1)/n (k is that the number of model parameters and n is that the 

number of coaching set compounds), whereas x = 2 or 3. Prediction must be considered 

unreliable for compounds with a high leverage value (h > h*). Leverage greater than warning 

leverage h* means the expected response is that the results of substantial extrapolation of the 

model and thus might not be reliable. From the opposite point of view, when the leverage value 

of a compound is below the brink value, the probability of agreement between observed and 

predicted values is as high as that for the training set compounds [26, 27]. 

2.8. MD simulation. 

Crystal structure of hAChE (PDB ID:1ACJ), hBuChE (4BDS) receptors, and the 

modified protein's model structure was used for theoretical studies. MD simulation and 

molecular mechanics (MM+) minimization were performed using Gromacs 5.0.7 package 

under an amber ff03force field. The GAFF topologies for ligands were generated using the 

Antechamber software using partial charges calculated with the restrained electrostatic 

potential method. The GAFF topologies were converted into GROMACS format using the 

acpype tool. MD simulations were applied with periodic boundary conditions. Van der Waals 

forces were treated with a cut-off of 10 Å. The Particle-Mesh Ewald method was used with a 

ten Å cut-off. The frequency to update the neighbor list was 5. The protonation state of gromacs 

package was accustomed to calculate the full charge of compounds. Within the simulation's 

beginning, the entire system was minimized using the steepest descent followed by conjugate 

gradients algorithms. Within the second step or equilibration step, heavy atoms were restrained 

employing a force constant of 1000 kJ.mol-1.nm-2, and also, the solvent and ions were allowed 

to evolve. This was done through minimization and molecular dynamics within the NVT 

ensemble for 100 ps and within the NPT ensemble for 100 ps. Then to get equilibrium geometry 

at 310 K and 1 atm, the system's temperature was increased, and therefore the velocities at each 

step were reassigned consistent with Maxwell-Boltzmann distribution at that temperature and 

equilibrated for 100 ps. Temperature coupling was set to 0.1 ps, and pressure coupling to 2 ps. 

The Berendsen algorithm was used for the thermostat and barostat during the equilibration step. 

All bonds were constrained via the LINCS algorithm. Within the final step or production phase, 

a 100 ns MD simulation was performed under an NPT ensemble. To retain temperature and 

pressure stable within the production step, Nosé-Hoover thermostat and Parrinello-Rahman 

barostat were used with removing position restraints. The temperature was at 310 K with a time 

step of two fs [28]. 

3. Results and Discussion 

In this study, a detailed QSAR study was developed using a combination of chemical, 

electronic, and substituent constant to explore structural parameters affecting Vilazodone-

Tacrin hybrids that have been designed to inhibit hAchE and hBuChE. Two chemometrics 

methods (i.e., stepwise MLR and GA-PLS) were applied for making a relationship between the 

biological activity and molecular descriptors. 
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3.1. MLR modeling. 

At first, separate stepwise selection-based MLR analyses were done using various 

styles of descriptors, and then, using the pool of all calculated descriptors, an MLR equation 

was acquired. The results for hAchE (Eq 1, 2) and hBuChE (Eq 3, 4) are shown in Table 2. 

The calculated statistical parameters including regression coefficient for calibration set 

(R2), correlation coefficient (R2p) for predicted set, standard error (SE), specified degrees of 

freedom (F), the regression coefficient for leave one out cross-validation (Q2), Cvcv, and 

RMScv which were utilized for validating the goodness of fit of the resulted QSAR equations 

are demonstrated in Table 2. GA-PLS was selected as the best equation in both tables. 

Table 2. The results of different QSAR models with different types of dependent variables for hAchE and 

hBuChE. 

