Review

Volume 12, Issue 1, 2022, 732 - 755

https://doi.org/10.33263/BRIAC121.732755

X-Ray Diffraction and Infrared Spectroscopy Data Review Analyses of the Calcium Phosphates

Smail El Makhloufy 1,* , Rachida Oubouaza 1 , Ali Ouasri 2 , Said Belaaouad 1 ,

- Laboratory of Physical Chemistry of Materials, FSBM, Hassan II University of Casablanca, Morocco; smail.elmakhloufy@gmail.com (S.E); oubouazarachida01@gmail.com (R.O); sbelaaouad@yahoo.fr (S.B.);
- ² Laboratory (ReSIP), Regional Center of Education and Formation Trades, Madinat Al Irfane, Souissi, BP 6210 Rabat, Morocco; aouasri@yahoo.fr (A.O.);
- * Correspondence: smail.elmakhloufy@gmail.com (S.E);

Scopus Author ID 57212566052

Received: 15.02.2021; Revised: 25.03.2021; Accepted: 2.04.2021; Published: 26.04.2021

Abstract: The objective of this literature reviews is to report the various methods used in the synthesis of the calcium monophosphates and condensed phosphates compounds, such as the co-precipitation method, Boulle's process, solid-state reactions, hydrothermal synthesis, and thermal dehydration, and present the crystalline data of these salts as classified from the hexagonal to the triclinic system. For the monophosphates, the compounds with $(PO_4)^{3-}$ groups crystallized in the hexagonal, rhombohedral, trigonal, orthorhombic, and monoclinic systems, against the compounds with (HPO₄)² and (H₂PO₄)-, which are crystallized in low symmetry systems (monoclinic, and triclinic). For the long polyphosphates chain (PO₃-)_n, where the formula contains one (PO₄)³- group, the compounds crystallized in the high possible symmetry (tetragonal systems); the compounds of a formula containing two, three, and four (PO₄)³- groups are crystallized in the lower symmetry systems (monoclinic, and triclinic). In the anhydrous cyclotetraphosphates, the substitution of 2K+ by Ca2+ induced lowering symmetry from the tetragonal system in CaK₂P₄O₁₂ to the triclinic system in Ca₂P₄O₁₂. The calcium cyclohexaphosphates are all found to be hydrate compounds. With ammonium cations, the (NH₄)₆P₆O₁₈.1H₂O crystallized in the orthorhombic system, as a highly symmetrical system found in this phosphate type. Besides, the study is extended to review the inferred characterization made PO^{3-} in γ -Ca(PO_3)₂, PO_4^{3-} in anions, CaHPO₄, β -Ca₂P₂O₇, P₃O₉³⁻ in MnCa₂(P₃O₉)₂, P₄O₁₂⁴⁻ in Ca₂P₄O₁₂.1.5H₂O₂·3H₂O and P₆O₁₈⁶⁻ $Ca_2K_2P_6O_{18}.6H_2O$.

Keywords: chemical synthesis; X-ray diffraction; infrared vibration; condensed phosphate; monophosphate; calcium.

© 2021 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

Materials based on monophosphates and condensed phosphates associated with calcium (Ca-P) have been developed considerably during recent decades. These compounds are found to be interesting in many fields of applications such as bioactive ceramics, biology, building materials (cement), and biotechnological materials [1-4]. For this reason, several review articles were interested in calcium phosphate [5,6].On the other hand, the chemical synthesis, crystalline data, and infrared spectroscopy of some characteristic anions of monophosphates and condensed phosphates associated with some alkaline earth elements [M^{II}=Ba,Sr] [7,8] and transition elements[M=Mn][9] have been recently reviewed.

In the present work, we will develop a review study to report and analyses the synthesis, X-ray, and infrared characteristics of monophosphates and condensed phosphates associated with calcium (Ca-P).

2. Monophosphates PO₄³-

2.1. Synthesis.

In this part, we present the synthesis details of monophosphate associated with calcium, which has been prepared by various synthetic methods, such as: the co-precipitation method, hydrothermal synthesis, and thermal method.

2.1.1. $Ca(H_2PO_4)_2.H_2O.$

This compound was prepared by Bac *et al.* [10] by solution precipitation methods using calcium carbonate CaCO₃ and phosphoric acid H₃PO₄ as starting materials. In a typical procedure, 23g of H₃PO₄ was diluted with 14g of water, and then the formed solution was heated to 90°C in a water bath. Calcium carbonate CaCO₃ was then gradually added in small portions, according to the following chemical reaction:

$$CaCO_3 + 2H_3PO_4 \longrightarrow Ca(H_2PO_4)_2.H_2O + CO_2$$

The so-obtained solution was stirred continuously for c.a. 1 hour to form a homogeneous mixture. The product was dried at 95°C and obtained 25 g white powder.

2.1.2. $Ca(H_2PO_4)_2$

This anhydrous compound was obtained by Bac *et al.* [10,11] by thermal dehydration of the hydrated phase Ca(H₂PO₄)₂.H₂O at 120 °C, according to the following chemical reaction:

$$Ca(H_2PO_4)_2.H_2O \longrightarrow Ca(H_2PO_4)_2+H_2O$$

2.1.3. CaHPO₄.2H₂O.

The titled crystal was prepared by Curry *et al.* [12] by neutralization of phosphoric acid H₃PO₄ with calcium hydroxide Ca(OH)₂ at pH between 3 and 4, and at room temperature, according to the following chemical reaction:

$$Ca(OH)_2 + H_3PO_4 \longrightarrow CaHPO_4.2H_2O$$

2.1.4. CaHPO₄.

This anhydrous compound was obtained by Dickens *et al.* [13] by thermal dehydration of the hydrated phase CaHPO₄.2H₂O at 180 °C, according to the following chemical reaction:

$$CaHPO_4.2H_2O \longrightarrow CaHPO_4+2H_2O$$

2.1.5. α -Ca₃(PO₄)₂.

Samples of α -Ca₃(PO₄)₂ were prepared by Mathew *et al.* [14] by heating pressed pellets of stoichiometric amounts of CaHPO₄ and calcium carbonate CaCO₃, mixed with 1% cornstarch and a few drops of distilled water, to 1400°C for two days, like the following:

$$2CaHPO_4 + CaCO_3 \longrightarrow \alpha - Ca_3(PO_4)_2 + CO_2 + H_2O$$

2.1.6. β -Ca₃(PO₄)₂.

Yashima *et al.* [15] have prepared the titled compound by solid-state reactions from CaHPO₄ and CaCO₃. Stoichiometric amounts of CaHPO₄ and calcium carbonate CaCO₃ were mixed for about 1.5h in an agate mortar, like the following:

$$2CaHPO_4 + CaCO_3 \longrightarrow \beta - Ca_3(PO_4)_2 + CO_2 + H_2O$$

The mixture was pressed into pellets under uniaxial pressure of 150 MPa. The pellets were sintered for 24h at 1000 °C to obtain a single phase of β -Ca₃(PO₄).

2.1.7.
$$Ca_4(PO_4)_2O$$
.

This phase was obtained by Dickens *et al*.[16] by heating at high temperature a mixture of calcium carbonate CaCO₃ and phosphate salts Ca₂P₂O₇.H₂O with a Ca/P ratio close to 2, according to the following chemical reaction:

$$2CaCO_3 + Ca_2P_2O_7.H_2O \longrightarrow Ca_4(PO_4)_2O + CO_2 + H_2O$$

2.1.8. $Ca_{10}(PO_4)_6F_2$.

This compound was prepared by Abrouki *et al.* [17] by the co-precipitation method using diammonium phosphate (NH₄)₂HPO₄, calcium nitrate Ca(NO₃)₂and ammonium fluoride NH₄F as starting materials. In a typical procedure, 250 mL of a solution containing 7.92 g of (NH₄)₂HPO₄ and 1 g of NH₄F, maintained at pH greater than 12 by addition of ammonium hydroxide (15-20 mL), were dropped under constant stirring into 150 mL of a solution containing 23.6 g calcium nitrate (Ca(NO₃)₂·4H₂O), according to the following chemical reaction.

$$6(NH_4)_2HPO_4 + 10 \ Ca(NO_3)_2 + 2NH_4F + 6NH_4OH \rightarrow Ca_{10}(PO_4)_6F_2 + 20NH_4(NO_3) + 6H_2O_3 + 20H_4(NO_3)_2 + 2NH_4F_3 + 6NH_4OH \rightarrow Ca_{10}(PO_4)_6F_2 + 20NH_4(NO_3)_2 + 6H_2O_3 +$$

The obtained product was filtered, washed with doubly distilled water, dried overnight at 80°C, and calcined in air at 700°C.

Powder crystalline of CaZr₄(PO₄)₆ have been prepared by Alamo *et al.* [18] from mixtures of ZrO₂, NH₄H₂PO₄, and CaCO₃ in stoichiometric proportions and heated in three steps at 800°C for 12 h, at 1200°C for 12 h and at 1300°C for 10 h to obtain a single-phase, according to the following chemical reaction:

$$4ZrO_2 + 6NH_4H_2PO_4 + CaCO_3 \rightarrow CaZr_4(PO_4)_6 + CO_2 + 6NH_3 + 9H_2O_3$$

2.1.10.
$$CsCa_{10}(PO_4)_7$$
 and $Cs_{0.63}Ca_{9.63}Fe_{0.37}(PO_4)_7$.

The two compounds were prepared by Zatovsky *et al.* [19] by solid-state reactions from CsPO₃, CaO, and Fe₂O₃. The calculated amounts of CsPO₃, CaO, and Fe₂O₃ were ground, put into a platinum crucible, and the necessary amount of H₃PO₄ was added to the mixture, following this chemical reaction:

$$CsPO_3 + 10CaO + 6H_3PO_4 \longrightarrow CsCa_{10}(PO_4)_7 + 9H_2O$$

$$0.63CsPO_3 + 9.63CaO + 0.37Fe_2O_3 + 6.37H_3PO_4 \rightarrow Cs_{0.63}Ca_{9.63}Fe_{0.37}(PO_4)_7 + 9.55H_2O_3 + 6.37H_3PO_4 + 6.37H_3PO_5 +$$

The crucibles were put into the cold furnace and slowly heated up to 1073 K. At this temperature, the flux was exposed during 40-50 min to reach homogeneity. The crystallization was performed at a rate of 30–50 K/h down to 943-923 K.

This compound was prepared by Zatovsky *et al.* [20] by solid-state reaction methods using CsPO₃, CaCO₃, and Cr₂O₃as starting materials. In a typical procedure, a mixture ofCsPO₃, CaCO₃, and Cr₂O₃was ground in an agate mortar, placed into a platinum crucible, and heated up to 1273 K. The melt were kept at this temperature until it became homogenous (2h). The temperature was then decreased to 1053 K at a rate of 30 K h⁻¹, and at this temperature, the remaining flux was decantated, according to the following chemical reactions:

$$7CsPO_3 + 9CaCO_3 + 1/2 Cr_2O_3 \rightarrow Ca_9Cr(PO_4)_7 + 9CO_2 + 7/2 Cs_2O$$

The crucible was cooled down to room temperature. The solidified melt was leached out with deionized water, and light-green crystals of Ca₉Cr(PO₄)₇ were recovered.

