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Abstract: In this research, an ion-imprinted polymer (IIP) sorbent for lead ion has been synthesized to 

selective Pb extraction before the sensitive ICP/OES analysis. For this purpose, the lead complex was 

fabricated using N-isoacrylamide as a monomer, ethylene glycol dimethacrylate as a crosslinker, and 

azobutyronitrile azobis as a primer. The product was examined by furrier transform infrared 

spectroscopy (FTIR) and scanning electron microscopy (SEM) techniques. The results show that the 

synthesized IIP has high efficiency in the adsorption of lead ions due to several suitable extraction sites 

(nitrogen and sulfur atoms) present in the polymer structure. Experimental evidence showed that the 

highest Pb ion uptake was at pH = 6. Also, 1 M nitric acid solution in a volume of 5 mL has the highest 

amount of elution. Penetration volume for Pb from IIP-SPE was measured 50 mL. The developed 

method was finally utilized to analyze Pb in various tap water samples, and the obtained results were 

compared with the standard method. 

Keywords: ion-imprinted polymer; solid-phase extraction; lead; tap water; ICP/OES; Monte Carlo 

simulation.  
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1. Introduction 

In recent decades, much attention has been focused on investigating heavy metal 

concentrations in water samples due to the toxicity, bioavailability, and environmental behavior 

of metal ions [1-5]. Lead is one of the heavy metals in the periodic table in the fourteenth and 

sixth periods. Lead is the second most widely used industrial metal after iron. Most of the lead 

in the environment is emitted from vehicles. The source of almost all lead tetra alkyls is from 

the evaporation of gasoline. These compounds do not dissolve in water but are absorbed 

through the skin. Airborne lead oxide eventually settles on the ground, water, fruits, or leafy 

vegetables and enters the food chain. Most of the lead that enters the human body enters the 

bloodstream, eventually reaches a constant level, and excess lead enters soft tissues, especially 

the brain. Finally, lead builds up in the bone marrow and replaces calcium due to the similar 

size. Biochemically, lead interferes with hemoglobin production by interfering with the work 

of enzymes and causes anemia by lowering hemoglobin levels. Fetuses and children under the 

age of seven are vulnerable even to low levels of lead. This metal passes through the fetal 

placenta, enters the fetal body, and causes abortion or the fetus's premature birth. In children, 
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it prevents the brain's normal development and has harmful effects on them [6,7]. In 1996, the 

World Health Organization (WHO) limited the concentration of lead in drinking water to 0.01 

µg L-1[8]. Due to the serious concern caused to humans' health by heavy metals, even at low 

concentrations, the separation and determination of these substances from water and the 

environmental samples is a major challenge. So far, various methods have been used to 

measure heavy metals from water. Except for the adsorption method, most of these methods 

are cost-oriented and are not suitable for separating metal ions at low concentrations. IIP is a 

new method to separate, remove, and extract Pb from water [9-12]. This method, with its high 

selectivity, is very suitable for absorbing heavy metal ions. The most important advantages of 

the separation method with IIPs are the simplicity of the preparation method, cheapness, 

effective efficiency in extracting low ion concentrations, and high adsorption speed. These 

polymers have high mechanical stability due to their high cross-linking and can be reused 

[13,14]. Analysis of metals after pretreatment and extraction can be assayed with various 

analytical techniques, such as atomic absorption spectroscopy (AAS) [15,16], inductively 

coupled plasma (ICP) with a different detector, including atomic emission spectroscopy (AES) 

[17, 18], mass spectrometry (MS) [19-21] and optical emission spectrometry (OES) [22-26], 

atomic fluorescence spectrometry, X-ray fluorescence spectrometry, neutron activation 

analysis, liquid chromatography, and electrochemical methods, which ICP methods have many 

advantages in comparison with other analysis techniques. It has the same or better detection 

limits for most of the elements, higher throughput, the ability to handle both simple and 

complex matrices with a minimum of matrix interferences on account of the high temperature 

of the ICP source [27-31].  

