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Abstract: Aquaporins are integral membrane proteins which are also known as water channel proteins. 

They aid quick transportation of water across membranes and are important in controlling cell volume 

and transcellular water passage. Aquaporins are present in organisms, and they vary from archaea and 

bacteria to plants and animals. They are also found in insects and yeast. Presently, 13 mammalian 

aquaporins (AQP0 to AQP12) have been cloned and identified in every tissue in the body. These 

aquaporins are alike in basic structure with monomers containing six transmembrane and two short 

helical segments that enclose cytoplasmic and extracellular vestibules linked by aqueous pore. They 

have distinctive structures that define their functions, mode of action, and even their various control 

methods. Phylogenetic analysis of aquaporin consists of aquaporins, glycerol facilitators, plasma 

membrane integral proteins of plants, tonoplast integral proteins of plants, nodules of plants, and 

AQP8s. Aquaporins are structurally related due to their great similarity in their structural regions, 

mainly in the pore-forming domains, which accounts for the similarity in their transport mechanisms. 

The water movement by AQPs is controlled by a change in conformation or by modifying the AQP 

density in the membrane and at the transcriptional and translational levels. Aquaporins are important in 

several physiological processes and are also linked with several clinical disorders, such as brain edema, 

loss of vision, and kidney dysfunction. 
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1. Introduction 

Aquaporins belong to integral membrane proteins that form pores in the biological cell 

membrane and are essential for facilitating water transport between cells [1]. The importance 

of water cannot be overemphasized, which results in its abundance in living cells. Aquaporins 

are also known as water channel proteins. Since the discovery of the first aquaporin (AQP1) in 

mammals, many aquaporins have been found and classified in microorganisms, plants, and 

animals [2-4]. Thirteen (13) mammalian Aquaporins, AQP0 to AQP12, have been cloned and 

identified in every tissue in the body. They differ in size with diverse water permeability. The 

channel-forming integral protein (CHIP28), known as a major erythrocyte plasma membrane 

protein, was reported to be the first protein identified with a water transport activity. As the 

first example of the water channel protein, the nomenclature CHIP28 was changed to AQP1[5]. 

Aquaporins (AQPs) are known to be water channel proteins that exhibit numerous 

functional properties in plant growth and development, such as uptake of uncharged solute, 
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stress response, control of cell volume, and transcellular water passage. Aquaporins conduct 

water at a rate of 109 molecules per second, which is almost comparable to the free diffusion 

of water [6]. 

Aquaporin provides a proteinaceous pathway for water. They are of a similar basic 

structure, consisting of a narrow aqueous pore that is connected to the cytoplasmic and 

extracellular vestibules surrounded by aquaporin monomers containing six transmembrane and 

two short helical segments. The short helical segments have several conserved motifs and Asn-

Pro-Ala (NPA) sequences [7].  

Mammalian aquaporins are expressed in different organs such as the brain, kidney, lens, 

lungs, and also in cell types implicated in fluid transport such as eye, gastrointestinal organs, 

etc. However, it has been reported that cells with no obvious role in fluid transport also 

expressed aquaporins. Examples of these cells are erythrocytes and some leukocytes, 

adipocytes, and skeletal muscle. Other cells that express aquaporins include astrocytes, 

supportive cells, and sensory organs [7]. In plants, aquaporins are known to contribute to a 

range of physiological processes such as photosynthesis. They are also known to play a role in 

the pathophysiology in various clinical conditions such as diabetes insipidus and edema and 

could target therapy in altered water homeostasis diseases [8].  

About eleven (11) different aquaporin types are found in different parts of the human 

body. Multiple water-channel homologs are expressed in the kidney, lung, eye, and brain, 

which provide an arrangement for water transport in those locations. AQP1, 3, 5, 7, 9, and 10 

are expressed in the human skin, but only AQPs of the sweat and sebaceous glands and 

epidermis are strictly related to skin physiology. AQP5 functions as water secretion in sweat 

glands[9]. AQP3 is expressed in keratinocytes, and it is important in the transport and 

metabolism of glycerol in mouse skin epidermis [10]. 