2.1.12. CaNa₂(HPO₄)₂.

This compound was prepared by Ben Chaabane *et al.* [21] by hydrothermal synthesis using CaCl₂.xH₂O, NaCl, H₃PO₄, and C₆H₁₅N as starting materials. A mixture of CaCl₂.xH₂O (805 mg), NaCl (847 mg), H₃PO₄ (14.4 mmol), and C₆H₁₅N (24.6 mmol) was placed in a Teflon vessel and filled to a degree of 80% with water (final pH =9.5). The obtained product was heated at 180°C for 5 days, and the powder compound CaNa₂(HPO₄)₂ was recovered by vacuum filtration and air drying, according to the following chemical reactions:

$$CaCl_2.xH_2O+2NaCl+2H_3PO_4 \longrightarrow CaNa_2(HPO_4)_2+4HCl+xH_2O$$

2.1.13. NaCaPO₄.

This compound was prepared by Ben Amara *et al.* [22] from a stoichiometric mixture of sodium carbonate NaCO₃, calcium carbonate CaCO₃ and ammonium phosphate (NH₄)₂HPO₄, according to the following chemical reactions:

$$CaCO_3+ 1/2 Na_2CO_3+ (NH_4)_2HPO_4 \rightarrow NaCaPO_4+3/2CO_2+ 2NH_3+3/2H_2O_4$$

The initial mixture was first heated at 673 K under a nitrogen stream, then at 1223 K in air. Single crystals of NaCaPO₄ were grown by cooling, from 1073 to 473 K at a rate of 10 Kh⁻¹.

2.2. Crystallographic data.

In this part, we reported the main crystallographic data for the various monophosphates associated with calcium, classified from the hexagonal to the triclinic system (Table 1).

Compound	System	Space group	Z	a(Å) α°	b(Å) β°	c(Å) γ°	References
Ca ₁₀ (PO ₄) ₆ F ₂	Hexagonal	P63/m	1	9.364	9.364	6.893	[17]
CaZr ₄ (PO ₄) ₆	Hexagonai	R-3		8.7859	8.7852	22.6620	[18]
β Ca ₃ (PO ₄) ₂	Rhombohedral	R3c	21	10.4352	10.4352	37.4029	[15]

Compound	System	Space group	z	a(Å) α°	b(Å) β°	c(Å) γ°	References
	(hexagonal setting)						
CsCa ₁₀ (PO ₄) ₇		R3c	6	10.5536	10.5536	37.2283	[19]
Cs _{0.63} Ca _{9.63} Fe _{0.37} (PO ₄) ₇	Trigonal	R3c	6	10.5221	10.5221	37.2405	[19]
Ca ₉ Cr(PO ₄) ₇		R3c	6	10.3272	10.3272	37.132	[20]
NaCaPO ₄	Orthorhombic	Pn2 ₁ a	12	20.397	5.412	9.161	[22]
CaHPO ₄ .2H ₂ O		Ia(C _s ⁴)	4	5.812	15.180 116.25	6.239	[12]
α Ca ₃ (PO ₄) ₂	Monoclinic	P2 ₁ /a	24	12.887	27.280 126.20	15.219	[14]
Ca ₄ (PO ₄) ₂ O	Monochnic	P2 ₁	4	7.023	11.986 90,90	9.473	[16]
CaNa ₂ (HPO ₄) ₂		P2 ₁	2	9.0652	7.1468 98.782	5.4700	[21]
Ca(H ₂ PO ₄) ₂ .H ₂ O		P-1	2	5.6125 98.3516	11.8821 117.7303	6.4324 83.5106	[10]
Ca(H ₂ PO ₄) ₂	Triclinic	P-1	2	7.5577 109.87	8.2531 93.68	5.5504 109.15	[10,11]
CaHPO ₄		P-1	4	6.910 96.34	6.627 103.82	6.998 88.33	[13]

Table 1. Main crystallographic data for the monophosphates associated with calcium, classified from the hexagonal to the triclinic system.

It is worthy to note that the compounds containing the $(PO_4)^{3-}$ groups are crystallizing in the hexagonal, rhombohedral, trigonal, orthorhombic, and monoclinic systems, against the compound with $(HPO_4)^{2-}$ and $(H_2PO_4)^{-}$, which crystallized in the systems with low symmetry (monoclinic, and triclinic).

2.3. Infrared characterization studies made on PO₄³⁻ in the monetite, CaHPO₄.

Tortet *et al.* [23] have studied the infrared spectrum of monetite, CaHPO₄ at 25°C. In this study, the infrared stretching v(OH) observed at 3190, 2849, and 2360 cm⁻¹ was found to be strongly dependent on hydrogen bonding taken place in this compound. The broad band that appeared in 1450-1300 cm⁻¹ was assigned to the P—O—H in-plane bending. The P—O and P—O(H) stretching of the phosphate [PO₄]³-anion [24-26] were assigned to the features observed as strong and medium absorptions bands at 1081 cm⁻¹ and 891 cm⁻¹ in the IR spectrum. The O–P–O (H) and O–P–O vibrations of the phosphate [PO₄]³- anion appeared at 578 cm⁻¹ and 420 cm⁻¹, respectively (Table 2).

Table 2. Frequencies (cm⁻¹) of IR absorption bands for monetite, CaHPO₄.

Infrared (v / cm^{-1})	Assignments [23-26]
3447	O—H stretching of residual free water
3190 ; 2849 ; 2360	(P)O—H stretching modes
1600—1700 (broad)	H—O—H bending and rotation of residual free
1000—1700 (Bload)	water
1450—1300 (broad)	P—O—H in-plane bending
1170; 1131 ; 1081	P—O stretching modes
996	P—O stretching modes
891	P—O(H) stretching
578	O—P—O(H)
532	bending modes
420	O—P—O
404	bending modes

3. Long polyphosphates chain (PO₃-)_n

3.1. Synthesis.

The polyphosphates associated with calcium were prepared by various synthetic methods, such as the conventional solid-state method and thermic method.

3.1.1. $Ca(PO_3)_2$

This compound was prepared by Rothammel *et al.* [27] by thermal dehydration of the hydrated phase Ca(H₂PO₄)₂.H₂O at 1523 K, according to the following chemical reactions:

$$Ca(H_2PO_4)_2.H_2O \longrightarrow Ca(PO_3)_2 + 3H_2O$$

Cooling of the melt to 1223 K gives crystals of Ca(PO₃)₂ sufficiently large and high quality.

3.1.2. BaCa(PO₃)₄.

This salt was prepared by Averbuch-Pouchot [28] by calcination at 700°C of a mixture in stoichiometric proportions of diammonium monophosphate (NH₄)₂HPO₄, barium carbonate BaCO₃ and calcium carbonate CaCO₃, according to the following chemical reactions:

$$BaCO_3 + CaCO_3 + 4(NH_4)_2HPO_4 \longrightarrow BaCa(PO_3)_4 + 2CO_2 + 8NH_3 + 6H_2O$$

3.1.3. $ZnCa(HPO_3)_2.2H_2O$.

The titled compound was prepared by Shieh et al. [29], by solution precipitation methods using ZnCl, CaHPO₃.H₂O, and phosphoric acid H₃PO₄ as starting materials.0.67 g of ZnCl, was added to a solution of 1.20 g of CaHPO₃.H₂O in 10 mL of aqueous 1M H₃PO₃, according to the following chemical reactions:

$$ZnCl_2+CaHPO_3.H_2O + H_3PO_4 \rightarrow ZnCa(HPO_3)_2.2H_2O + 2HCl$$

The clear solution was stirred overnight, followed by the addition of 7 mL of EtOH. Colorless platelike crystals were obtained after the solution had been allowed to stand for several days at room temperature.

3.1.4. $CaNa(PO_3)_3$.

This compound was prepared by Abrahams *et al.* [30] by the conventional solid-state method. Appropriate stoichiometric amounts of Na₂CO₃, NH₄H₂PO₄, and CaCO₃ were milled; the dried mixture was placed in a platinum crucible and heated at 300 °C. For 1 hour to decompose the carbonate and then heated for 12 hours at 700 °C, according to the following chemical reactions:

$$1/2Na_2CO_3 + CaCO_3 + 3NH_4H_2PO_4 \rightarrow CaNa(PO_3)_3 + 3/2CO_2 + 3NH_3 + 9/2H_2O_3 + 3NH_3 + 9/2H_3O_3 + 3/2H_3O_3 + 3/2H_3O_3$$

The crystalline materials of CaNa(PO₃)₃ were obtained by quench quenching to the air.

3.1.5. CaHPO₃.

Using Ca(NO₃)₂.4H₂O and phosphorous acid H₃PO₃(as starting materials), Phillips *et al.* [31] have prepared the above-mentioned compound. A mixture of 0.52 g of H₃PO₃, 2.36 g

of Ca(NO₃)₂.4H₂O, and 0.47 g of NH₄ClO₄ was dissolved in 10 ml of H₂O, then mixed with 4.0 g of 15 N NH₄OH and loaded into a 23 ml Teflon cup, according to the following chemical reactions:

$$Ca(NO_3)_2.4H_2O+NH_4ClO_4+H_3PO_3+NH_4OH \longrightarrow CaHPO_3+2NO_2+2NH_3+6H_2O+HCl+7/2O_2$$

The reaction mixture was heated in a pressure vessel for seven days at 473 K and cooled to room temperature for a few hours. The product of CaHPO₃was recovered by vacuum filtration and rinsed with deionized water.

3.1.6. $CaRb_2(PO_3)_4$.

This crystal was prepared by Henry *et al.* [32] by calcining of a mixture of equimolecular rubidium Rb₂CO₃ and calcium CaCO₃ carbonates in a large excess of orthophosphoric acid H₃PO₄ at 400°C for 24 hours, as the following chemical reactions:

$$Rb_2CO_3 + CaCO_3 + 4H_3PO_4 \longrightarrow CaRb_2(PO_3)_4 + 2CO_2 + 6H_2O_3$$

3.1.7.
$$\gamma$$
-Ca(PO₃)₂.

This compound was synthesized by Jackson *et al.* [33] from an acidic flux containing calcium hydroxide Ca(OH)2and phosphoric acid H₃PO₄, according to the following chemical reactions:

$$Ca(OH)_2+2H_3PO_4 \longrightarrow \gamma-Ca(PO_3)_2+4H_2O$$

The reaction mixture was heated to 250°C for 24 hours and allowed to cool. The final products were collected by filtration and washed and then left to dry for 2-3 hours at 120°C.

3.1.8. LiCa(PO₃)₃.

This crystal was prepared by Han *et al*. [34] by the conventional solid-state method. Appropriate stoichiometric amounts of Li₂CO₃, CaCO₃, and NH₄H₂PO₄ were milled; the dried mixture was placed in a platinum crucible and heated at 650 °C and held at this temperature for 5 h to obtain a transparent solution, according to the following chemical reactions:

$$1/2 \text{ Li}_2\text{CO}_3 + \text{CaCO}_3 + 3\text{NH}_4\text{H}_2\text{PO}_4 \longrightarrow \text{LiCa}(\text{PO}_3)_3 + 3\text{NH}_3 + 3/2\text{CO}_2 + 9/2\text{H}_2\text{O}_3$$

The solution was quickly cooled to 590 °C and then the temperature lowered to 350 °C at a rate of 2 °C h⁻¹. After this process, it was cooled down to room temperature at a rate of 15 °C h⁻¹. During the slow cooling process, some crystals were obtained.

3.2. Crystallographic data.

In this part, we reported the main crystallographic data for the various polyphosphate associated with calcium, classified from the hexagonal to the triclinic system (Table 3).

Table 3. Main crystallographic data for the polyphosphates associated with calcium, classified from the hexagonal to the triclinic system.

Compound	system	Space group	Z	a(Å) α°	b(Å) β°	c(Å) γ°	References
CaHPO ₃	Tetragonal	P4 ₃ 2 ₁ 2	8	6.67496	6.67496	12.9542	[31]
Ca(PO ₃) ₂	Monoclinic	P2 ₁ /a	8	16.960	7.7144 90.394	6.9963	[27]
BaCa(PO ₃) ₄]	P2 ₁ /n	4	15.24	9.173	7.231	[28]

https://biointerfaceresearch.com/

Compound	system	Space group	Z	a(Å) α°	b(Å) β°	c(Å) γ°	References
					90.96		
CaRb ₂ (PO ₃) ₄		P2 ₁ /n	4	11.436	13.352	7.908	[22]
Card2(FO3)4		F 2]/II	4	11.430	101.89	7.908	[32]
ZnCa(HPO ₃) ₂ .2H ₂ O		P2 ₁ /n	4	7.131	7.766	14.479	[29]
ZIICa(HPO3)2.2H2O			4		97.30		[29]
vC₂(DO₂)₂		C-	0	9.5669	9.5023	10 2717	[22]
$\gamma Ca(PO_3)_2$		Сс	8	9.3009	93.474 10.3717		[33]
CaNa(DO ₂)		P-1	2	6.711	6.934	7.619	[20]
CaNa(PO ₃) ₃	Triclinic	P-1	2	83.44	81.41	82.80	[30]
T.C.(DO)	Tricinic	P-1	2	6.6726	6.9181	7.334	[24]
LiCa(PO ₃) ₃		F-1	2	83.839	80.595	81.797	[34]

For the long polyphosphates chain $(PO_3^-)_n$, one can state that when the formula contains one $(PO_4)^{3-}$ group, the corresponding compound is crystallizing in the high symmetry (tetragonal systems), the compounds belonging to the formula with two, three, and four $(PO_4)^{3-}$ groups are crystallized in the systems with lower symmetry (monoclinic, and triclinic).