Model Eq. 

no. 

hAchE (Equation) n1 R2
c Q2 Rmscv Cvcv F SE R2 

p 

MLR 1 pIC50 = +21.088ATS8e (±4.825)+3.081 

GATS3p (±0.515) -1.777 MATS8e(±0.373) -

1.962 lVDE (±0.637) +0.003 D/Dr10 (±0.001) 

+0.423 nC0 (±0.146)+1.172 MATS6v 

(±0.530)-20.347(±5.692) 

32 0.85 0.76 1.198 20.35 18.8 0.25 0.93 

GA-PLS 2 pIC50 = -207.44 X5A(±39.231)+1.626 

MATS7e (±0.301) +0.514 nR10 (±0.071) -

6.069E-6 pilD (±0.000) +0.017 MPCO7 

(±0.004) -511.361 GATS7m (±187.283)-0.556 

C-029 (±0.180)-1.404 MATS4v 

(±0.603)+17.946(±2.999) 

32 0.87 0.81 0.762 13.34 18.7 0.16 0.95 

MLR 3 pIC50 = +42.431 Homo(±8.170) +1.016 

GATS4v (±0.386) +0.462 log P (±0.143) 

+0.004 D/Dr07 (±0.002) +16.926(±2.774) 

22 0.91 0.83 3.320 57.20 45.52 0.25 0.96 

GA-PLS 4 pIC50 = +53.522 Homo 

(±3.640)+6.193MATS3v(±1.182)+1.981 MS 

(±0.691)+17.963(±1.973) 

22 0.93 0.86 0.948 16.13 77.81 0.20 0.98 

1 Number of molecules of the training set used to derive the QSAR models. R2: Regression Coefficient for 

Calibration set, Q2: Regression Coefficient for Leave One Out Cross Validation, RMScv: Root Mean Square 

Error of cross-validation, R2p: Regression Coefficient for prediction set. 

3.2. GA-PLS. 

In PLS analysis, the descriptor's data matrix is decomposed into orthogonal matrices 

with an internal relationship between the dependent and independent variables. Hence, unlike 

MLR analysis, the multicollinearity problem within the descriptors is omitted by PLS analysis. 

Because PLS uses a small number of latent variables for modeling, it correlates with noisy data 

better than MLR. The calculated statistical parameters for this model are represented in Table 

2 for both hAChE, and hBuChE. 

The PLS estimate of coefficients for the descriptors is given in Figure 2A. As observed, 

a mixture of chemical, topological, geometrical, quantum, 2D-autocorrelations, and functional 

descriptors has been selected by GA-PLS to account for the hAChEI activity Vilazodone-

Tacrine hybrids. The VIP analysis of the PLS equation is shown in Figure 2B. 

VIP shows ATS8e, Softness, C025, IVDE, MATS8m, X4A, ATS3e, GATS8e, pipC05, 

X3A, VRA1 and PCR are the most important index in the QSAR equation derived by PLS 

analysis.  
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3.3. In silico screening. 

In silico screening, studies are to replace time-consuming and costly in vivo 

experiments within the early stages of drug development. 

 
Figure 2. (a) PLS regression coefficients for the variables used in the GA-PLS model for hAChE; (b) Variable 

importance in the projection (VIP) for the variables used in the GA-PLS model for hAChE. Williams plot for 

the calibration set and external prediction set for (c) hAChE; (d) hBuChE of studied compounds. 

It has the potential to hurry speed the rate of discovery, predicting, and identifying new 

pharmaceutical compounds. Virtual screening could be a potent technique to identify active 

compounds from molecular databases. It was applied by elimination, interpolation, and 

substitution of various substitutes on the parent molecules, and the effects of the structural 

modifications on the biological activity were investigated. The domain application of the 

QSAR model was resolute to use the model for screening new compounds. The applicability 

domain of the QSAR model was applied to verify the prediction reliability, acknowledge the 

strict compounds, and predict the compounds with the passable activity within this domain. We 

employed the important descriptors selected in both the GA-PLS model for designing new 

active compounds because of their greatest statistical parameters compared to the others. 

Analyzing the model applicability domain in the Williams plot of the GA-PLS model of 

hAChE (Figure 1C) and hBuChE (Figure 1D) supported the entire data set appeared that none 

of the compounds were identified as a clear outlier for this activity. 