The digestive system's major function is secretion and absorption, which requires the 

transport of fluid across cellular membranes[11]. AQP1 is expressed in the digestive system 

along the apical, basolateral membranes and an endothelial cell which is responsible for 

transendothelial water transport [12]. Aquaporin 3 is expressed in the epithelial lining [13], 

while both AQP3 and 4 are expressed in the gastrointestinal tract [14]. AQP8 is expressed in 

the apical plasma membrane of pancreatic duct cells[15], while AQP9 is found in the liver 

hepatocytes [16]. 

Cell membranes' porosity to water and hormones in both the male and female 

reproductive systems is vital for folliculogenesis [17], spermatogenesis, and sperm osmo-

adaptation [18]. AQPs are found to be linked with the pathogenesis of several reproductive 

disorders such as polycystic ovary syndrome[19]. 

Aquaporin families in plants are complex and are made up of a great number of genes. 

For instance, about 35 AQPs are found in Arabidopsis thaliana, 34 in Oryza sativa,31 in Zea 

mays, etc. [20]. AQPs play a key role in water and solute transport and maintain water 

homeostasis in response to environmental stresses. The roles of aquaporins in glycerol, boric 

acid, urea, NH3, and CO transport via cell membranes are also essential for seed germination, 

cytoplasm homeostasis, petal and leaf movement, maintenance of cell turgor under various 

stresses, and fruit ripening [2]. Several uncharged solutes or gases such as urea, ammonia, 

carbon dioxide (CO2), hydrogen peroxide (H2O2), nitric oxide (NO), etc., are reported to cross 

the cellular membrane via aquaporin channels [21]. 

Aquaporins have been characterized into seven subfamilies: small basic intrinsic 

proteins (SIPs), plasma membrane intrinsic proteins, x-intrinsic proteins, h-intrinsic proteins, 
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intrinsic glycerol proteins,nodulin-like plasma membrane intrinsic proteins, and tonoplast 

intrinsic proteins [22, 23]. 

2. Structure of Aquaporins 

Aquaporins are expressed generally throughout the plant and animal kingdoms. They 

are alike in basic structure, with monomers containing six transmembrane and two short helical 

segments that enclose cytoplasmic and extracellular vestibules linked by aqueous pore [7]. 

They have several conserved motifs in their short helical segments as well as NPA sequences. 

Aquaporin monomers form tetramers in membranes, and each monomer forms functional water 

more independently. The tetrameric structure is common to all the AQP family. Some 

aquaporins, such as mammalian AQP4, can further be combined in cell membranes to form 

assemblies of a supramolecular crystalline structure called orthogonal arrays of particles [7]. 

The six transmembrane α-helical protein domains in the membrane plane form a barrel-

like configuration. The amino and carboxy-terminal domains are responsible for the specific 

regulation of aquaporin activity. The cytoplasmic loops and the periplasmic loops are made up 

of two short α-helical domains on the opposite sides of the barrel, which are said to contribute 

to the water channel's formation. The domains are situated close to each other in the molecule. 

Each domain is made up of the NPA (Asn-Pro-Ala) motif, which is conserved for all aquaporins 

[24]. The structure is regarded as the ‘hourglass model’ [25]. The ‘hourglass model’ structure 

was established as three-dimensional maps of AQP1 through cryoelectron microscopy. The 

structure showed that aquaporins contain tetrameric subunits placed in parallel, forming a fifth 

pore in the tetramer center [26]. When incorporated into the membrane, aquaporins generate 

homotetramers [27]. The tetramer's assemblage is essential for appropriate folding and stability 

of protein, sorting, and posttranslational modifications of proteins. Each of the four subunits 

produces an independent water channel in the complex, whereas the pore is oriented along the 

tetramer axis [28, 29].The quaternary structure of the water channel is at variance in stability 

for various phylogenetic clusters of aquaporins. The tetramers of aquaporins with glycerol 

specificity are less stable [30]. 