3.3. Infrared characterization studies made on PO_3^- in γ -Ca(PO_3).

Jackson et al. [33] have studied the infrared spectrum of the sample of γ-Ca(PO₃) at room temperature. The band in the region of 850-920 cm⁻¹ was assigned to the antisymmetric stretching vibration of the P-O-P, which is at a low frequency due to the infinite number of PO₄ units. The band in 1160-1170 cm⁻¹ was assigned to the antisymmetric stretching of the terminal PO₃, and the band at 1230-1250 cm⁻¹ to the antisymmetric stretching vibration of the bridging PO₂. The symmetric stretching bridging PO₂ was assigned to the band cm⁻¹, and symmetric 1080-1110 the PO_3 stretching modes appeared in 940-1020 cm⁻¹ (Table 4).

 Frequencies (v /cm⁻¹)
 Assignments[33]

 1230-1250
 vas(PO2)

 1160-1170
 vas(PO3)

 1080-1110
 vs(PO2)

 940-1020
 vs(PO3)

 850-920
 vas (P-O-P)

Table 4. Frequencies (cm⁻¹) of IR absorption bands for γ -Ca(PO₃)₂.

4. Condensed phosphates

4.1. Oligophosphates $(P_nO_{3n+1})^{(n+2)}$.

4.1.1. Diphosphates $P_2O_7^{4-}$.

4.1.1.1. Synthesis.

In this part, we present the synthesis of the diphosphates associated with calcium by the various synthetic methods: thermic method and co-precipitation method.

4.1.1.1.1 CaCuP₂O₇.

This compound was prepared by Riou *et al.* [35], from a mixture of copper oxide CuO, calcium carbonate CaCO₃and diammonium phosphate (NH₄)₂HPO₄ in ratios 1:1:2, as the following chemical reaction:

$$CuO+CaCO_3+2(NH_4)_2HPO_4 \longrightarrow CaCuP_2O_7+CO_2+4NH_3+3H_2O$$

The reaction mixture was first heated at 973 K to decompose the carbonate and the phosphate. The resultant product was ground and heated for nine days at 1333 K. The quenching at room temperature gives crystals of CaCuP₂O₇ sufficiently large and high quality

4.1.1.1.2.
$$Ca_3(NH_4)_2(P_2O_7)_2.6H_2O$$
.

This crystal was prepared by Brown *et al.* [36] by mixing 1 gram of Ca₃H₂(P₂O₇)₂.4H₂O and 15 ml of NH₄OH (O.6M) at room temperature for 24 to 48 hours, according to the following chemical reaction:

$$Ca_3H_2(P_2O_7)_2.4H_2O + 2NH_4OH \longrightarrow Ca_3(NH_4)_2(P_2O_7)_2.6H_2O$$

4.1.1.1.3.
$$Ca_5M_2(P_2O_7)_3.6H_2O$$
 (M=NH4,K).

These two salts were prepared by Brown *et al*. [36] by adding 1 gram of Ca₂P₂O₇.4H₂O calcium pyrophosphate (prepared from Na₄P₂O₇ and CaCl₂) to a stirred (5M NH₄Cl or 5M KCl) solution at 70° to 75 °C, according to the following chemical reaction:

$$Na_4P_2O_7.4H_2O + 2CaCl_2 \rightarrow Ca_2P_2O_7.4H_2O + 4NaCl$$

 $3Ca_2P_2O_7.4H_2O + 2MCl + 2H_2O \rightarrow Ca_5M_2(P_2O_7)_3.6H_2O + CaCl_2$

The products precipitated rapidly. Larger crystals were prepared by allowing a diluted mixture of the reagents to stand at room temperature for about a week.

4.1.1.1.4.
$$Ca(NH_4)_2H_4(P_2O_7)_2$$
.

Brown *et al.* [36] have also prepared the Ca(NH₄)₂H₄(P₂O₇)₂ compound by allowing 5 grams of CaH₂P₂O₇ to stand at room temperature in 20 ml of a saturated solution of NH₄Cl for about 24 hours, according to the following chemical reaction:

$$2CaH_2P_2O_7 + 2NH_4C1 \rightarrow Ca(NH_4)_2H_4(P_2O_7)_2 + CaCl_2$$

The product was filtered by suction, suspended in ethyl alcohol to remove NH₄Cl, filtered, rinsed with acetone, and air-dried.

$$4.1.1.1.5.$$
 CaK₂H₄(P₂O₇)₂.

This salt was prepared by Brown *et al.* [36] by adding 5 grams of CaH₂P₂O₇ to a mixture of 20 ml of saturated KCl solution and 10 grams of solid KCl and allowing the mixture to stand at room temperature for 12 to 24 hours, according to the following chemical reaction:

$$2CaH_2P_2O_7 + 2KCl \longrightarrow CaK_2H_4(P_2O_7)_2 + CaCl_2$$

The product was filtered rapidly by suction, suspended in ethyl alcohol to remove KCl, filtered, rinsed with acetone, and air-dried.

4.1.1.1.6. CaNH₄HP₂O₇.

This salt was prepared by Mathew *et al.* [37] by adding 1 g of CaH₂P₂O₇ to a solution of 2.4 g of NH₄Cl in 75 ml of H₂O at 65 °C, according to the following chemical reaction:

$$CaH_2P_2O_7 + NH_4Cl \longrightarrow CaNH_4HP_2O_7 + HCl$$

The solution was allowed to cool to $52\,^{\circ}\text{C}$ over a period of a few hours without stirring. The solution was then held at that temperature overnight to encourage the growth of the title compound.

This phase was prepared by Sandström *et al.* [38] by mixing potassium carbonate K_2CO_3 and calcium polyphosphate $Ca(PO_3)_2$ at 1273 K in a 1:1 ratio, as illustrated by the following chemical reaction:

$$Ca(PO_3)_2 + K_2CO_3 \longrightarrow CaK_2P_2O_7 + CO_2$$

Crystals of CaK₂P₂O₇ were grown by heating a mixture consisting of CaK₂P₂O₇ and KH₂PO₄ at 1323 K for about 12h, followed by cooling at 1023 K, and finally quenching to room temperature. The solidified liquid was crushed, and the resulting colorless crystals were picked out.

4.1.1.1.8. CaNH₄NaP₂O₇ .3H₂O.

This compound was obtained by Averbuch-Pouchot *et al.* [39] by adding a dilute solution of calcium chloride CaCl₂ to a concentrated solution of ammonium chloride NH₄Cl and sodium diphosphate Na₂P₂O₇, which causes the formation of a gel that gradually transforms at room temperature, giving rise to crystals of CaNH₄NaP₂O₇.3H₂O sufficiently strong and good quality, according to the following chemical reaction:

$$CaCl_2+NH_4Cl+Na_2P_2O_7 \longrightarrow CaNH_4NaP_2O_7 . 3H_2O + NaCl$$

4.1.1.1.9.
$$\alpha$$
-CaNa₂P₂O₇.4H₂O and β -CaNa₂P₂O₇.4 H₂O.

The two crystal forms were prepared by Cheng *et al.* [40] by adding 0.1M Na₄P₂O₇.10H₂O first neutralized with hydrochloric acid HCl to 1 mM CaCl₂ at room temperature, according to the following chemical reaction:

$$CaC_{12}+Na_4P_2O_7.10H_2O \longrightarrow CaNa_2P_2O_7.4H_2O +2NaCl+6H_2O$$

4.1.1.1.10.
$$\beta$$
 Ca₂P₂O₇.

This compound was obtained by Webb *et al.* [41,42] by heating the dicalcium phosphate dehydrate CaHPO₄.2H₂O to approximately 750°C produces β -Ca₂P₂O₇, as illustrated in the following chemical reaction:

$$2\text{CaHPO}_4.2\text{H}_2\text{O} \xrightarrow{\textbf{120}^{\circ}} 2\text{ CaHPO}_4 \xrightarrow{\textbf{450}^{\circ}\text{C}} \gamma \text{ Ca}_2\text{P}_2\text{O}_7 \xrightarrow{\textbf{50}^{\circ}\text{C}} \beta \text{ Ca}_2\text{P}_2\text{O}_7$$

$$4\text{H}_2\text{O} \qquad \qquad \textbf{H}_2\text{O}$$

$$4.1.1.1.11. \text{ Cs}_3\text{CaBi}(\text{P}_2\text{O}_7)_2.$$

This compound was obtained by Zatovsky et al. [43] using the conventional solid-state method. Appropriate stoichiometric amounts of bismuth oxide Bi₂O₃, calcium CaCO₃, dihydrogen phosphate CsH₂PO₄ and diammonium phosphate (NH₄)₂HPO₄ were ground and then heated to 1273 K, according to the following chemical reaction:

 $CsH_2PO_4 + 2CsOH \cdot H_2O + 3(NH4)_2HPO_4 + 1/2Bi_2O_3 + CaCO_3 \Rightarrow Cs_3CaBi(P_2O_7)_2 + CO_2 + 17/2 H_2O + 6NH_3$

The molten product was maintained at this temperature for 1 hour, cooled with a speed of 25 Kh⁻¹ to 973 K, and then cooled to room temperature. The crystalsCs₃CaBi(P₂O₇)₂were separated from the glass by washing with distilled water and air.

4.1.1.1.12. CaRb₂P₂O₇ and CaCs₂P₂O₇.

These two compounds were prepared by Lyutsko *et al.* [44] by heating a mixture of calcium dihydrogen diphosphate $CaH_2P_2O_7$ and $M^INO_3(M^I=Rb, Cs)$ at 1073 K, according to the following chemical reaction:

$$CaH_2P_2O_7 + 2MNO_3$$
 (M: Rb, Cs) \rightarrow $CaM_2P_2O_7$ (M: Rb, Cs) $+ 2NO_2 + H_2O_3$

4.1.1.2. Crystallographic data.

The main crystallographic data are reviewed for the various diphosphates associated with calcium and classified from the hexagonal to the monoclinic system (Table 5).

Table 5. Main crystallographic data for the diphosphates associated with calcium, classified from the hexagonal to the triclinic system.