None of the compounds have leverage (h) values greater than the threshold leverages 

(h*). The warning leverage (h*), was found to be 0.75 for hAChE and 0.54 for hBuChE. The 

compounds that had a standardized remaining quite 3 times the standard deviation units were 

considered to be outliers. For both the training set and prediction set, the presented model 

matches the high-quality parameters with good fitting power and the ability to assess external 

data. Moreover, almost all of the compounds were within the proposed model's applicability 
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domain and evaluated identically. Simultaneously, chemicals with a leverage value higher than 

h* were considered influential or high leverage chemicals [29]. 

Based on the QSAR model, the in-silico screening was used to design new compounds 

with improved potential hAChE/hBuChE inhibitor activity. As shown in Table 3, thirty novel 

compounds were designed and their predicted activities for both hAChE and hBuChE 

inhibitory activity based on GA-PLS equations and their docking binding energies were 

obtained. Leverage values show that all of the designed compounds were within the 

applicability domain. Among these molecules (Table 3), compounds 1, 6, 7, 8, 13, 15, 16s, 17s, 

18s, 20s, and 25s showed the best activity. These compounds have good potential for becoming 

anti-Alzheimer agents. 

Table 3. Structural modification of studied compounds and their predicted activities and docking binding 

energies for hAChE and hBuChE inhibitory based on GA-PLS equation. 

 

 

Name 

 

 

Compounds Structure 

 

hAChE 

 

hBuChE 

pIC50 pred lever

age 

∆E 

(kcal/m

ol) 

pIC50 

pred 

levera

ge 

∆E 

(kcal/m

ol) 

 

1 

 

 

 

6.302 

 

0.090 

 

-16.69 

 

4.735 

 

0.081 

 

-13.16 

 

 

2 

 

 

 

5.850 

 

0.000 

 

-14.90 

 

 

4.712 

 

0.084 

 

-11.99 

 

3 

 

 

 

6.076 

 

0.024 

 

-15.25 

 

5.204 

 

0.026 

 

-12.97 

 

4 

 

 

 

6.076 

 

0.024 

 

-15.22 

 

5.384 

 

0.012 

 

-13.28 

 

5 

 

 

 

6.076 

 

0.024 

 

-16.01 

 

4.862 

 

0.063 

 

-13.27 

 

6 

 

 

 

6.302 

 

0.090 

 

-14.60 

 

5.144 

 

0.031 

 

 

-13.32 

 

7 

 
 

 

6.528 

 

0.183 

 

-14.07 

 

5.351 

 

0.014 

 

 

-12.51 

 

8 

 
 

 

6.302 

 

0.090 

 

-13.03 

 

6.092 

 

0.007 

 

-12.33 
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Name 

 

 

Compounds Structure 

 

hAChE 

 

hBuChE 

pIC50 pred lever

age 

∆E 

(kcal/m

ol) 

pIC50 

pred 

levera

ge 

∆E 

(kcal/m

ol) 

 

9 

 

 

 

6.076 

 

0.024 

 

-15.05 

 

4.207 

 

0.165 

 

-12.74 

 

 

10 

 

 

 

5.850 

 

0.000 

 

-14.09 

 

5.683 

 

0.000 

 

-11.65 

 

11 

 

 

 

6.076 

 

0.024 

 

-16.48 

 

4.630 

 

0.096 

 

-13.07 

 

12 

 

 

 

5.398 

 

0.090 

 

-15.38 

 

5.297 

 

0.018 

 

-12.56 

 

13 

 

 

 

6.302 

 

0.090 

 

-14.50 

 

5.666 

 

0.001 

 

 

-14.27 

 

14 

 

 

 

6.076 

 

0.024 

 

-14.14 

 

5.999 

 

0.003 

 

-12.29 

 

15 

 

 

 

6.528 

 

0.183 

 

-15.56 

 

4.902 

 

0.058 

 

 

-13.95 

 

16s 

 

 

 

5.398 

 

0.090 

 

-15.09 

 