The passage of water along the pore in a thermodynamically favorable condition is 

provided by forming new hydrogen bonds between the water molecule and aquaporin atoms. 

The binding to the protein occurs due to the oxygen atoms of the peptide groups from a number 

of sequential amino-acid residues [31]. The chains have both cytoplasmic and external surfaces 

which project towards the pore center. The chains are formed by amino acids of the loops 

containing two short α-helical domains. The protein molecule has at the center two NPA motifs 

with closely positioned asparagine residues that form the middle pore region. The amide groups 

of these residues also form hydrophilic areas over the channel surface. The transport of water 

molecules from one asparagine residue to another causes a release of molecules from a 

continuous hydrogen bond system formed as a result of water movement along the water pore 

[32]. 

3. Family of Aquaporins 

Aquaporins are made up of a family of water-transporting membrane proteins. Members 

of the AQP family are divided into two subfamilies based on their permeability 

characteristics:  

(i) Classic AQPs (water selective) which conduct water exclusively; 
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(ii) Aquaglyceroporins possess the extended ability to conduct small linear carbohydrates, 

in particular, glycerol, a metabolic intermediate [33]; 

Based on the functions of aquaporins, they are classified into three subfamilies:  

(a) Those that are selectively permeable for water. They are also known as orthodox 

aquaporins, which includes AQP1, 2, 4 and 5; 

(b)Those that are permeable to water as well as to glycerol, urea, and/or other small solutes; 

They are also known as aquaglyceroporins which include AQP3, 7, 9 and 10; and 

(c) Unorthodox aquaporins, which include AQP6, 8, 11, and 12; 

Thirteen (13) aquaporins subtypes have been identified recently, and their distribution 

in various tissues is linked to their functional roles in water-transporting [34]. More so, 

aquaporins may also be classified into five categories; classical aquaporins, unorthodox 

aquaporins, AQP8- type aquaammoniaporins, plasma membrane intrinsic, and 

aquaglyceroporins, according to the phylogenetic tree or phylogenetic topology as inferred 

from Bayesian inference. 

3.1. Aquaporin 0. 

The mRNA encoding AQP0 was initially identified in 1984 [35], and it was believed 

to be an aqueous channel and/or a gap junctional protein. It was referred to as MIP- major 

intrinsic protein of the lens. However, following the discovery of AQP1 and developing the 

functional assays for water transporters, it was renamed AQP0 [36]. This channel transports 

water at a slower rate than that of AQP1 [37], and in addition to facilitating water, AQP0 has 

been reported to play a role in the cell-to-cell adhesion of the lens fiber. Studies have shown 

that human individuals with mutations in AQP0 suffer from cataracts, a symptom ranging from 

cloudy vision to blindness [38].  

3.2. Aquaporin 1. 

AQP1 is the most studied aquaporins. It was reported as the first protein for which water 

transport was measured, and a high-resolution structure was determined [39]. Studies have 

identified a clear gating mechanism of action of AQP1 and that alteration of osmotic conditions 

could induce a reversible protein kinase C (PKC) dependent change in the membrane 

localization of AQP1 [40], which suggests a regulatory mechanism by trafficking. The protein 

is found in many different tissues in the body, including red blood cells, kidneys, and lungs. 

Mice and humans lacking AQP1 have shown to have urinary concentration deficiency during 

water deprivation [41].  

3.3. Aquaporin 2. 

AQP2 was discovered shortly after AQP1. It was found in the renal collecting duct and 

hence called the water channel of the collecting duct (WCH-CD) [42]. The trafficking of AQP2 

is one of the most studied aquaporin regulation mechanisms. Vasopressin triggers cAMP 

signaling, leading to activation of protein kinase A, which phosphorylates AQP2 resulting in 

translocation to the apical plasma membrane [43]. A mutation in AQP2 causes nephrogenic 

diabetes insipidus [44], and mice with mutations in this gene show severe urine concentration 

defects [45]. 
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3.4. Aquaporin 3. 