In this study, a new adsorbent with very high adsorption power based on IIP for 

selective solid-phase extraction of lead ion using N-isoacrylamide monomer, ethylene glycol 

dimethacrylate cross-linking agent, and azobutyronitrile azobis as an initiator was synthesized. 

This polymer as a solid phase extraction (SPE) sorbent was used to preconcentrate lead from 

water samples. The selectivity of IIP for lead ions was evaluated, and its results were compared 

with NIP (non-imprinted polymer) sorbent  that provides information about the IIP imprinting 

effect and selectivity. Also, the real sample analysis results by IIP-SPE/ICP-OES were 

compared statistically with the AAS method as a standard method [32-40].  

2. Materials and Methods 

2.1. Materials. 

 N-isopropyl acrylamide with a purity of 98% was purchased from Aldrich Company 

(Germany). Lead nitrate salt, acetonitrile, ethyl acetate, ethanol, methanol, and benzene 

solvents with high purity were purchased from Merck (Germany). Ethylene glycol 

dimethacrylate and also azobisisobutyronitrile (AIBN) as a primer in the polymerization 

process were bought from Acros Organic Company ( New Jersey, USA). 

2.2. Instrumentation. 

WQF-510A FTIR spectroscopy (furrier transform infrared spectroscopy) was used to 

identify the complex functional groups using the KBR tablet sampling method with a pressure 

of 20 Bar. The scanning range of the spectrum was from 400 - 4000 cm-1. ICP-OES 735ES 

made by VARIYAN Company was used to measure the absorption of lead. Also, to study IIP 
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and NIP morphology, the FE-SEM (Field Emission Scanning Electron Microscopy) 

EIGMA/VD instrument ( Zeiss company Germany) was used 

2.3. Synthesis of IIP and NIP. 

First, 0.332 g of Pb(NO3)2 was dissolved in 5 mL deionized water (DW). In another 

beaker, 2 mmol of monomer  (N-isoacrylamide agent) was dissolved in 5 mL DW. It was then 

gently added to the Pb solution. The mixture was stirred for 3h at room temperature. After this 

time, 5.39g ethylene glycol dimethacrylate crosslinker and 0.1g azobisisobutyronitrile initiator 

and 50 mL ethanol were added to the obtained complex solution and was heated for 2h at 25 

°C under the stirring condition. It should be noted that deoxygenation is necessary during the 

polymerization process because oxygen traps the produced radicals and prevents the 

polymerization process, so to remove oxygen, the flow of Ar was blown into the solution for 

15 min. The reaction vessel was then sealed and placed in an oil bath at 60 °C for 24h. The 

formed polymer was first washed with ethanol to remove unreacted monomers. It was then 

washed several times with HCl: ethanol (1:1) to remove imprinted ions. Finally, it was washed 

several times with distilled water and dried in an oven at 60 °C. NIP was synthesized in the 

same way, but Pb ions were not used. 

2.4. IIP-SPE/ICP/OES procedure. 

To prepare the SPE column, 0.5 g of prepared polymer fill into a polypropylene 

cartridge. To prevent from releasing the stationary phase, both ends of the sorbent were kept 

by porous polyethylene plates with a thickness of 200 µm. 10 mL of Pb solution or real water 

samples were passed through the column. The column was then washed with 5 mL of nitric 

acid (1 M) as the desorption solvent to extract the adsorbed Pb from the IIP structure. Since the 

volume of solvent required for a complete washing of the analytes is much less than the original 

sample volume, a concentrated sample of the analytes is obtained, and this extracted solution 

was injected into the ICP/OES. 

            2.5. Simulation Methodology. 

The interactions  N-Iso-acrylamide as a monomer, ethylene glycol di-methacrylate as a 

crosslinker, and Iso-butyronitrile azobis as a primer  with Pb are estimated via Lenard–Jones 

potentials as follows: 𝑉𝐿𝐽(𝑟𝑖𝑗) = 4𝜀𝑖𝑗{[(
𝜎𝑖𝑗

𝑟𝑖𝑗
)12 − (

𝜎𝑖𝑗

𝑟𝑖𝑗
)6]} , 𝑟 < 𝑅𝐶 (8), 𝑅𝐶is a cutoff distance 

around 12 Å for VE. In addition the Lorentz–Berthelot rules have been applied for the inter 

forces among VE and graphene atoms as follows "𝜎𝑖𝑗 = 0.5(𝜎𝑖 + 𝜎𝑗)"𝑎𝑛𝑑 𝜀𝑖𝑗 = √ 𝜀𝑖 ∗ √ 𝜀𝑗. 