6.548 

 

0.044 

 

-11.31 

 

17s 

 

 

 

5.398 

 

0.090 

 

-14.27 

 

7.073 

 

0.117 

 

-10.32 

 

18s 

 

 

 

6.302 

 

0.090 

 

-15.34 

 

6.111 

 

0.008 

 

-13.03 
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Name 

 

 

Compounds Structure 

 

hAChE 

 

hBuChE 

pIC50 pred lever

age 

∆E 

(kcal/m

ol) 

pIC50 

pred 

levera

ge 

∆E 

(kcal/m

ol) 

 

19s 

 

 

 

5.850 

 

0.000 

 

-12.73 

 

6.265 

 

0.018 

 

-10.96 

 

20s 

 

 

 

5.624 

 

0.024 

 

-15.54 

 

6.449 

 

0.034 

 

-14.06 

 

21s 

 

 

 

5.850 

 

0.000 

 

-12.29 

 

5.035 

 

0.043 

 

-12.06 

 

22s 

 

 

 

5.850 

 

0.000 

 

-13.10 

 

 

6.322 

 

0.022 

 

-11.79 

 

23s 

 
 

 

6.076 

 

0.024 

 

-13.85 

 

5.913 

 

0.001 

 

-12.67 

 

24s 

 

 

 

5.850 

 

0.000 

 

-13.20 

 

6.050 

 

0.005 

 

-12.59 

 

25s 

 

 

 

5.624 

 

0.024 

 

-11.24 

 

6.437 

 

0.033 

 

-11.87 

 

26s 

 

 

 

5.398 

 

0.090 

 

-13.69 

 

6.298 

 

0. 020 

 

-12.54 

 

27s 

 

 

 

5.624 

 

0.024 

 

-15.04 

 

5.918 

 

0.001 

 

-12.98 

 

28s 

 

 

 

6.076 

 

 

0.024 

 

-12.42 

 

6.246 

 

0.016 

 

-11.18 
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Name 

 

 

Compounds Structure 

 

hAChE 

 

hBuChE 

pIC50 pred lever

age 

∆E 

(kcal/m

ol) 

pIC50 

pred 

levera

ge 

∆E 

(kcal/m

ol) 

 

29s 

 

 

 

6.076 

 

0.024 

 

-13.24 

 

6.227 

 

0.015 

 

-10.69 

 

30s 

 

 

 

6.076 

 

0.024 

 

-13.94 

 

6.114 

 

0.008 

 

-12.99 

To have attention on the cross-validated prediction results, the predicted activity data 

are plotted against the experimental activities in Figure 3. The least scattering of data was 

obtained from GA-PLS for hAChE and hBuChE, respectively.  

 
Figure 3. (a) Plots of cross-validated predicted values of activity by GA-PLS against the experimental values 

(hAChE). (b) Plots of cross-validated predicted values of activity by GA-PLS against the experimental values 

(hBuChE). 
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The high regression ratio (R2 = 0.91, 0.82 for hAChE and hBuChE) in this plot shows 

the great agreement between cross-validated predicted values of activity and the experimental 

activity. 

3.4. Molecular Docking Studies 

All of the dataset compounds as well as the designed compounds were subjected to 

molecular docking studies on hAChE (PDB ID:1ACJ), and hBuChE (4BDS) receptors. The 

estimated free binding energy values (ΔGbind) in kcal mol-1 and the interactions with the key 

amino acid residues in the active site of enzymes were completely determined (Table 1, 3, and 

Figures 5, 6). 

Redocking of tacrine as the co-crystal ligand of hAChE, and hBuChE with a high 

affinity for these targets indicated that the X-ray crystallography conformer was extremely 

identical to the docked conformer. RMSD of docking for tacrine compared to its coordination 

in the crystal structure was 0.67 and 0.63 for hAChE, and hBuChE, respectively (Figure 4). 