Compound	System	Space group	Z	a(Å) α°	b(Å) β°	c(Å) γ°	References
Ca ₅ (NH ₄) ₂ (P ₂ O ₇) ₃ ·6H ₂ O	Hexagonal	D_{6h}^3 , C_{6v}^3 or D_{3h}^2	2	11.88	11.88	9.83	[36]
$Ca_5K_2(P_2O_7)_3 \cdot 6H_2O$	пехадона	D_{6h}^3 , C_{6v}^3 or D_{3h}^2	2	11.88	11.88	9.83	[36]
β- Ca ₂ P ₂ O ₇	Tetragonal	P4 ₁	8	6.684	6.684	24.144	[41, 42]
$Cs_3CaBi(P_2O_7)_2$	Orthorhombic	P2 ₁ 2 ₁ 2 ₁	4	9.2873	9.4292	17.6162	[43]
CaCuP ₂ O ₇		P2 ₁ /n	4	5.2104	8.0574 91.356	12.344	[35]
Ca ₃ (NH ₄) ₂ (P ₂ O ₇) ₂ ·6H ₂ O		P2 ₁ /n	2	7.67	11.51 92.28	11.00	[36]
Ca(NH4)2H4(P2O7)2		C2/c	4	7.17	19.99 102.52	9.33	[36]
CaK ₂ H ₄ (P ₂ O ₇) ₂		C2/c	4	7.17	19.99 102.52	9.33	[36]
CaNH ₄ HP ₂ O ₇		P2 ₁ /n	8	10.523	17.672 90.47	7.266	[36, 37]
CaK ₂ P ₂ O ₇	Monoclinic	P2 ₁ /n	4	9.79	5.69 104.03	12.97	[38]
CaNH ₄ NaP ₂ O ₇ .3H ₂ O		Сс	4	10.39	16.55 103.31	5.677	[39]
αCaNa ₂ P ₂ O ₇ .4 H ₂ O		Pc	2	5.689	8.586 106.3	10.565	[40]
βCaNa ₂ P ₂ O ₇ .4 H ₂ O		Сс	4	10.380	16.980 104.4	5.750	[40]
CaRb ₂ P ₂ O ₇		P2 ₁ /n	4	10.012	5.784 104.79	13.070	[44]
CaCs ₂ P ₂ O ₇		P2 ₁ /n	4	10.302	5.946 104.73	13.182	[44]

4.1.1.3. Infrared characterization studies made on P₂O₇⁴⁻ in β-Ca₂P₂O₇.

De Waal *et al.* [45] have studied the infrared spectrum of β -Ca₂P₂O₇ at room temperature. The spectral stretching region between 1400 and 1000 cm⁻¹ contains several peaks. The P-O-P symmetrical stretching modes were identified unambiguously at 725cm⁻¹ [45-50]. Because of the low intensity of modes in the bending region of the infrared spectra, the assignment is not clearly defined as in the case of stretching modes. The P-O-P asymmetrical stretching is identified at 972 cm⁻¹. In the interval

1211-1003 cm⁻¹, it was observed the PO₃ symmetrical and asymmetrical stretching modes (Table 6).

Table 6. Frequencies (cm⁻¹) of IR absorption bands for β-Ca₂P₂O₇.

Frequencies (v /cm ⁻¹)	Assignment [45-50]
1211; 1188; 1172; 1157;	$v_{as}(PO_3)$
1138; 1102; 1086; 1078	Vas(FO3)
1062; 1046; 1028; 1003	ν _s (PO ₃)
972; 943; 916	v _{as} (POP)
791 ; 725	v _s (POP)

4.2. Cyclophosphates.

4.2.1. Cyclotriphosphates P₃O₉³-.

4.2.1.1. Synhesis.

We present here the synthesis of the cyclotriphosphates associated with calcium by the various synthetic methods: ion-exchange resin and thermic method.

$$4.2.1.1.1.$$
 $Ca_3(P_3O_9)_2.10H_2O.$

This compound was prepared by Belaaouad *et al.* [51] by adding dilute cyclotriphosphoric acid H₃P₃O₉ (0.67mol/l) slowly to an aqueous solution of calcium carbonate CaCO₃ (1mol/l), according to the following chemical reaction during 24 hours of mechanical stirring:

$$2H_3P_3O_9 + 3CaCO_3 + 7H_2O \longrightarrow Ca_3(P_3O_9)_2.10H_2O + 3CO_2$$

The obtained solution was then slowly evaporated at 25°C, until polycrystalline samples of Ca₃(P₃O₉)₂.10H₂O were obtained after 35 days. The H₃P₃O₉ used in this reaction was prepared from an aqueous solution of Na₃P₃O₉ passed through an ion-exchange resin.

4.2.1.1.2.
$$MnCa_2(P_3O_9)_2 \cdot 10H_2O$$
.

Tridane *et al.* [52,53], have prepared the titled compound by slowly adding diluted cyclotriphosphoric acid H₃P₃O₉ to an aqueous solution of calcium carbonate CaCO₃ and manganese carbonate MnCO₃ with a stoichiometric ratio Ca/Mn=2, according to the following chemical reaction:

$$2H_3P_3O_9 + 2CaCO_3 + MnCO_3 + 7H_2O \longrightarrow MnCa_2(P_3O_9)_2 \cdot 10H_2O + 3CO_2$$

The obtained solution was then slowly evaporated at room temperature until large rectangular prisms of $MnCa_2(P_3O_9)_2 \cdot 10H_2O$ are obtained.

4.2.1.1.3.
$$MnCa_2(P_3O_9)_2$$
.

The anhydrous form has also been obtained by Tridane *et al.* [52,53] by total dehydration of MnCa₂(P₃O₉)₂·10H₂O under atmospheric pressure between 400 and 450°C, as the following chemical reaction:

$$MnCa_2(P_3O_9)_2.10H_2O \longrightarrow MnCa_2(P_3O_9)_2 + 10H_2O$$

4.2.1.1.4. CsCaP₃O₉.

This compound was obtained by Zatovsky *et al.* [54] by the conventional solid-state method. Using diammonium hydrogen phosphate (NH₄)₂HPO₄, CsPO₃, and CaHPO₄as starting materials. A mixture of 2.11 g of (NH₄)₂HPO₄, 5g of CsPO₃, and 0.952 g of CaHPO₄ was ground and then heated to 973 K for 3 h, according to the following chemical reaction:

$$CaHPO_4+CsPO_3 + (NH_4)_2HPO_4 \longrightarrow CsCaP_3O_9+2NH_3+2H_2O_9$$

The resulting melt was kept at this temperature for 30 min and finally cooled to room temperature. Crystals of CsCaP₃O₉ were separated from the rest of the glassy matrix by washing with hot deionized water.

4.2.1.1.5. CaRbP₃O₉.

This compound has been obtained by Henry *et al.* [32] from a mixture of calcium carbonate CaCO₃, rubidium carbonate RbCO₃, and diammonium hydrogen phosphate (NH₄)₂HPO₄ at 400°Cfor one week, according to the following chemical reaction:

$$CaCO_3+1/2 Rb_2CO_3+3(NH_4)_2HPO_4 \longrightarrow CaRbP_3O_9+6NH_3+3/2 CO_2+9/2 H_2O_3+3(NH_4)_2HPO_4$$

4.2.1.1.6. CaNH₄P₃O₉.

This compound was prepared by Masse *et al.* [55,56], from a mixture of calcium carbonate CaCO₃, and diammonium hydrogen phosphate (NH₄)₂HPO₄ at 300°C, according to the following chemical reaction:

$$CaCO_3+3(NH_4)_2HPO_4 \longrightarrow CaNH_4P_3O_9 + 5NH_3+CO_2+4H_2O$$

4.2.1.1.7.
$$CaNH_4P_3O_9.3H_2O.$$

The silt was obtained by Masse *et al.* [55,56] by the Boullé method. Ag₃P₃O₉ was mixed with a solution of calcium chloride CaCl₂ and ammonium chloride NH₄Cl in stoichiometric proportions, according to the following chemical reaction:

$$CaCl_2 + NH_4Cl + Ag_3P_3O_9 + 3H_2O \longrightarrow CaNH_4P_3O_9.3H_2O + 3AgCl$$

The obtained solution was then slowly evaporated at room temperature; crystals of CaNH₄P₃O₉.3H₂Osufficiently strong and good qualities were obtained.

This compound has prepared by Sandström *et al.* [57] by mixing Ca(PO₃)₂ (obtained from dehydrated of Ca(H₂PO₄)₂ at 873 K) and KPO₃ (obtained from dehydrated of KH₂PO₄ at 873 K) in a 1:1 ratio, according to the following chemical reactions:

$$Ca(H_2PO_4)_2 \rightarrow Ca(PO_3)_2 + 2H_2O$$

 $KH_2PO_4 \rightarrow KPO_3 + H_2O$
 $Ca(PO_3)_2 + KPO_3 \rightarrow CaKP_3O_9$

Crystals of CaKP₃O₉ were grown by heating a mixture consisting of 9 wt% KPO₃ and 91 wt% CaKP₃O₉ at 1173 K for about 12 h, followed by cooling at a rate of 6Kh⁻¹ to 997 K, and finally quenching to room temperature.

The title compound was prepared by Abrahams *et al.* [58,59] as a polycrystalline powder by crystallizing a glass of the stoichiometric composition. A mixture of sodium carbonate Na₂CO₃, calcium oxide CaO and ammonium dihydrogen phosphateNH₄H₂PO₄were ground and heated hour at 1000 °C for 1hour until molten, according to the following chemical reactions:

$$2Na_2CO_3 + CaO + 6NH_4H_2PO_4 \longrightarrow CaNa_4(P_3O_9)_2 + 2CO_2 + 6NH_3 + 9H_2O_3 + CaNa_4(P_3O_9)_2 + CaNa_5(P_3O_9)_2 + CaNa_5$$

The melt was poured into hot graphite at 350 °C and allowed to cool slowly to room temperature in a furnace and was then reheated to 600 °C to facilitate crystallization. Single crystals of CaNa₄(P₃O₉)₂ were obtained by slow cooling of the melt in the furnace for 12 hours.

By the conventional solid-state method, Rolaisoa *et al.* [60] have prepared the two compounds using appropriate stoichiometric amounts of a large excess of phosphoric acid H₃PO₄ and calcium CaCO₃, and thallium Tl₂CO₃ carbonates were mixed at around 400° C in an agate mortar, according to the following chemical reactions:

$$CaCO_3 + 2Tl_2CO_3 + 6H_3PO_4 \longrightarrow CaTl_4(P_3O_9)_2 + 3CO_2 + 9H_2O$$

 $2CaCO_3 + Tl_2CO_3 + 6H_3PO_4 \longrightarrow 2CaTlP_3O_9 + 3CO_2 + 9H_2O$

4.2.1.2. Crystallographic data.

The main crystallographic data obtained for the various cyclotriphosphates associated with calcium are classified from the hexagonal to the triclinic system, as illustrated in Table 7.

Table 7. Main crystallographic data for the cyclotriphosphate associated with calcium, classified from the hexagonal to the triclinic system.

Compound	System	Space group	Z	a(Å) α°	b(Å) β°	c(Å) γ°	References
MnCa ₂ (P ₃ O ₉) ₂		P-31c	2	7.392	7.392	20.134	[52,53]
CaNH ₄ P ₃ O ₉ .3H ₂ O		P6 ₃	8	14.76	14.76	9.932	[55,56]
CaKP ₃ O ₉	Hexagonal	P-6c2	2	6.8090	6.8090	10.3760	[47]
CaTI ₄ (P ₃ O ₉) ₂		P31c	2	7.389	7.389	19.99	[60]
CaNH ₄ P ₃ O ₉		P-62c	2	6.887	6.887	10.448	[55,56]
CaCsP ₃ O ₉	Orthorhombic	Pnma	4	9.8287	7.5642	12.7905	[54]
Ca ₃ (P ₃ O ₉) ₂ ·10H ₂ O		P2 ₁ /n	2	9.332	18.13	7.841	[51]
		1 21/11		7.332	106.69	7.011	[61]
MnCa ₂ (P ₃ O ₉) ₂ ·10H ₂ O		P2 ₁ /n	2	9.631	18.173	7.976	[52,53]
Willed2(1309)2 101120	Monoclinic	1 21/11		7.031	109.44	7.570	[32,33]
CaRbP ₃ O ₉	Wionochine	P2 ₁ /n	4	7.545	12.51	9.745	[32]
CaNa ₄ (P ₃ O ₉) ₂		C2/c	4	13.069	8.054	14.164	[58,59]
Caiva4(F3O9)2		C2/C	4	13.009	94.60	14.104	[36,39]
CaTIP ₃ O ₉	1	P2 ₁ /n	4	7.471	12.52	9.913	[60]

4.2.1.3. Infrared characterization studies made on P₃O₉³⁻ in Ca₃(P₃O₉)₂,10H₂O.

Belaaouad *et al.* [51] have studied the infrared spectrum of Ca₃(P₃O₉)₂.10H₂O at 25°C. In the range 4000-1600 cm⁻¹, the IR spectrum showed four stretching bands at 3660, 3580, 1660, and 1620 cm⁻¹. The bands at 3660 and 3580 cm⁻¹ are attributed to the stretching vibrations of water molecules (ν O-H) [61-63]. The bands at 1660 and 1620 cm⁻¹ represent the bending vibration of water molecules (ν HOH) [61-63]. Between 1318 and 668 cm⁻¹, were observed the stretching modes ν _{as} OPO and ν _sOP characteristic of phosphates with ring anions P₃O₉³⁻ [64-66], as illustrated in Table 8.