(9). the non-bonded and bonded data, including van der Waals of related force fields are listed 

in Tables1&2. The total energies of the model systems are a total of several partial energies as 

follows: E(system) = E(bond) + E(angle) + E(torsion) +E(over) +E(vdW) + E(Coulomb) + E(Specific), (10), where 

E(bond) and (E(angle) + E(torsion)) are   bond formation and angle (both strain and torsional) energies, 

respectively. E(over)  is associated with valence and torsional angles, respectively  that prevents 

the over-coordination of the atoms.  EvdW +E (Coulomb) are the dispersive and electrostatic 

energies contribution between all atoms, respectively. Finally, E(Specific)  is a system-specific 

energies such as lone-pair, conjugation and hydrogen bonding.  
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Table 1. Non-bonded parameters in terms of E (van der waals) + E (Coulomb). 

Non bonded interaction 

𝑉𝐿𝐽(𝑟𝑖𝑗) = 4𝜀𝑖𝑗{[(
𝜎𝑖𝑗

𝑟𝑖𝑗
)12 − (

𝜎𝑖𝑗

𝑟𝑖𝑗
)6]} , 𝑟 < 𝑅𝐶  

Atom type Mass(g/mol) 
𝝈(𝒏𝒎) 𝜺(

𝒌𝒄𝒂𝒍

𝒎𝒐𝒍
) 

CH2 14.03 0.396 0.0.091 

C=O 28.05 0.435 0.109 

O-H 17.08 0.223 0.024 

C-O 28.07 0.412 0.102 

C-C 24.03 0.123 0.072 

N-C 26.01 0.446 0.055 

Table 2. Parameters of bonded interactions of the atomistic force field. 

Bonded & angle interaction 

{[𝑉𝑏(𝑟𝑖𝑗) = ∑ 𝑘𝑖𝑗
𝑏

𝑏𝑜𝑛𝑑𝑠

(𝑟𝑖𝑗 − 𝑏𝑖𝑗)2]} + {[𝑉𝛽(𝜃𝑖𝑗𝑘)

= 0.5 ∑ 𝑘𝑖𝑗𝑘
𝜃 (𝜃𝑖𝑗𝑘 − 𝜃𝑖𝑗𝑘

0 )2]}  

𝑎𝑛𝑔𝑙𝑒

+ {[𝑉(𝜑𝑖𝑗𝑘𝑙) 𝑘𝜑(1 + 𝐶𝑜𝑠(𝑛𝜑 − 𝛿) 

bond b(Å) 𝑘𝑏 

kcal/mol*

Å2 
 

 

angle 𝜃𝑖𝑗𝑘
0  𝑘𝑖𝑗𝑘

𝜃  

(
kcal

𝑚𝑜𝑙
∗ 𝑅𝑎𝑑2) 

Dihedral 

𝜑𝑖𝑗𝑘𝑙 

𝑘𝜑 

kcal/mo

l  

 

𝑛 𝛿 

C-H 1.11 330 C-O-C 117.2 53.1 C-C-C-O 0.32 1 0.00 

C=O 1.21 340 C-C-C 122.1 65.9 H-C-C-C 0.400 3 180.0 

O-H 1.09 360 O-C-O 119.4 45.3 O-C-C-H 0.25 2 0.00 

C-O 1.41 230 C-C-H 110.1 46.5 C-O-C-H 0.54 2 0.00 

C-C 1.52 440 H-C-H 107.2 65.4 H-C-C-H 0.32 1 180.0 

C=C 1.34 365 O-C-H 108.2 44.7 O-C-C-O 0.64 3 0.00 

 

The TIP3 model uses a total of the three sites for the electrostatic interactions. The 

partial positive charges on the hydrogen atoms are exactly balanced by an appropriate negative 

charge located on the oxygen atom. The OPLS model is a modified form of TIPS that has 

parameters fitted to liquid state properties and more suitable for liquids studies. The model 

works well for various alcohols, amines, aliphatic and aromatic hydrocarbons, sulfur 

compounds, ether, amino acids, and nucleic acid bases. The OPLS Lennard-Jones parameters 

for nucleic acid bases are included in Table 3.  