 
Figure 4. Comparison of two bound conformations of tacrine in the active site of (a) hAChE, and (b) hBuChE: 

the yellow model shows the crystal orientation, and the redocked result is shown in green. 
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As it was shown in Table 1, the dataset can classify into two different classes. The 

structural changes in these compounds have affected the docking results. The ΔGbind values 

of the best-docked poses of series A (compounds A1-A23) are within the range of -11.54 to -

16.45 kcal.mol-1 for hAChE and -6.51 to -16.53 kcal.mol-1 for hBuChE. The best docking 

binding energies of series B (compounds B1-B16) are within the range of -10.38 to -13.31 

kcal.mol-1 for hAChE and -10.25 to -14.19 kcal.mol-1 for hBuChE. The docking binding 

energy of tacrine (the co-crystal ligand of both receptors) is -8.71 and -7.55 kcal.mol-1 on 

hAChE hBuChE, respectively. 

 

Figure 5. The structure of A2 surrounded by the key residues in the active site of (a) hAChE; (b) hBuChE. 

As indicated in Figure 5a, in the hAChE binding mode of A2, the nitrogen of pyridine 

and piperazine rings are involved in hydrogen bond interactions with residues Gly441 and 

Ser122, respectively. The pyridine rings of tacrine moiety are involved in π-π interactions with 

residues Trp84. The side chains consisting of amino acid residues Glu199, Asp72, and Asp85 

make direct van der Waals contacts with compound A2.  
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The binding mode of A2 with hBuChE (figure 5b) shows that the NH of the indole ring 

is involved in arene-hydrogen interactions with residues Trp430. A π-π interaction between 

phenyl of indole ring and residues Trp82 is also visible. There is also existed acceptor hydrogen 

bond interaction between the nitrogen of piperazine ring with residues Glu197. Some 

hydrophobic interactions with residue Asp70 and Ser196 also exist. 

Molecular docking was also applied to the designed compounds to gain some more 

insight into their binding mode to the hAChE and hBuChE targets. The binding mode of 18s 

in the active site of hAChE and hBuChE is evaluated in Figures 6. 

 

Figure 6. The structure of 18s surrounded by the key residues in the active site of (a) hAChE; (b) hBuChE. 

As it was depicted in figure 6a, the key amino acids in the binding mode of compound 

18s with hAChE are two arene-arene interactions between phenyl and pyridine rings with 

Trp84. Three hydrogen bonding exists between the nitrogen atom of the pyridine ring, NH of 
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piperazine, and NH of amino side chain on tacrine with Gly441, Asp72, and Tyr130, 

respectively. Some hydrophobic interactions with residue Asp72, Asp85, and Trp84 are also 

observed. In the binding of 18s to hBuChE (Figure 6b), the NH of amino side chain on tacrine, 

sulfur of thiophene ring, and sulfur of C=S group are involved in hydrogen bonding with 

Glu197, Pro285, and Ala328, respectively. There is also existed some hydrophobic interactions 

with residue Asp70, and Glu197. The thiophene ring is also involved in π-π interaction with 

Tyr332. Some hydrophobic interactions with residue Ser198, Asp70, and Thr120 also exist. 

The results obtained from this docking study indicate that the important amino acids 

inside the active site cavity that are in charge of essential interactions are Gly441, Ser122, 

Trp84, Asp72, Tyr130, and Gly117 for hAChE and Glu197, Thr120, Gly121, Asn83, Tyr332, 

Trp430, Trp82 and Asp70 for hBuChE. The majority of the studied compounds took part in 

hydrogen bond formation especially through the hydrogen attached to nitrogen of pyridine with 

Gly441 for hAChE, and nitrogen of piperazine with Glu197 for hBuChE, respectively. It 

should be noted that high activity compounds form one or more hydrogen bonds with the active 

site residues. Therefore, one of the essential requirements for optimum hAChE and hBuChE 

inhibition is hydrogen bond formation by ligands. The docking results suggest that apart from 

hydrogen bonding formation, the binding of different compounds with the active site is 

stabilized by van der Waals and hydrophobic interactions with the non-polar amino acids. The 

arene-arene interaction also exists between ligands and their targets through their phenyl, 

pyridine, thiophene, and pyrrole rings. 