The IR stretching vibrations of (POP) ring groups are observed as a very strong band at $1030~\text{cm}^{-1}$ for the υ_{as} POP asymmetric vibrations and a strong band at $780~\text{cm}^{-1}$ for the υ_{s} OP symmetric vibrations. The vibration corresponding to the differences in observed bands is given in Table 8.

Infrared (v /cm ⁻¹)	Assignments [51]
3660; 3580	υО-Н
1660; 1620	δ НОН
1318; 1272	vas OPO
1174; 1120	υ _s OPO
1030	υ _{as} POP
880; 780; 668	υ _s POP
562 ; 514	δ ΟΡΟ+ρ ΟΡΟ

Table 8. Frequencies (cm⁻¹) of IR absorption bands for Ca₃(P₃O₉)₂.10H₂O.

4.2.2. Cyclotetraphosphates P₄O₁₂⁴-.

4.2.2.1. Synthesis.

The various synthetic methods of the cyclotetraphosphates associated with calcium are described for the following compounds:

 $Ca_2P_4O_{12}$

This compound was prepared by Shneider *et al*. [67] by thermal dehydration of the tetrahydrate Ca₂P₄O₁₂.4H₂O under atmospheric pressure at 220 °C, according to the following chemical reaction:

$$Ca_2P_4O_{12}.4H_2O \longrightarrow Ca_2P_4O_{12} + 4H_2O$$

4.2.2.1.1. Ca₂P₄O₁₂.4H₂O.

This salt was prepared by Skogareva *et al.* [68] by adding a solution of 4.495 g of Na₄P₄O₁₂.4H₂O in 50 ml water to a solution of 2.079 g of CaCl₂ in 10 ml of water, adopting the chemical reactions:

$$Na_4P_4O_{12}.4H_2O + 2CaCl_2 \longrightarrow Ca_2P_4O_{12}.H_2O + 4NaCl + 3H_2O$$

The resulting product was left to stand at room temperature for 2 hours for crystallization.

4.2.2.1.2. CaK₂P₄O₁₂.

This salt was prepared by Cavero-Ghersi *et al.* [69] by attacking at 0°C, the stoichiometric mixture of calcium CaCO₃ and potassium K₂CO₃carbonates with a titrated solution of tetrametaphosphoric acid H₄P₄O₁₂, according to the following chemical reaction:

$$CaCO_3 + K_2CO_3 + H_4P_4O_{12} \longrightarrow CaK_2P_4O_{12} + 2CO_2 + 2H_2O_{12}$$

The evaporation at an ambient temperature of the liquor thus obtained leaves CaK₂P₄O₁₂salt to precipitate.

4.2.2.1.3.
$$Ca_4K_4(P_4O_{12})_3.8H_2O$$
.

This compound was obtained by Averbuch-Pouchot [70] who has added very slowly to an aqueous solution of potassium cyclotetraphosphate one K₄P₄O₁₂ a concentrated aqueous solution of calcium chloride CaCl₂, as illustrated by the chemical reaction:

$$4CaCl_2 + 3K_4P_4O_{12} + 8H_2O \longrightarrow Ca_4K_4(P_4O_{12})_3.8H_2O + 8KCl$$

After a few weeks, a crystalline crust was observed. The addition of calcium chloride is then stopped, and the system is kept at room temperature for a few more weeks. After filtration, well-developed crystals of Ca₄K₄(P₄O₁₂)_{3.8}H₂Ohave been obtained.

The same author [70] has prepared the CaNa₂P₄O₁₂.5.5H₂O compound by slow evaporation at room temperature of an aqueous solution of sodium cyclo-tetraphosphate Na₄P₄O₁₂ and calcium chloride in stoichiometric ratio, according to the following 5H₂O chemical reaction:

$$CaCl_2 + Na_4P_4O_{12} + 5.5H_2O \longrightarrow CaNa_2P_4O_{12}.5.5H_2O + 2NaCl$$

After filtration, well-developed crystals of CaNa₂P₄O₁₂.5.2H₂O have been obtained.

4.2.2.1.5.
$$Ca(NH4)_2P_4O_{12}.2H_2O$$
.

This crystal has been prepared by Tordjman *et al.* [71] by slow evaporation technique at 40 °C. To an aqueous solution of sodium cyclotetraphosphate Na₄P₄O₁₂, the authors have very slowly added an aqueous solution of calcium carbonate CaCO₃ and ammonium carbonate NH₄HCO₃, according to the following chemical reaction:

$$CaCO_3 + 2 H_4HCO_3 + H_4P_4O_{12} \longrightarrow Ca(NH_4)_2P_4O_{12}.2H_2O + 3CO_2 + 3H_2O$$

After filtration, Ca(NH₄)₂P₄O₁₂.2H₂O crystals in the form of long needles were precipitated. The tetrametaphosphoric acid H₄P₄O₁₂ was prepared by the action of water maintained at 0°C on P₄O₁₀, according to the following chemical reaction:

$$P_4O_{10}+2H_2O \longrightarrow H_4P_4O_{12}$$

4.2.2.2. Crystallographic data.

Herein, we report the main crystallographic data for the various cyclotetraphosphates associated with calcium classified from the hexagonal to the triclinic system (Table 9).

Table 9. Main crystallographic data for the cyclotetraphosphate associated with calcium, classified from the hexagonal to the triclinic system.

Compound	System	Space group	Z	a(Å)	b(Å) β°	c(Å)	References
CaK ₂ P ₄ O ₁₂	Tetragonal	I-4	2	7.364	7.364	9.899	[69]
CaNa ₂ P ₄ O ₁₂ .5.5H ₂ O	Orthorhombic	Pma2	4	27.88	7.536	7.378	[70]
Ca ₂ P ₄ O ₁₂ .4H ₂ O		P2 ₁ /n	4	7.668	12.895 107.00	7.144	[68]
Ca4K4(P4O ₁₂) ₃ .8H ₂ O	Monoclinic	P2 ₁ /a	2	20.38	12.683 89.31	7.830	[70]
Ca(NH ₄) ₂ P ₄ O ₁₂ .2H ₂ O		P2 ₁ /n	4	16.783	10.888 90.92	7.913	[71]
Ca ₂ P ₄ O ₁₂ .H ₂ O	Triclinic	P1 or P-1	2	7.72 95.9	10.52 105.1	7.15 83.9	[68]
Ca ₂ P ₄ O ₁₂	THEIMIC	P1 or P-1	2	8.02 97.4	10.42 109.8	7.20 90.4	[67]

For the anhydrous cyclotetraphosphate compounds, it is clearly stated that the substitution of $2K^+$ by Ca^{2+} induces the lowering symmetry from the tetragonal system in $CaK_2P_4O_{12}$ to the triclinic system in $Ca_2P_4O_{12}$.

4.2.2.3. Infrared characterization studies made on P₄O₁₂⁴⁻ in Ca₂P₄O₁₂.1.5H₂O₂·3H₂O.

Skogareva *et al.* [68] have studied the infrared spectrum of Ca₂P₄O₁₂.1.5H₂O₂·3H₂O at 25°C, which showed different characteristic regions of the anion P₄O₁₂⁴:

- The spectral region 4000-3000 cm⁻¹, were observed the characteristic $\upsilon(\text{O-H})$ stretching modes as a wide band around 3560- 3565 cm⁻¹ and a strong band at 3440 cm⁻¹.
- The range 1700-1600 cm⁻¹, where appeared a characteristic water deformation mode $\delta(\text{H-O-H})$ of strong intensity at 1628 cm⁻¹.
- Between 1280 and 552 cm⁻¹, appeared the characteristic stretching modes of the $P_4O_{12}^{4-}$ cycle [72,73]. Four strong bands observed at 1280, 1148,1120, and 1020 cm⁻¹ were assigned to the antisymmetric stretching vibration $\upsilon_{as}(P-O)$, and the bands at 886, 800, and 740 cm⁻¹ to the symmetric stretching vibration $\upsilon_s(P-O)$ The symmetric vibration of the δ_s POP was assigned to the region of 676-440 cm⁻¹ (Table 10).

 $\textbf{Table 10}. \ Frequencies \ (cm^{\text{-}1}) \ of \ IR \ absorption \ bands \ for \ Ca_2P_4O_{12}.1.5H_2O_2\cdot 3H_2O.$

Frequencies (cm ⁻¹)	Vibrations [68]
3440; 3560; 3656	υ (O-H)
1628	δ (H-O-H)
1280; 1148; 1120, 1020	v _{as} (P–O)
886; 800; 740	$\upsilon_{s}(P-O)$
676; 612; 552	υ _{as} OPO
496; 440; 400; 384;	Ca–O(H2O)
352; 312	Ca=O(112O)

4.2.3. Cyclohexaphosphates P₆O₁₈⁶⁻.

4.2.3.1. Synthesis.

In this part, we present the synthesis of the cyclohexaphosphates associated with calcium by various synthetic methods.

The two isotypic salts were prepared by Averbuch-Pouchot *et al.* [74] by adding solid gypsum CaSO₄.2H₂O to an aqueous solution of lithium and sodium cyclohexaphosphate Li₆P₆O₁₈.6H₂O, Na₆P₆O₁₈. 6H₂O, according to the following chemical reaction:

$$M_6P_6O_{18}.6H_2O + 2CaSO_4.2H_2O \longrightarrow Ca_2M_2P_6O_{18}.8H_2O + 2M_2SO_4 (M: Li, Na)$$

After some days of evaporation at room temperature, crystals of Ca₂Li₂P₆O₁₈·8H₂O and Ca₂Na₂P₆O₁₈·8H₂O appeared as elongated prisms.

4.2.3.1.2.
$$Ca_2(NH_4)_2P_6O_{18} \cdot 6H_2O$$
.

This crystal was prepared by Averbuch-Pouchot *et al.* [75], by adding solid gypsum CaSO₄.2H₂O to an aqueous ammonium cyclohexaphosphate (NH₄)₆P₆O₁₈.1H₂O at room temperature, according to the following chemical reaction:

$$(NH_4)_6P_6O_{18}.2H_2O + 2CaSO_4.2H_2O \rightarrow Ca_2(NH_4)_2P_6O_{18}\cdot 6H_2O + 2(NH_4)_2SO_4$$

After some days, the resulting product contains single crystals of $Ca_2(NH_4)_2P_6O_{18}\cdot 6H_2O$ sufficiently large and good quality.

This crystal was prepared by Abid *et al.* [76] by adding dilute cyclohexaphosphoric acid $H_6P_6O_{18}$ to an aqueous solution of calcium carbonate $CaCO_3$ and cesium carbonate Cs_2CO_3 with a stoichiometric ratio Ca/Cs = 1, according to the following chemical reaction:

$$2CaCO_3 + Cs_2CO_3 + H_6P_6O_{18} \rightarrow Ca_2Cs_2P_6O_{18} \cdot 2H_2O + 3CO_2 + H_2O$$

The obtained solution is then slowly evaporated at room temperature until large rectangular prisms of Ca₂Cs₂P₆O₁₈·2H₂Owas formed. The cyclohexaphosphoric acid H₆P₆O₁₈ was obtained from an aqueous solution of Li₆P₆O₁₈.6H₂O passed through an ion-exchange resin.