 

Table 3. OPLS Lennard-Jones parameters for nucleic acid bases. 

Atom 𝜎, Å 𝜀, 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙 

O 2.95 0.205 

N 3,21 0.165 

C in C=O 3.8 0.110 

C normal 3.5 0.085 

H(N) 0.0 0.0 

H(C) 2.25 0.07 

H(O) 1.95 0.05 

 
In the second section of our research, calculations were performed with the simulation 

program CHARMM. An empirical energy function that contains terms of both internal and 

external interactions was used. All modeling and simulation details have been done based on 

our previous works [41-58]. 
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3. Results and Discussion 

3.1. Characterization. 

To investigate the surface structure and particle size of the synthesized IIP, the SEM 

method was used [59-69]. The result (Figure 1) approved the sediment polymerization 

method's success in obtaining IIP particles with a spherical structure in the nanoscale range 

(200-1000nm). 

 
Figure 1. SEM images of synthesized IIP.  

Investigation of FTIR spectra of ligand, IIP, and NIP (Figure 2) complex show the 

change of P-O-M adsorption region, which means that the metal reacts with the ligand. On the 

other hand, the shift in the ligand's vinyl bond indicates that the metal did not react with the 

C=C of the ligand. Other vibration peaks can be identified as follow: 3299 (N-H stretching), 

3284 (N-H bending), 3072 (amides' N-H stretching), 2970 (CH3 stretching), 1920-1935 

(unsaturated amide stretching), 1657 (C=O stretching), 1622 (alkene stretching), 1548 (N-H 

bending), 1410 (terminal vinyl bending), 1140-1171 (CH3) and 840-965 (=CH2 stretching). 

 
Figure 2. FTIR spectra of synthesized IIP. 
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3.2. Optimization of effective parameters on the Pb adsorption in the IIP-SPE column. 

To optimize the amount of Pb ion adsorption by the IIP-SPE column, some important 

parameters such as the effect of pH, appropriate concentration of elution, the amount of 

penetration volume, and the effect of imprinting were studied. 

3.2.1. Effect of solution pH. 

pH is an example of an important and effective parameter in the process of adsorption 

of various compounds by IIP, the optimal value of which depends on the adsorbent's chemical 

structure and the desired analyte and their structure changes with pH change. To investigate 

the effect of pH, first solutions with a concentration of 500 ppb were prepared from the Pb salt 

with different pHs, and 10 mL of these solutions were passed through the cartridge. The output 

phase was collected, and ICP-OES analyzed its lead content. As can be seen (Figure 3), at pH 

2 to 4, it is due to the acidic environment, and the concentration of protons is high and competes 

with Pb to penetrate into the polymer and greatly reduces the amount of adsorption and the 

highest percentage of adsorption uptake by IIP was obtained in pH=6. It seems that in acidic 

and alkaline pHs, the occurrence of the process of hydrolysis of functional groups reduces the 

ability of adsorption by IIP. Therefore, pH=6 was considered as the optimal value in subsequent 

experiments. 

 
Figure 3. Effect of solution pH on the adsorption efficiency, condition: 10 mL Pb2+ solution with concentration: 

500 µg L-1, sorbent weight: 0.5 g, eluent: HNO3, volume of eluent: 5 mL, concentration of eluent: 1 M. 

3.2.2. Determination of suitable concentration of nitric acid for Pb desorption from IIP 

adsorbent. 