AQP3 was first identified in the basolateral membrane of the collecting duct in the 

kidney[46]. It was named glycerol intrinsic protein (GLIP) or AQP3.In addition to water 

transportation, AQP3 could also transport glycerol and urea. Aquaglyceroporin AQP3 was 

found to be aberrantly expressed in various human cancers, including human skin cell 

carcinomas and melanoma [47]. It is abundant in keratinocytes in the basal layer of the 

epidermis in human skin [48]. Low pH and nickel concentrations could bring about inhibition 

of AQP3 [49].AQP2 is reported to be down-regulated in AQP3 null mice, causing deficiency 

in urine concentration and nephrogenic diabetes insipidus [50].  

3.5. Aquaporin 4. 

AQP4 was first cloned from rat lung [51] and rat brain [52] and was named mercurial 

insensitive water channel (MIWC) due to the lack of mercury inhibition. Isoforms of AQP4 

were identified in the brain and were shown to possess several amino acids and are reported to 

transport water at higher rates [53]. There are two human isoforms; AQP4-M, a full-length 

protein, and hAQP4-M23, which is the shorter, lacking the first 22 amino acids. [54]. AQP4 

plays a major role in the control of water balance in the brain. A high-resolution structure of 

truncated hAQP4 has also been reported with some differences in the interaction with waters 

along the channel, as compared to other water-selective AQPs [55]. 

3.6. Aquaporin 5. 

Aquaporin 5 is one of three human aquaporins with a known structure [56]. AQP5 was 

first identified from a rat salivary gland, sweat glands, eyes, and lungs [57]. In the lungs, AQP5 

is found in the submucosal glands' secretory cells [58, 59]. Studies have shown reduced 

secretion of AQP5 in the sweat gland[60]. However, this observation is contrary to another 

report[61]. Human AQP5 was found in salivary glands' apical membrane, but it was primarily 

located in patients' basal membranes with Sjögren’s syndrome [62]. Defective hAQP5 

trafficking causes dry mouth and dry eyes, typical symptoms of patients suffering from 

Sjögren’s syndrome. Moreover, AQP5 null mice have a major reduction in saliva production 

[63]. In contrast, reports are indicating that the tear secretion is independent of any aquaporin 

[64].  

3.7. Aquaporin 6. 

AQP6 was first cloned from rat kidneys and was initially referred to as water channel 

3(WCH3). AQP6 was found to aid the transport of anions. A human AQP6 variant with a 

slightly different sequence was also identified and referred to as hKID [46]. In contrast to other 

aquaporins located in the kidney, AQP6 was found to be located in intracellular vesicles, 

making it less likely to be involved in the reabsorption of water. AQP6 functions as an acid-

base regulator, with pH being the activating mechanism [65]. 

3.8. Aquaporin 7. 

AQP7 was first cloned from rat testis [66] and was found to transport glycerol through 

aquaglyceroporin with a high affinity for glycerol [67-69]. However, in humans, it was first 

detected in adipose tissue [70], giving it the initial name AQP adipose (AQPap). The role in 
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this tissue is to provide the glycerol needed for gluconeogenesis [71]. AQP7 has also been 

found to reabsorb glycerol in the kidney [72]. 

3.9. Aquaporin 8. 

AQP8 was found in different tissues such as the colon, placenta, liver, heart [73], testis 

[66], and pancreas [74]. In rat liver cells, AQP8 was observed to be trafficked from intracellular 

vesicles to the plasma membrane in response to cAMP [75].  

3.10. Aquaporin 9. 

AQP9 was first identified in human white blood cells, where it was found to transport 

water and urea but not glycerol [76]. Roles of AQP9 include facilitating glycerol uptake in the 

liver [77] and acting as a glucose metabolite channel in the brain [78]. 