These three compounds were prepared by Abid *et al.* [77] by slowly adding dilute cyclohexaphosphoric acid $H_6P_6O_{18}$ to an aqueous solution of calcium carbonate $CaCO_3$ and M_2CO_3 [M =K, Tl, Rb] with a stoichiometric ratio Ca/M = 1 according to the flowing reaction:

$$2CaCO_3 + M_2CO_3 + H_6P_6O_{18} + 3H_2O \longrightarrow Ca_2M^I_2P_6O_{18}.6H_2O + 3CO_2$$
 (M: K, Tl, Rb)

After some days of slow evaporation at room temperature, crystals appeared with good quality.

4.2.3.2. Crystallographic data.

In this part, we reported the main crystallographic data for the various cyclohexaphosphate a ssociated with calcium, classified from the hexagonal to the triclinic system (Table 11).

Table 11. Main crystallographic data for the cyclonexaphosphates associated with calcium, classified from the									
hexagonal to the triclinic.									
Compound	System	Space group	Z	a(Å)	b(Å) β°	c(Å)	References		
Ca ₂ (NH ₄) ₂ P ₆ O ₁₈ ·6H ₂ O	Orthorhombic	P2 ₁ 2 ₁ 2	2	12.821	12.537	7.029	[75]		

Compound	System	Space group	Z	a(Å) α°	b(Å) β°	c(Å) γ°	References
$Ca_{2}(NH_{4})_{2}P_{6}O_{18}\cdot 6H_{2}O$	Orthorhombic	P2 ₁ 2 ₁ 2	2	12.821	12.537	7.029	[75]
Ca ₂ Cs ₂ P ₆ O ₁₈ ·2H ₂ O	Monoclinic	P2 ₁ /c	2	9.087	12.246 116.98	9.895	[76]
Ca ₂ K ₂ P ₆ O ₁₈ .6H2O		P2 ₁ /n	2	7.309	11.862 103.22	12.335	[77]
$Ca_2Tl_2P_6O_{18}.6H_2O$		P2 ₁ /n	2	7.233	11.582 99.94	12.193	[77]
Ca ₂ Rb ₂ P ₆ O ₁₈ .6H ₂ O		P2 ₁ /n	2	7.290	11.593 100.86	2.236	[77]
Ca ₂ Li ₂ P ₆ O ₁₈ ·8H ₂ O	Triclinic	P-1	1	7.767 105.17	10.144 102.76	7.225 84.95	[74]
Ca ₂ Na ₂ P ₆ O ₁₈ ·8H ₂ O		P-1	1	8.031 105.69	10.296 103.27	7 .279 85.30	[74]

The calcium cyclohexaphosphates are all found to be hydrate compounds. It is to note that cyclohexaphosphate with ammonium cations (NH₄)₆P₆O₁₈.1H₂O crystallized in the orthorhombic system, being highly symmetrical rather than the symmetry of others compounds crystallized in monoclinic and triclinic systems.

4.2.3.3. Infrared characterization studies made on $P_6O_{18}^{4}$ in $Ca_2K_2P_6O_{18}$.6H₂O.

Abid et al. [76] have studied the infrared spectrum of calcium potassium cyclohexaphosphate hexahydrate, $Ca_2K_2P_6O_{18}.6H_2O$ at 25°C (Table 12). The spectrum exhibits:

- Two broad bands at about 3600–3200 cm⁻¹ and another one at 1650 cm⁻¹ corresponding to the vibration of water molecules, υ (O-H).
- Various stretching vibration bands for which both positions, between 1300 and 600 cm⁻¹, and number are typical of a phosphoric ring anion [77-83]. In this type of anions, the O-P-O vibrations take place at relatively high frequencies, 1200 < vas< 1300 cm⁻¹ and 1050 <0s< 1200 cm⁻¹, and those corresponding to the P-O-P vibrations appear as a broadband v_{as} around 960 cm⁻¹ and a doublet v_{s} between 800 and 700 cm⁻¹.

Table 12. Frequencies (cm $^{-1}$) of IR absorption bands for $Ca_2K_2P_6O_{18}.6H_2O$.

Frequencies (cm ⁻¹)	Vibrations [76-83]
3600- 3200	υ (O-H)
1650	δ (H-O-H)
1200-1300	υ _{as} O-P-O
1200-1050	υ _s O-P-O
960	υ _{as} P-O-P
700-800	υ _s P-O-P

5. Conclusions

In this review article, we have presented the various chemical methods used to prepare monophosphates and condensed phosphates associated with calcium. Besides, we have reported and analyzed their crystallographic data. The monophosphates containing (PO₄)³-

groups crystallized in the hexagonal, rhombohedral, trigonal, orthorhombic, and monoclinic systems, while the compounds with $(HPO_4)^{2-}$ and $(H_2PO_4)^{-}$ have low symmetry systems (monoclinic and triclinic). The long polyphosphates chain $(PO_3^-)_n$, containing one $(PO_4)^{3-}$ grouper formula, crystallized in the high possible symmetry (tetragonal systems), against that of formula with two, three, and four $(PO_4)^{3-}$ groups, which crystallized in the lower symmetry systems (monoclinic, and triclinic). In the anhydrous cyclotetraphosphates, the substitution of $2K^+$ by Ca^{2+} induced lowering symmetry from the tetragonal system in $CaK_2P_4O_{12}$ to the triclinic system in $Ca_2P_4O_{12}$. The calcium cyclohexaphosphates all hydrate crystallized in the orthorhombic system, as a highly symmetrical system, where the cations are ammonium $(NH_4)_6P_6O_{18}.1H_2O$. Finally, infrared spectroscopy of some characteristic anions PO^{3-} in γ - $Ca(PO_3)_2$, PO_4^{3-} in $CaHPO_4$, $P_2O_7^{4-}$ in β - $Ca_2P_2O_7$, $P_3O_9^{3-}$ in $MnCa_2(P_3O_9)_2$, $P_4O_{12}^{4-}$ in $Ca_2P_4O_{12}.1.5H_2O_2\cdot 3H_2O$, and $P_6O_{18}^{6-}$ in $Ca_2K_2P_6O_{18}.6H_2O$ have been reviewed.

Funding

This research received no external funding.

Acknowledgments

The authors thank professor Ali Ouasri for the support needed to carry out this work.

Conflicts of Interest

The authors declare no conflict of interest.

References

- 1. Dorozhkin, S. V. Biphasic, triphasic and multiphasic calcium orthophosphates. *Acta Biomater* **2012**, *8*, 963-977, https://doi.org/10.1016/j.actbio.2011.09.003.
- I. A. Neacsu, L. V. Arsenie, R. Trusca, I. L. Ardelean, N. Mihailescu, I. N. Mihailescu, C. Ristoscu, C. Bleotu, A. Ficai, and E. Andronescu, Biomimetic Collagen/Zn(2+)-Substituted Calcium Phosphate Composite Coatings on Titanium Substrates as Prospective Bioactive Layer for Implants: A Comparative Study Spin Coating vs. MAPLE. *Nanomaterials* 2019, 9, 692, https://doi.org/10.3390/nano9050692.
- 3. Hench, L. L.; Hench, J.W.; Greeenspan, D. C. Bioglass: a short history and bibliography. *J. Aust. Ceram.Soc* **2004**, *40*, 1–42, https://doi.org/10.1007/978-94-011-0541-5_1.
- 4. LeGeros, R. Z. Calcium Phosphate-Based Osteoinductive Materials. *Chem. Rev* **2008**, *108*, 4742-4753, https://doi.org/10.1021/cr800427g.
- Eliaz, N.; Metoki, N.Calcium Phosphate Bioceramics: A Review of Their History, Structure, Properties, Coating Technologies and Biomedical Applications. *Materials* 2017, 10, 334, https://doi.org/10.3390/ma10040334.
- 6. Ginebra, M.P.; Traykova, T.; Planell, J.A.Calcium phosphate cements as bone drug delivery systems: a review. *J Control Release* **2008**, *113*, 102-110, https://doi.org/10.1016/j.jconrel.2006.04.007.
- 7. Zerraf, S.; Belhabra, M.; Tridane, M.; Belaaouad, S. Chemical preparations, crystal data for monophosphates and condensed phosphates associated to barium and IR studies of their anions. *International Journal of Advanced Research* (IJAR) **2019**, 2320-5407, http://dx.doi.org/10.21474/IJAR01/8432.
- 8. Oubouaza, R.; Marouani, H.; Zerraf, S.; Belhabra, M.; Ouasri, A.; Tridane, M.; Belaaouad, S. Chemical preparations, crystal data for monophosphates and condensed phosphates associated to strontium and IR studies of their anions. *International Journal of Emerging Trends in Engineering Research (IJETER)* **2020**, 8, 6587-6598, http://dx.doi.org/10.30534/ijeter/2020/265892020.
- 9. Marouani, H.; Oubouaza, R.; Zerraf, S.; Ouasri, A.; Tridane, M.; Belaaouad, S. Chemical preparations, crystal data for monophosphates and condensed Phosphates associated to manganese and IR studies of their anions. *International Journal of Emerging Trends in Engineering Research(IJETER)* **2020**, *8*, 4784-4798, https://doi.org/10.30534/ijeter/2020/116882020.