To determine the appropriate concentration of nitric acid for elution and extraction of 

Pb ions from the cartridge, 5 mL nitric acid solutions with different concentrations of 0.05, 0.1, 

0.5, and 1 M were passed after column loading by 10 mL working solution. Finally, the output 

of the column was collected and its Pb content was measured by ICP-OES. Based on the results 

(Figure 4), the concentration that has removed the largest amount of lead from the column is 

more suitable for washing, which is equal to 1 M.  Because the same concentration of 1 M 

removed all the Pb (the amount that remains is a random error). On the other hand, the more 

concentrated the acid, the greater the environmental risk. 
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Figure 4. Effect of eluent concentration on the adsorption efficiency, condition: 10 mL Pb2+solution with 

concentration 500 µg L-1, sorbent weight: 0.5 g, eluent: HNO3, volume of eluent: 5 mL. 

3.2.3. Determination of penetration volume of IIP-SPE column. 

To determine the column's appropriate penetration volume based on the World Health 

Organization (WHO) standard, a 2 mL standard solution with a concentration of 500 ppb was 

used. Then, in volumes of 10, 50, and 100 mL with a 200, 40 and 20 ppb concentration, they 

were prepared at optimal pH. The concentration of the solutions before and after the passing 

through the column were analyzed by ICP-OES. It should be noted that after passing the 

solution, the column should be thoroughly washed with 1 M nitric acid and distilled water. The 

column's appropriate penetration volume can be calculated if 10% of the concentration of the 

initial solution comes out of the column. Based on the results, the penetration volume for the 

Pb-IIP column was 50 mL. 

3.2.4. The effect of imprinting of Pb in IIP polymer its comparison with control polymer. 

To determine the IIP column's adsorption, a control polymer was made without the 

presence of Pb (named NIP) for comparison with IIP. Examination of the results obtained from 

the imprinting effect of IIP and NIP showed that IIP, due to the presence of cavities formed in 

proportion to the size and radius of the Pb ion, is highly inclined to Pb ion. This metal is trapped 

in cavities whose size and shape are the same as the iconic shape and radius of Pb, and 

according to the results of ICP-OES analysis, it is shown that the IIP column has much higher 

adsorption than NIP (Table 1). 

Table 1. Comparison of IIP and NIP in Pb adsorption. 

Adsorbtion% Cfinal (µg L-1) C initioal (µg L-1) Sorbent 

93.52% 32.4 500 IIP 

35.78% 321.1 NIP 

3.3. Interfering study and selectivity of developed IIP. 

To investigate the disturbance effect, the aqueous sample was intentionally 

contaminated with alkaline and alkaline earth elements, and the amount of lead ion adsorption 

in the presence of these disturbing ions was measured by the polymer.  

As shown in Table 2, high concentrations of magnesium and cadmium ions do not 

interfere with lead extraction, indicating the prepared IIP column's high selectivity relative to 

lead ions. But in the case of Na, due to its small size and ability to fill the cavities, the adsorption 

of Pb was dramatically decreased.   

https://doi.org/10.33263/BRIAC121.668681
https://biointerfaceresearch.com/


https://doi.org/10.33263/BRIAC121.668681  

 https://biointerfaceresearch.com/ 675 

Therefore, the closer the atomic radius is to lead, the higher the absorption interference. 

So some of the absorptions is related to physical absorption 

Table 2. Interfering study. 
Adsorbtion% Cfinal (µg L-1) C initioal (µg L-1) Cation 

90.2% 49 500 Pb 

79.6% 102 Mg 

72.4% 138 Cd 

22.6% 387 Na 

3.4. Real sample analysis and comparison with the standard method. 

40 mL (proportional to the penetration volume) of tap water samples after pH 

adjustment without any other treatment was used to determine the concentration of Pb by 

developed IIP-SPE extraction followed by ICP-OES. Then 5 mL of 1 M nitric acid was passed 

through the column for washing of extracted ions. By doing this, the pre-concentrated samples 

were obtained and their concentration reaches the detection limit of the ICP-OES device. The 

results of the method are given in Table 3. As can be seen, the results of ICP-OES in all three 

samples of urban water have good repeatability. 