3.11. Aquaporin 10. 

AQP10 is an aquaglyceroporin expressed only in the human gastrointestinal tract but 

not in the mouse small intestine, where it has been demonstrated to be a pseudogene. AQP10 

has been reported to transport water, glycerol, and urea when expressed in Xenopus oocytes 

[79].  

3.12. Aquaporin 11. 

AQP11 is a 271-amino-acid protein in which the second NPA motifs are conserved, but 

the first motif is substituted by NPC(Asn-Pro-Cys) in both mice and humans [34].In 

immunohistochemical studies, AQP11 has been found in intracellular compartments of 

proximal kidney tubes [80].  

3.13. Aquaporin 12. 

AQP12 was found by searching for homologs to AQP11. The protein was localized 

intracellularly in the pancreas. AQP-12 is a 290- or 295-amino-acid aquaporin that is closely 

related to AQP-8 in humans and to AQP-0 and AQP-6in mice [81]. The first NPA motif in 

AQP-12 is substituted by an NPT (Asn-Pro-Thr) motif in both species. 

4. Mechanism of Action of Aquaporin 

A similar transport mechanism can be assumed for all aquaporins because they are 

structurally related and have highly similar consensus regions, most especially in the pore-

forming domains. The hydrophobic domain has been suggested to be involved in substrate 

specificity and/or size restriction. The aquaporin monomer's pathway is lined with conserved 

hydrophobic residues that permit rapid water transport in the form of a single-file hydrogen-

bonded chain of water molecules[30].  

The pore has two constriction sites: an aromatic region which is made up of a conserved 

arginine residue (Arg195) forms the narrowest part of the pore[82], and the highly conserved 

NPA motifs form a second filter, where single water molecules interact with the two asparagine 

side chains[30]. The dipolar water molecule rotates 180 degrees during the passage via the 

pore. The two filter regions build up electrostatic barriers, which prevent the permeation of 

protons as a result of direct interaction between water molecules and the NPA motifs [82].  
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The water permeability and selectivity of aquaporins vary considerably. The water 

permeabilities for human aquaporins have been estimated to be between 0.25 x 10-14 cm3/sec 

for AQP0 and 24 x 10-14 cm3/sec for AQP4 [83].  

Plant plasma-membrane aquaporins have aquaporin activity at different levels [84]. 

Plasma membrane intrinsic proteins (PIP1 and PIP2) isoforms from maize due to coexpression 

and heteromerization induced an increase in permeability than the expression of single 

isoforms [85]. Heteromerization seems to be important in heterologous expression systems and 

the plant, as was revealed by analysis of PIP1 and PIP2 antisense Arabidopsis plants[86]. 

The mechanism by which aquaglyceroporins promote glycerol transport has been 

investigated for the E. coli glycerol facilitator GlpF [87]. It was reported that the protein also 

has conserved NPA motifs at similar positions to those in the water-selective aquaporins, but 

aromatic amino acids achieve the preference for glycerol at the periplasmic side [87]. 

5. Regulation of Aquaporins 

AQPs mediate the bidirectional water flow driven by an osmotic gradient. The transport 

of water-mediated by AQPs is regulated either by gating, conformational change, or altering 

the AQP density in a particular membrane. The trafficking of AQPs is regulated at the 

transcriptional and/or translational level and involves shuttles of AQPs between intracellular 

storage vesicles and the target membrane. The regulation of AQPs, either through gating or 

trafficking, allow for rapid and specific regulation in a tissue-dependent manner. Another 

relatively long-term regulation by which increased/decreased protein abundance of AQPs is 

affected is by systemic hormones (e.g., vasopressin, insulin, angiotensin II), local molecules 

(e.g., purine, prostaglandins, bradykinin, dopamine, and other common microenvironment 

signals, including pH, divalent cation concentrations and osmolality [88].  