3.5. MD simulation. 

Root Mean Square Deviation (RMSD) deviation between the created structures within 

the simulation over time is an appropriate and common criterion to ensure the stability of 

molecular dynamics simulations. Therefore, the RMSD changes of protein alpha carbon atoms 

during the simulation time (100 ns) were calculated and extracted from the initial structure. 

The results of this calculation are given in Figure 6a. 

As shown in Figure 7a, the protein RMSD diagram shows the steep gradient with the 

RMSD reaching 0.14 nm up to 5000 ps of molecular dynamics simulation. From 5000 to 

95,000 ps the incremental slope has been slowed. At 95,000 ps, the rate of RMSD changes 

increased by 0.2 nm. Also, as shown in Figure 7a, the RMSD increased with a steep slope after 

95000 ps. So that at the end of the molecular dynamics simulation (100,000 ps), the RMSD is 

equal to 0.26 nm. This indicates a sudden change in the structure of part of the protein. Next, 

to investigate the ligand stability in the protein-bound state, the RMSD of this molecule was 

also studied (Figure 7b). As shown in Figure 7b, the ligand molecule is rapidly stabilized at the 

beginning of the simulation time, but after 60,000 ps of the diagram simulation, there is a strong 

oscillation indicating a slight displacement of the ligand in the binding site. 

3.5.1. Molecular flexibility examination.  

The dynamic behavior of alpha carbon atoms in the protein structure contains sufficient 

information to investigate important motions in proteins and reflects the general structure 

motions [30]. Therefore, the root means square fluctuation (RMSF) of the alpha carbon atoms 

was considered to investigate the structural mobility and flexibility (Figure 7c). The RMSF 

diagram for protein in the range of 80 to 100 ns in alpha carbon is shown in Figure 7c. As can 

be seen, the carboxyl end amino acids exhibit high flexibility. This graph's data are consistent 
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with the increase in RMSD (Figure 7a) after 80,000 picoseconds of molecular dynamics 

simulation. 

3.5.2. Radius of gyration. 

The radius of gyration as an important factor indicates the protein's stability in the 

simulation environment [30]. So, suppose the protein is well stable in the simulation medium. 

In that case, the average radius for that protein during the simulation period is constant. The 

decrease in gyration radius during the simulation time indicates that the protein is compressed, 

and the increase in radius showed the opposite result. The variation of the gyration radius 

during the simulation time (100 ns) for the protein molecule is shown in Figure 7d. 

 
Figure 6. MD simulation results. (a) The RMSD changes of protein alpha carbon atoms during the simulation 

time (100 ns); (b) The RMSD of the ligand 18s; (c) The root means square fluctuation (RMSF) of the alpha 

carbon atoms; (d) The variation of the gyration radius during the simulation time (100 ns) for the protein 

molecule. 

4. Conclusions 

Quantitative relationships between molecular structure and hAChE and hBuChE 

activity of a series Vilazodone-Tacrine hybrids were discovered by chemometrics methods 

including MLR and GA-PLS. The reliability, accuracy, and predictability of the proposed 

models were evaluated. The docking study indicates that the important amino acids inside the 

active site cavity in charge of essential interactions were Gly441, Ser122, Trp84, Asp72, 

Tyr130 Gly117 for hAChE and Glu197, Thr120, Gly121, Asn83, Tyr332, Trp430, Trp82, and 

Asp70 for hBuChE. Furthermore, these compounds showed proper interactions, including 

ionic bond, H-bond, and π-π interactions. The best regression equation was obtained from GA-

PLS, which predicts 92% of variances. Finally, an in silico screening study was conducted, and 
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some compounds were designed as inhibitors of hAChE and hBuChE. Among them, 

compounds 1, 6, 7, 8, 13, 15, 16s, 17s, 18s, 20s, and 25s showed the best activity. These 

compounds have good potential for becoming anti-Alzheimer agents. 
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