- 10. Bac, N.Q.; Duc,T. H. Synthesis and characterization of feed grade monocalcium phosphate, Ca(H₂PO₄)₂.H₂O in aqueous medium. *Vietnam J Sci Technol* **2016**, *54*, 7-14, https://doi.org/10.15625/2525-2518/54/4A/11972.
- 11. Dickens, B.; Prince, E.; Schroeder, L.W.; Brown, W.E. Ca(H₂PO₄)₂, a Crystal Structure Containing Unusual Hydrogen Bonding. *Acta Crystallogr* **1973**, B29, 2057-2070, https://doi.org/10.1107/S0567740873006114.
- 12. Curry, N. A.; Jones, D. W. Crystal Structure of Brushite, Calcium Hydrogen Orthophosphate Dihydrate: A Neutron-diffraction Investigation. *J. Chem. Soc* **1971**, *A23*, 3725-3729, https://doi.org/10.1039/J19710003725.
- 13. Dickens, B.; Bowen, J. S.; Brown, W. E. A Refinement of the Crystal Structure of CaHPO₄ (Synthetic Monetite). *Acta Crystallogr* **1972**, *B28*,797-806, https://doi.org/10.1107/S056774087200322X.
- 14. Mathew, M.; Shroeder, L.W.; Dickens, B.; Brown, W. E. The Crystal Structure of α-Ca₃(PO₄)₂.*Acta Crystallogr* **1977**, *B33*, 1325-1333, https://doi.org/10.1107/S0567740877006037.
- 15. Yashima, M.; Atsushi, S.; Takashi, K.; Akinori, H. Crystal structure analysis of β -tricalcium phosphate $Ca_3(PO_4)_2$ by neutron powder diffraction. *J Solid State Chem* **2003**, 175, 272-277, https://doi.org/10.1016/S0022-4596(03)00279-2.
- 16. Dickens, B.; Brown, W. E.; Kruger, G. J.; Stewart, J. M. Ca₄(PO₄)₂O, Tetracalcium Diphosphate Monoxide. Crystal Structure and Relationships to Ca₅(PO₄)₃OH and K₃Na(SO₄)₂. *Acta Crystallogr* **1973**, *B29*, 2046-2056, https://doi.org/10.1107/S0567740873006102.
- 17. Abrouki, Y.; Anouzla, A.; Loukili, H.; Lotfi, R.; Rayadh, A.; Bahlaoui1, A.; Sebti, S.; Zakarya, D.; Zahouily, M. Central Composite Experimental Design Applied to the Catalytic Carbon-Sulfur Bond Formation by Fluorapatite Catalyst. *Am. J. Appl. Chem* **2013**, *1*, 22-27, https://doi.org/10.11648/j.ajac.20130102.12.
- 18. Alamo, J.; Rodrigo, J.L. High temperature neutron diffraction study of CaZr₄ (PO₄)₆. *Solid State Ion* **1993**, *63*, 678-683, https://doi.org/10.1016/0167-2738(93)90178-6.
- 19. Zatovsky, I.V.; Nataliya, Y.S.; Vyacheslav, N.B.; Nikolay, S.S.; Ivan, V.O.; Oleg, V. S. Synthesis and characterization of phosphates in molten systems Cs₂O–P₂O₅–CaO–M^{III}₂O₃ (M^{III}= Al, Fe, Cr). *J Solid State Chem* **2011**,184, 705-711, https://doi.org/10.1016/j.jssc.2011.01.042.
- 20. Zatovsky, I. V.; Strutynska, N. Y.; Baumer, V. N.; Shishkin, O. V.; Slobodyanik, N.S. The whitlockite-related phosphate Ca₉Cr(PO₄)₇. *Acta Crystallogr* **2007**, *E63*, i180-i181, https://doi.org/10.1107/S1600536807044765.
- 21. Ben Chaabane, T.; Smiri-Dogguy, L.; Laligant,Y.; Bail, A. L. Structure of Na₂Ca(HPO₄)₂ determined ab initio from conventional powder diffraction data. *European journal of solid state and inorganic chemistry* **1997**, *34*, 937-946, http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2356149.
- 22. Ben Amara, M.; Vlasse, M.; Le Flem, G.; Hagenmuller, P. Structure of the Low-Temperature Variety of Calcium Sodium Orthophosphate, NaCaPO₄. Acta Crystallogr **1983**, *C39*, 1483-1485, https://doi.org/10.1107/S0108270183008963.
- 23. Tortet, L.; Gavarri, J. R.; Nihoul, G.; Dianoux, A. J. Study of protonic mobility in CaHPO₄.2H₂O (brushite) and CaHPO₄(monetite) by infrared spectroscopy and neutron scattering. *J. Solid State Chem* **1997**, *132*, 6-16. https://doi.org/10.1006/jssc.1997.7383.
- 24. El Makhloufy. S.; Majdi. E. M.; Ouasri. A.; Chtita. S.; Saadi. M.; El Ammari. L.; Cherqaouiand. A.; Belaaouad, S. Synthesis, crystal structure, IR, Raman-spectroscopy and DFT computation of monostrontium phosphate monohydrate, Sr(H₂PO₄)₂.H₂O. *J. Coord. Chem* **2020**, *73*, 2328-2346, https://doi.org/10.1080/00958972.2020.1815014.
- 25. Zerraf, S.; Tridane, M.; Belaaouad, S. Crystal structure, vibrational and spectroscopic study of single crystal (C₆H₁₅N₄O₂)H₂PO₄. H₂O. *Moroccan Journal of Chemistry* **2020**, 8, 8-2, https://doi.org/10.48317/IMIST.PRSM/morjchem-v8i2.16988.
- 26. Majdi, El.; Zerraf, S.; Marouani, H.; El Makhloufy, S.; Belhabra, M.; Ouasri, A.; Naimi, Y.; Belaaouad, S. Structural and vibrational study of titanium Monophosphates Na_{0.5}M_{0.25}Ti₂(PO₄)₃ (M= Mn, Ni). *Mediterranean Journal of Chemistry* **2019**, *9*, 355-362, https://doi.org/10.13171/mjc01911281083emm.
- 27. Rothammel, W.; Burzlaff, H.; Specht, R. Structure of calcium metaphosphate Ca(PO₃)₂. *Acta Crystallogr* **1989**, *C45*, 551-553, https://doi.org/10.1107/S0108270188012922.
- 28. Averbuch-Pouchot, M-T. Données cristallographiques sur quatre polyphosphates mixtes du type BaM^{II}(PO₃)₄ pour M^{II}=Mn, Cd, Ca et Hg. *J Appl Crystallogr* **1975**, 8, 389-390, https://doi.org/10.1107/S002188987501076X.

- 29. Shieh, M.; Martin, K. J.; Squattrito, P.J.; Clearfiel, A. New low-dimensional zinc compounds containing zinc-oxygen-phosphorus frameworks: two layered inorganic phosphites and a polymeric organic phosphinate. *Inorg. Chem* **1990**, 29, 958-963, https://doi.org/10.1021/ic00330a012.
- 30. Abrahams, I.; Hawkes, G. E.; Ahmed, A.; Di Cristina, T.; Demetriou, D. Z.; Ivanova, G.I. Structures of the chain metaphosphates NaM(PO₃)₃ (M = Ca or Sr). *Magn Reson Chem* **2008**, *46*, 316-322, https://doi.org/10.1002/mrc.2161.
- 31. Phillips, M. L.F.; Harrison, W.T.A. Synthesis and crystal structure of calcium hydrogenphosphite, CaHPO₃. *Acta Crystallogr* **2019**, *E75*, 997-1000, https://doi.org/10.1107/S2056989019008235.
- 32. Henry, Y.; Durif, A. Données cristallographiques sur CaRb(PO₃)₃ et CaRb₂(PO₃)₄. Diagramme d'équilibre Ca (PO₃)₂-Rb PO₃. Bulletin de la Société française de Minéralogie et de Cristallographie **1969**, 92, 484-486, https://doi.org/10.3406/bulmi.1969.6400.
- 33. Jackson, L. E.; Kariuki, B. M.; Smith, M. E.; Barralet, J. E.; Wright, A. J. Synthesis and structure of a calcium polyphosphate with a unique criss-cross arrangement of helical phosphate chains. *Chem. Mater* **2005**, 17, 4642-4646, https://doi.org/10.1021/cm050984x.
- 34. Han, S.; Li, H.; Yang, Z.; Yu, H. H.; Pan, S. Three new phosphates, Cs₈Pb₄ (P₂O₇) ₄, CsLi₇ (P₂O₇) ₂ and LiCa (PO₃)₃: structural comparison, characterization and theoretical calculation. *Dalton Trans* **2019**, *48*, 8948-8954, https://doi.org/10.1039/C9DT01739A.
- 35. Riou, D.; Goreaud, M. CaCuP₂O₇: a Structure Closely Related to α Ca₂P₂O₇. *Acta Crystallogr* **1990**, *C46*, 1191-1193, https://doi.org/10.1107/S0108270189011704.
- 36. Brown, E. H.; Lehr, J. R.; Smith, J. P.; Frazier, A. W. Fertilizer Materials, Preparation and Characterization of Some Calcium Pyrophosphates. *J. Agric. Food Chem* **1963**, *11*, 214-222, https://doi.org/10.1021/jf60127a020.
- 37. Mathew,M.; Schroeder, L.W. The Crystal Structure of Calcium Ammonium Hydrogenpyrophosphate CaNH₄HP₂O₇. *Acta Crystallogr* **1977**, *B33*, 3025-3028, https://doi.org/10.1107/S056774087701019X.
- 38. Sandström, M.; Fischer, A.; Boström, D. CaK₂P₂O₇. *Acta Crystallogr* **2003**, E59, i139-i141, https://doi.org/10.1107/S1600536803021287.
- 39. Averbuch-Pouchot, M. T.; Guitel, J. C. Données Cristallochimiques sur Deux Nouveaux Diphosphates Mixtes, CaNH₄NaP₂O₇. 3H₂O et CdNH₄NaP₂O₇.3H₂O et Structure Cristalline de CdNH₄NaP₂O₇.3H₂O. *Acta Crystallogr* **1977**, *B33*, 3460-3462, https://doi.org/10.1107/S0567740877011194.
- 40. Cheng, P. T.; Pritzker, K. P. H.; Nyburg, S. C. α-Calcium Disodium Pyrophosphate Tetrahydrate. *Acta Crystallogr* **1980**, *B36*, 921-924, https://doi.org/10.1107/S0567740880004864.
- 41. Webb, N. C. The Crystal Structure of β-Ca₂P₂O₇.*Acta Crystallogr* **1966**, 21, 942-948, https://doi.org/10.1107/S0365110X66004225.
- 42. Boudin, S.; Grandin, A.; Borel, M.; Leclaire ,A.; Raveau, B. Redetermination of the β -Ca₂P₂O₇ structure. *Acta Crystallogr* **1993**, *C49*, 2062-2064, https://doi.org/10.1107/S0108270193005608.
- 43. Zatovsky, I.V.; Strutynska, N.Y.; Hizhnyi, Y.A.; Baumer, V. N.; Ogorodnyk, I.V.; Slobodyanik, N.S.; Odynets, I.V.; Klyui, N.I. New complex phosphates $Cs_3M^{II}Bi(P_2O_7)_2$ ($M^{II}=Ca$, Sr, Pb): synthesis, characterization, crystal and electronic structure. *Dalton Trans* **2018**, *47*, 2274-2284, https://doi.org/10.1039/C7DT04505K.
- 44. Lyutsko, V. A.; Lyakhov, A. S.; Frenkel, P. L. A propos des diphosphates doubles de calcium CaM₂P₂O₇. *Žurnal neorganičeskoj himii* **1989**, 34, 2190-2193, http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=6674125.
- 45. de Waal, D.; Hutter, C. Vibrational spectra of a solid solution of cadmium and calcium pyrophosphate. *Mater.Res. Bull* **1994**, 29, 1129-1135, https://doi.org/10.1016/0025-5408(94)90182-1.
- Belhabra, M.; Zerraf, S.; Kheireddine, A.; Altomare, A.; Tridane, M.; Ouasri, A.; Radid, M.; Belaaouad, S. Structural and vibrational study of diphenylhydrazine dihydrogenophosphate single crystal (C₆H₉N₂)₂H₂P₂O₇ (DPHDP). Chem. Data Collect 2018, 13-14, 73-83, https://doi.org/10.1016/j.cdc.2018.01.002.
- 47. Zerraf, S.; Belhabra, M.; Tridane, M.; Belaaouad, S. Chemical Preparation, Thermal Behavior and IR Studies of the New Chromium Diphosphate Hydrate and Crystal Structure of its Corresponding Anhydrous. *Biointerface Res. Appl. Chem* **2021**, *11*, 13412-13420, https://doi.org/10.33263/BRIAC115.1341213420.
- 48. Chen, W.; Jing, Q.; Zhang, Q.; Lee, M. H., Lu, X.; Wei, P.; Chen, Z. A New Cadmium-Based Pb₂Cd₃ (PO₄)₂(P₂O₇) with Two Types of Isolated P–O Groups. *Eur. J. Inorg. Chem* **2019**, 2019, 1273-1278, https://doi.org/10.1002/ejic.201900002.
- 49. Qi, L.; Chen, Z.; Shi, X.; Zhang, X.; Jing, Q.; Li, N.; Lee, M. H. A₃BBi(P₂O₇)₂ (A= Rb, Cs; B= Pb, Ba): Isovalent Cation Substitution to Sustain Large Second-Harmonic Generation Responses. *Chem. Mater.* **2020**, 32, 8713-8723, https://doi.org/10.1021/acs.chemmater.0c03383.