The regulations of AQPs are often associated with certain physiological or 

pathophysiological conditions. The cellular functions of aquaporins are regulated by 

posttranslational modifications, e.g., phosphorylation, ubiquitination, glycosylation, 

subcellular distribution, degradation, and protein interactions [89]. AQPs are consequently 

expressed in bronchopulmonary tissues and are regulated to facilitate transcellular water 

transport [90]. 

In plants and yeast, the plasma membrane-localized AQPs are gated in response to 

environmental stress [50]. In mammals, gating regulates the water permeability of AQP0 in a 

pH-dependent and Ca2+-calmodulin-dependent manner. The water transport via AQP0 is 

regulated by C-terminal cleavage, pH, and Ca2+/calmodulin (CaM). 

6. Regulation of Different Aquaporin Activity 

Cyclic nucleotide and protein kinase pathways are the two regulatory mechanisms 

currently proposed to be involved in the activation of AQP1 channel activity. Cyclic 

nucleotides such as cAMP are known for their role as second messengers in both hormone and 

ion-channel signaling in eukaryotic cells either directly or via activation of protein kinases and 

subsequent phosphorylation of substrate proteins. It has been demonstrated that cAMP 

increased the membrane permeability of water in Xenopus oocytes injected with AQP1 [91].  

AQP2 is regulated by trafficking between intracellular storage vesicles and the apical 

membrane, a process that is tightly controlled by the pituitary hormone vasopressin. The 

signaling transduction pathways ensuing in the AQP2 trafficking to the apical plasma 

https://doi.org/10.33263/BRIAC121.690705
https://biointerfaceresearch.com/


https://doi.org/10.33263/BRIAC121.690705  

https://biointerfaceresearch.com/ 697 

membrane of the collecting duct principal cells and the changes to AQP2 abundance in times 

of water-balance disorders have been studied extensively. AQP2 plays a key role in short-term 

regulation and long-term adaptation to collect duct water permeability [92].  

Short-term regulation is the process by which vasopressin quickly increases water 

permeability of the collecting duct principal cells by stimulating vasopressin 2receptor (V2R) 

in the basolateral plasma membrane and translocation of AQP2 from intracellular vesicles to 

the apical plasma membrane [93]. 

Long-term adaptation of collecting duct water permeability ensue when circulating 

vasopressin levels are raised over a period of hours to days, leading to an increase in AQP2 

abundance per cell in the collecting ducts[94]. Studies have also demonstrated that 

ubiquitination and subsequent proteasomal and/or lysosomal degradation of AQP2 could play 

a critical role in regulating AQP2 abundance [95]. 

The expression of AQP3 could be regulated by the Ah Receptor (AhR), which, in turn, 

is activated by numerous exogenous and endogenous ligands. AhRis triggered in response to 

environmental pollutants, and it has been shown to regulate several cellular processes, 

including cell migration and plasticity [96, 97]. 

AQP5 expression has been reported to be regulated by osmolality. It was suggested that 

an osmotic gradient between a cell and its environment is involved in regulating AQP5 

expression [81]. AQP5 expression is reported to be regulated by a cyclic AMP/protein kinase 

A (cAMP/PKA)-dependent pathway [98]. 

7. Functions of Aquaporins 

Most aquaporins' primary function is to transport water across cell membranes in 

response to osmotic gradients created by active solute transport. Non-transporting functions for 

some aquaporins have also been suggested, such as cell-cell adhesion, membrane polarization, 

and regulation of interacting proteins, such as ion channels [7]. In injury conditions, AQPs 

enhance short-term vulnerability to pathological volume changes and promote edema 

formation [99]. 

AQPs have various known physiological roles; urine concentration in kidney tubules, 

epithelial fluid secretion of saliva, cerebrospinal fluid, and aqueous humor production, cell 

migration required for angiogenesis and wound healing, regulation of brain water homeostasis, 

neural signal transduction, skin moisturization, cell proliferation in wound healing and fat 

metabolism. 