Table 3. Real sample analysis with the developed method. 
ICP-OES (after elimination) ICP-OES Sample 

RSD% C found (µg L-1) RSD% C found (µg L-1) 

2.6 3.0 3.6 43.4 Tap water 1 (Karaj) 

2.9 2.2 3.2 53.3 Tap water 1 (Tehran) 

3.1 0.58 3.0 23.5 Tap water 1 (Rasht) 

            3.5. Molecular dynamic root section 

           Given an auto-polymerization tendency N-mono- and di-substituted hydroxyalkyl-

(meth)acrylamides as an alternative in electrophoresis gels have been applied. The formula of 

the monomers is shown in scheme 1.  

 

Scheme 1. Various hydrophilic monomers. 

For capillary electrophoresis (CE) of biological molecules, linear non-crosslinked polymers are 

commonly used rather than cross-linked gels due to the easy replacement of media between 

runs. Many water-soluble, non-ionic polymers were shown to have utility as sieving media for 

CE. CG models of various hydrophilic monomers polymer chains are composed of “beads” 

with each bead representing some portion of the polymer chains. The length scale of the 

mapping between full atomistic detail and a CG bead can vary wildly, and this mapping is one 

of the key choices made in choosing/developing an appropriate CG model. CG beads can 

represent a specific group of atoms within a monomer, a group of monomers on the length 

scale of a Kuhn segment, a group of Kuhn segments, or even the whole chain, in addition, the 

CNMR amount of atoms have been used for atomic models in the dynamic and Monte-Carlo 
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simulation (Figure 5). Due to atomistic models, length scales might be shorter than the standard 

contour lengths of polymer chains ( >50 ) repeat units, long time scale relaxation of a single 

chain and/or rearrangement of many such polymer chains during an atomistic simulation is out 

of the range.  

 
Figure 5. CNMR of N-Iso-acrylamide as a monomer, ethylene glycol di-methacrylate as a crosslinker for 

dynamic simulation. 

 

In these lattice models, used primarily with Monte Carlo (MC) simulations, each CG 

bead in a polymer is placed on a lattice site with the bonded neighboring CG bead placed on 

one of the nearest/next-nearest-neighbor sites on that lattice. The cubic 3D lattice has been used 

in most studies, while face-centered (3D) and square (2D) lattices have been used less 

frequently. The pressures were maintained through the variant of advanced systems formalism 

and also the Langevin Piston algorithm, which decreases oscillations in those cells parameters. 

The temperatures were fixed between 300K to 310K, where are the biological ranges and 

identical to the relevant experiments. The configuration of individual monomer consistent with 

a mean field was generated by the Monte Carlo (MC) simulation, with field values adjusted for 

obtaining acceptable experimental order data. NVT (stands for a constant number of atoms, 

volume, and temperature) is the thermodynamic ensemble used via the entire simulation. 

Dynamic time for atomic modeled is proportional to the number of units included in each 

supercell. A dynamic step of 0.1 fs with simulation temperature equal=300 has been done by 

Hyper-Chemistry software.  The choice of the lattice and type of lattice model dictates the 

distribution of bond lengths and bond angles (Tables 1-3). The interaction potentials between 

the no-bonded polymers beads are modeled through hard-sphere interaction potential or 

single/multiple square well potentials  (Figure 6).  

4. Conclusions 

Heavy metal pollution is a major environmental problem, and even small amounts are 

harmful to human health. Therefore, monitoring these metals in water and environmental 

samples is an important challenge. The use of IIP sorbents causes increases selectivity in metal 

ion extraction. Considering this feature in this paper, an IIP was prepared for lead metal and it 

was used to SPE of lead from tap water samples. In the optimal conditions of the extraction, 

the adsorption of Pb on the IIP was more than 90 %. The ability to produce IIPs on a larger 

scale due to less expensive commercial monomers required for its production and the 

possibility of reusing the adsorbent can make this method one of the most important methods 
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for monitoring heavy metals on an industrial scale. It is notable that, Monte-Carlo simulation 

might be useful for further investigation of these kinds of approaches. 

 

 

Figure 6.  Simulated polymer in a water box. 
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