- 50. Lu, X.; Chen, Z.; Shi, X.; Jing, Q.; Lee, M. H. Two Pyrophosphates with Large Birefringences and Second-Harmonic Responses as Ultraviolet Nonlinear Optical Materials. *Angew. Chem. Int. Ed* **2020**, *59*,17648-17656, https://doi.org/10.1002/anie.202007494.
- 51. Belaaouad, S.; Tridane, M.; Chennak, H.; Tamani, R.; Kenz, A.; Moutaabbid, M. Chemical preparation, thermal behavior, kinetic and infrared studies and quantum chemical calculations of Ca₃(P₃O₉)₂.10H₂O, *Phosphorus Res. Bull* **2007**, *21*, 60-70, https://doi.org/10.3363/prb.21.60.
- 52. Tridane, M.; Belaaouad, S.; Sbai, K. Chemical preparations and crystal data for eight new condensed phosphates. *Solid State Sci* **2000**, *2*, 701-704, http://dx.doi.org/10.1016/S1293-2558(00)01081-5.
- 53. Marouani,H.; Tridane,M.;Majdi, E.M.; Zerraf,S.; Belhabra,M.;Belaaouad, S. Engineering Techniques applied for studies by Infrared vibration, crystallographic characterization and Thermal Behaviour of two new cyclotriphosphates. *International Journal of Emerging Trends in Engineering Research* **2020**, 8, 239-246, https://doi.org/10.30534/ijeter/2020/30812020.
- 54. Zatovsky, I. V.; Strutynska, N.Y.; Baumer, V. M.; Slobodyanik, N. S.; Shishkin, O. V. Caesium calcium cyclo-triphosphate, CsCaP₃O₉. *Acta Crystallogr* **2006**, *E62*, i263-i265, https://doi.org/10.1107/S160053680604832X.
- 55. Masse, R.; Durif, A.; Guitel, J. C. Structure cristalline du trimétaphosphate CaNH₄P₃O₉ Trimétaphosphates: CaKP₃O₉, CaCsP₃O₉ et CaNH₄P₃O₉. 3H₂O. *ZeitschriftfürKristallographie-Crystalline Materials* **1975**, *141*, 113-125, https://doi.org/10.1524/zkri.1975.141.1-2.113.
- 56. Masse, R.; Grenier, J.C.; Averbuch-Pouchot, M.T.; Tranqui, D.; Durif, A. Étude cristallographique de trimétaphosphates hexagonaux du type M^{II} NH₄ (PO₃)₃ (M^{II} = Zn, Co, Ca, Cd, Mg, Mn). *Bulletin de la Société française de Minéralogie et de Cristallographie* **1970**, *90*, 158-161, https://doi.org/10.3406/bulmi.1967.6092.
- 57. Sandström, M.; Boström, D. Calcium potassium cyclo-triphosphate. *Acta Crystallogr* **2004**, *E60*, i15-i17, https://doi.org/10.1107/S1600536804000303.
- 58. Abrahams, I.; Hawkes, G.E.; Ahmed, A.; Franks, K.; Jonathan, C.; Knowles, J.C.; Philippe, R.P.; Nunes, T. Structure of calcium tetrasodiumbis-cyclotriphosphate CaNa₄(P₃O₉)₂ by X-ray diffraction and solid-state NMR. *Journal of the Chemical Society, Dalton Transactions* **2002**, 8, 1800-1805, https://doi.org/10.1039/b109036b.
- 59. Grenier, J. C.; Martin, C.; Durif, A. Nouvelle étude du diagramme d'équilibre Ca(PO₃)₂-Na PO₃. Données cristallographiques sur CaNa₄(PO₃)₆ et CaNa(PO₃)₃. *Bulletin de la Société française de Minéralogie et de Cristallographie* **1970**, *93*, 52-55, https://doi.org/10.3406/bulmi.1970.6426.
- 60. Rolaisoa, E. R.; Henry, Y.; Durif, A. Étude des systèmes Tl PO₃-Co(PO₃)₂, TlPO₃-Mg(PO₃)₂ et Tl PO₃-Ca(PO₃)₂. *Bulletin de la Société française de Minéralogie et de Cristallographie* **1970**, *93*, 43-51, https://doi.org/10.3406/bulmi.1970.6425.
- 61. Atibi, A.; El Kababi, K.; Belhabra, M.; Zerraf, S.; Tridane, M.; Belaaouad, S. Chemical preparation, crystal structure and vibrational study of a new dihydrogenotriphosphate trihydrate of 4-aminobenzoic acid fertilizer type NP. *J. Coord. Chem* **2018**, *71*, 3510-3520, https://doi.org/10.1080/00958972.2018.1528579.
- 62. Allouche, F.; Selmi, W.; Zid, M.F.; Benlecheb, T. Theoretical and experimental study of new hybrid compound rich in hydrogen bonding: 2-carboxyanilinium hypophosphite. *J. Mol. Struct* **2019**, *1179*, 756-763, https://doi.org/10.1016/j.molstruc.2018.11.069.
- 63. Belhabra, M.; Fahim, I.; Atibi, A.; El Kababi, K.; Ouasri, A.; Zerraf, S.; Belaaouad, S.Vibrational study and thermal behavior of dihydrogenotriphosphate trihydrate of 4-aminobenzoic acid and its anhydrous new form fertilizer type NP. *Mediterranean Journal of Chemistry* **2019**, 8, 270-282, http://dx.doi.org/10.13171/mjc841905308mb.
- 64. EL Makhloufy, S.; Tridane, M.; Marouani, H.; Zerraf, S.; Belhabra, M.; Cherqaoui, A.; Belaaouad, S. Chemical preparation, thermal behavior and infrared studies of the new cyclotriphosphate tetrahydrate of manganese and distrontium, MnSr₂(P₃O₉)₂.4H₂O. *Mediterranean Journal of Chemistry* **2019**, *9*, 280-289, https://doi.org/10.13171/mjc941911141082sem.
- 65. Zerraf, S.; Belhabra, M.; Kheireddine, A.; Lamsatfi, R.; Tridane, M.; Moutaabbid, H.; Belaaouad, S. Reinvestigation of the crystal structure of barium cesium cyclotriphosphate dihydrate and vibrational study. *Phosphorus Sulfur Silicon Relat. Elem* **2017**, *192*, 1286-1293, https://doi.org/10.1080/10426507.2017.1333507.
- 66. Zerraf, S.; Tridane, M.; Belaaouad, S. Data of infrared vibration spectroscopy of cyclotriphosphates. *Data in brief* **2019**, *25*, 104075, https://doi.org/10.1016/j.dib.2019.104075.

- 67. Schneider, M.; Jost, K. H. Kristallographische Orientierungsbeziehungen zwischen den Phasen der Reaktionsfolge $Ca_2[P_4O_{12}]\cdot 4H_2O \rightarrow \beta\text{-}(Ca_2[PO_3]_4)_x$. Zeitschriftfüranorganische und allgemeine Chemie **1990**, 580, 175-180, https://doi.org/10.1002/zaac.19905800121.
- 68. Skogareva, L. S.; Ivanov, V. K.; Pilipenko, G. P.; Tripol'skaya, T. A. Cyclic Peroxosolvated Calcium Polyphosphates. *Russ. J. Inorg. Chem* **2012**, *57*, 6-14, https://doi.org/10.1134/S0036023612010251.
- 69. Cavero-Ghersi, C.; Durif, A. Données cristallographiques sur cinq nouveaux tétramétaphosphates du type M^{II}M^I₂P₄O₁₂. *J Appl Crystallogr* **1975**, *8*, 562-564, https://doi.org/10.1107/S0021889875011272.
- 70. Averbuch-Pouchot, M. T.; Durif, A. Crystal structures of two new types of *cyclo*-tetraphosphates: tetracalciumtetrapotassiumtris (*cyclo*-tetraphosphate) octahydrate and calcium disodium *cyclo*-tetraphosphate 5.5-hydrate. *Acta Crystallogr* **1988**, C44, 212-216, https://doi.org/10.1107/S0108270187010175.
- 71. Tordjman, I.; Masse, R.; Guitel, J. C. Structure cristalline du tétramétaphosphate de calcium-ammonium dihydraté: Ca(NH₄)₂P₄O₁₂.2H₂O. *Acta Crystallogr* **1976**, *B32*, 1643-1645, https://doi.org/10.1107/S0567740876006158.
- 72. Foumakoye, G.; Cahay, R.; Tarte, P. Étude des spectres vibrationnels des cyclotétraphosphates. *Spectrochim Acta* **1990**, *A46*, 1245-1257, https://doi.org/10.1016/0584-8539(90)80202-A.
- 73. Lian, Y. K.; Yu, T.; Xiong, L.; Wu, L. M.; Chen, L. Cyclophosphate MBi (P₄O1₂)(M= Cs, Rb): Structure Change Giving Rise to Property Enhancement. *Cryst.Growth Des* **2020**, 20, 6205-6210, https://doi.org/10.1021/acs.cgd.0c00948.
- 74. Averbuch-Pouchot, M. T.; Durif, A. Crystal Chemistry of cyclo-Hexaphosphates. X. Structure of Diealeium Dilithiumcyclo-Hexaphosphate Octahydrate. *Acta Crystallogr* **1990**, *C46*, 968-970, https://doi.org/10.1107/S0108270189010383.
- 75. Averbuch-Pouchot, M. T. Crystal chemistry of cyclo-hexaphosphates. XII. Structure of ammonium calcium cyclo-hexaphosphatehexahydrate. *Acta Crystallogr* **1990**, *C46*, 2005-2007, https://doi.org/10.1107/S010827019000289X.
- 76. Abid, S.; Rzaigui, M. Chemical preparation, thermal behavior and crystal structure of calcium-cesium cyclohexaphosphate dehydrate. *Mater.Res. Bull* **1996**, *31*, 287-1296, https://doi.org/10.1016/0025-5408(96)00115-8.
- 77. Abid, S.; Rzaigui, M. Structural Characterization of a Series of Cyclohexaphosphates: Ca₂M₂P₆O₁₈.6H₂O (M= K, Tl, Rb). *J. Solid State Chem* **1996**, *126*, 308-313, https://doi.org/10.1006/jssc.1996.0342.
- 78. Abid, S.; Rzaigui, M.; Bagieu-Beucher, M. Preparation and structure of a series of cyclohexaphosphates: M $(p-CH_3C_6H_4NH_3)_4P_6O_{18}$ 8H₂O (M= Cd, Co, Zn, and Cu). *Mater.Res. Bull* **2000**, 35, 1933-1944, https://doi.org/10.1016/S0025-5408(00)00394-9.
- 79. Ameur, I.; Abid, S.; Besbes-Hentati, S.; Al-Deyab, S. S.; Rzaigui, M. Structural, Vibrational, Thermal, and Electrochemical Studies of a Cyclohexaphosphate Complex, (C₅H₁₄N₂)₂Cd₂CL₂P₆O₁₈. 4H₂O. *Phosphorus Sulfur Silicon Relat. Elem* **2013**, *188*, 1703-1712, https://doi.org/10.1080/10426507.2013.777728.
- 80. Sleymi, S.; Lahbib, K.; Rahmouni, N.; Rzaigui, M.; Besbes-Hentati, S.; Abid, S. Synthesis, characterization, electrochemical investigation and antioxidant activities of a new hybrid cyclohexaphosphate: $Cu_{1.5}Li(C_2H_{10}N_2)P_6O_{18}.7H_2O$. *J. Mol. Struct* **2017**, 1144, 406-414, https://doi.org/10.1016/j.molstruc.2017.05.071.
- 81. Hamdi, A.; Khedhiri, L.; Kahlaoui, M.; Soudani, S.; Ferretti, V.; Lefebvre, F.; Nasr, C. B. Synthesis, structural characterisations, NMR spectroscopy, Hirshfeld surface analysis and electrochemical study of a new organic cyclohexaphosphate, (C₆H₇FN) 4(Li)₂ (P₆O₁₈)(H₂O)₆. *J. Mol. Struct* **2018**, *1170*, 30-37, https://doi.org/10.1016/j.molstruc.2018.05.062.
- 82. Khedhiri, L.;Hamdi, A.; Soudani, S.; Kaminsky, W.;Lefebvre, F.; Jelsch, C.;Nasr, C. B. Crystal structure, Hirshfeld surface analysis, thermal behavior and spectroscopic investigations of a new organic cyclohexaphosphate,(C₁₀H₁₅N₂)₄(Li)₂(P₆O₁₈)(H₂O)₆. *J. Mol. Struct* **2018**, *1171*, 429-437, https://doi.org/10.1016/j.molstruc.2018.06.015.
- 83. Khedhiri, L.; Gannouni, A.; Kahlaoui, M.; Jelsch, C.; Ferretti, V.; Lefebvre, F.; Nasr, C. B. Structural, NMR, IR, Hirshfeld surface, electrochemical and in vitro biochemical investigations of a new organic cyclohexaphosphate, (C₆H₆ClFN)₄(Li)₂(P₆O₁₈)(H₂O)₄. *J. Iran. Chem. Soc* **2020**, 1-15, https://doi.org/10.1007/s13738-020-02078-8).