AQPs function as components of the vital cellular apparatus to maintain the 

physiological homeostasis of the musculoskeletal system. Several AQP family members are 

expressed within the epididymis of the male reproductive tract [100]. They are localized to the 

epithelial layer and are thought to play an important role in transepithelial water transport and 

sperm concentration [100]. Evidence has shown that AQPs play an important role in the 

maintenance of the structure and function of sperm and thus male fertility[101].  

AQP0 is the protein in the eye lens's fiber cells, where it is required for homeostasis 

and transparency of the lens [102-106]. AQP1 water channel blockers, as earlier reported, could 

be potent anti-brain tumor edema agents [107]. AQP1 is expressed in choroid plexus epithelium 

and may be important in forming cerebrospinal fluid [108]. AQP2 is the vasopressin-regulated 

water-channel protein found at the connecting tubule and collecting duct and plays a crucial 

role in urine concentration and body-water homeostasis[109]. AQP3 is the most abundant skin 

aquaglyceroporin, facilitates water and glycerol transport, and plays a major role in the 
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hydration of mammalian skin epidermis and proliferation and differentiation of keratinocytes 

[110]. One of the mechanisms proposed to explain AQP3 participation in tumor growth and 

spread is the ability to transport H2O2, thereby modulating oxidative stress and triggering 

signaling cascades responsible for cell proliferation and migration [111, 112]. AQP3 may 

mediate the reabsorption of water from feces by transporting it from the lumen across the 

endothelial layer into the blood vessels via AQP1 [113]. 

AQP4 is involved in diverse functions such as regulation of extracellular space volume, 

potassium buffering, cerebrospinal fluid circulation, waste clearance, neuroinflammation, 

osmosensation, cell migration, and Ca2+ signaling [114]. AQP4 regulates transcellular water 

flow in cerebral edema [101].AQP5 is expressed in glandular epithelia, alveolar epithelium, 

and secretory glands, where it is involved in the generation of saliva, tears, and pulmonary 

secretions. AQP5 is also found at the plasma membrane in the stratum granulosum and reported 

to play a role in transcellular water homeostasis in the skin [115].  

AQP3 and AQP5 were found to be abnormally expressed in quite a number of human 

tumors and have been considered potential therapeutic targets and biomarkers with prognostic 

value[116]. 

AQP6 enables the transport of urea, glycerol, nitrate [117], and AQP7 facilitates water, 

glycerol, urea, ammonia, and arsenite [107]. 

AQP8 has been reported to facilitate hydrogen peroxide diffusion across mitochondrial 

membranes in situations when reactive oxygen species are generated [39]. AQP9 is expressed 

at the sinusoidal plasma membrane of hepatocytes [118], where it serves as a conduit for the 

uptake of ammonia and mediates the efflux of newly synthesized urea. AQP9 could also 

function as a glycerol channel to facilitate glycerol uptake in the liver. AQP10 and AQP7 are 

important for maintaining normal or low glycerol contents inside the adipocyte, thus protecting 

humans from obesity [119]. AQP12 functions in controlling the proper secretion of pancreatic 

fluid following rapid and intense stimulation. 

8. Conclusions 

Since the first aquaporin description, much information on the physiological 

significance of these channel proteins has accumulated. Water channels have been identified 

in almost every living organism, from plants to animals, from prokaryotes to eukaryotes, 

including humans. Water regulation is crucially important for every cell and, therefore, for all 

life forms on earth. Structural features, such as the right-handed helical bundle and the mostly 

hydrophobic pore, were revealed by electron crystallography. While all AQPs share the same 

basic fold, the subtle differences between the different AQPsprovided most of the insights. 

Structural and dynamic information on the atomic scale is a prerequisite to understanding the 

function of a channel, and this information could become the basis for designing novel 

therapeutics for various diseases related to water balance perturbation.  
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