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Abstract: Alzheimer’s disease (AD), a leading cause of dementia, remained incurable, despite many 

advances in our knowledge about AD pathogenesis, underlying mechanisms are poorly understood. 

Transcriptome analysis showed efficiency in exploring these mechanisms; however, data are generated 

at a higher pace than interpreted and are almost inconsistent. Therefore we performed this meta-analysis 

to extract new knowledge from existing data and find the mechanisms involved in AD. Five temporal 

cortex transcriptomics datasets from 187 AD patients and 167 healthy controls were analyzed. Our 

analysis showed that the PI3K-Akt signaling pathway is significantly impaired in AD brains and was 

common among all datasets. Moreover, miRs targeting genes involved in the PI3K-Akt signaling 

pathway were identified. In conclusion, our results highlight the impaired PI3K-Akt signaling pathway 

in AD and suggested related miRs as the potential targets for early treatment and diagnosis of AD. 
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1. Introduction 

Alzheimer’s disease (AD) is a progressive and irreversible neurodegenerative disease 

that is characterized by the presence of senile plaques (SPs) and neurofibrillary tangles (NFTs) 

[1,2]. AD is the leading cause of dementia, accounting for about 60-70% of dementia cases, 

currently, around 50 million people are living with dementia globally, which is estimated to 

reach 82 million in 2030 and 152 in 2050 unless preventive strategies are found [3,4]. Two 

well-established risk factors for developing AD are Apolipoprotein E (ApoE) polymorphism 

and aging [5]. Despite many advances in our knowledge about AD pathogenesis, the underlying 

mechanisms are poorly understood and recent disappointing clinical outcomes of targeting two 

well-established AD pathological hallmarks, including NFTs and SPs have challenged our 

narrow understanding of AD pathogenesis [6,7].  

The development of high-throughput technologies enabled us to investigate the changes 

at molecular levels corresponding to disease development and progression, however, huge 

amount of data are generated through these technologies at a higher pace than they are 

interpreted [8,9]. Microarray analysis as one of these high-throughput technologies has gained 

a great deal of attention among researchers from different fields, including AD. A growing 

number of research studies have been performed to elucidate the gene expression alteration in 

AD brains [10,11].  
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While microarray analysis proved to be an efficient tool to explore the AD-related 

changes at the gene expression level, however reproducibility of microarray analyses has 

always been questionable. Inconsistent results are commonly observed across different studies, 

furthermore considering the multifactorial nature of AD, different genetic backgrounds and 

lifestyles could affect these molecular changes across AD patients [12-14]. In this regard, a 

meta-analysis that combines the outcomes of several studies appeared as powerful tools to 

reduce the heterogeneity among published results and define the most reliable changes [15-19]. 

Currently, there are several meta-analyses on gene expression data from different brain regions 

of AD patients; including Li and colleagues meta-analysis in 2015 on six studies from the 

frontal cortex of AD patients [16], Moradifard and colleagues meta-analysis in 2018, which 

included data from six individual studies and further a sub-meta-analysis on the hippocampus 

and entorhinal cortex [20], and recently a meta-analysis on CA1 of the hippocampus DEGs by 

Hosseinian and colleagues in 2020 [12]. However, meta-analyses on other brain regions are 

not available. Therefore we herein performed a comprehensive meta-analysis on the temporal 

cortex microarray datasets from AD patients.  

2. Materials and Methods 

2.1. Search strategy and data collection. 

A comprehensive search through Gene Expression Omnibus (GEO) was performed to 

find all eligible datasets from inception up to March 2021. “Alzheimer” and “temporal” were 

used as keywords and three filters including Homo sapiens, Series, and Expression profiling 

by array were employed. Differentially expressed genes (DEGs) between AD patients and 

healthy controls were obtained using the GEO2R tool and DEGs with adjusted P value ˂ 0.05 

were considered significant.  

2.2. Integrated genomic analyses. 

Herein for our meta-analysis, we used R package RobustRankAggreg. Unlike Rank 

Aggregation (RA) that detect the closest list to the input lists, RRA generates a relevant list of 

even irrelevant and incomplete input lists [21]. Robust DEGs for each brain region were 

considered significant if the Bonferroni-corrected p-value was ˂ 0.05. Moreover, common 

genes between at least two datasets (common DEGs) were identified.  

2.3. Enriched pathways. 

For pathway analysis, we submitted Robust DEGs list in The Database for Annotation, 

Visualisation, and Integrated Discovery (DAVID) and selected KEGG-pathways with 

Benjamini-corrected p-value less than 0.05, furthermore, pathways for common DEGs were 

also identified [22-24]. Finally, we found the pathways that were significant in both robust 

DEGs and common DEGs.  

2.4. Targeting miRs.  

To find miRs targeting genes involved in PI3K-Akt signaling pathway, 

GeneSet2miRNA (GS2M) was used in www.bioprofiling.de, which employed 11 prediction 

programs. ENTREZ GENE IDs for both Robust and common genes were submitted in GS2M 
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and miRs with Mont Carlo-corrected p-value less than 0.05 were considered statistically 

significant [25-27].  

3. Results and Discussion 

3.1. Search results and differentially expressed genes. 

Our search through GEO yielded 24 datasets, of those 5 datasets including GSE118553, 

GSE5281, GSE36980, GSE122063, GSE132903 containing 187 AD patients and 167 healthy 

controls were included in our study.  The basic characteristics of included studies are 

summarized in Table 1. DEGs between the control and AD group were identified using the 

GEO2R tool, where P-values less than 0.05 were considered significant.  

Table 1. Basic characteristics of included studies. 

Datasets Country Number of 

AD/CTR 

Age (yrs.) 

AD/CTR 

Postmortem interval (hours) 

AD/CTR 

Reference 

GSE118553 UK 52/27 82.9 ± 8.7/70.6 ± 15.9 39.9 ± 21.3/37.1 ± 20.7 [28] 

GSE5281 USA 33/14 79.9 ± 6.9/79.8 ± 9.1 2.5/ 2.5 [29,30] 

GSE36980 Japan 26/62 83.0 ± 5.7/83.0 ± 5.7 - [31,32] 

GSE122063 USA 12/11 80.9 ± 7.4/78.6 ± 8.5 8.0 ± 4.0/ 9.0 ± 3.0 [33] 

GSE132903 USA 97/98 85.02 ± 6.75/84.98 ± 6.90 - [10] 

3.2. Results of integrated genomic analyses. 

RRA analyses for identification of robust DEGs between datasets yielded a set of up 

and down-regulated genes that top five up and down-regulated robust genes are given in Table 

2, furthermore, common genes between included studies were obtained using Venn diagram 

(Figure 1). 

 
Figure 1. Common A) down-regulated and B) up-regulated genes between included studies, developed by Van 

der Peer Lab [34]. 

Table 2. Top five up and down-regulated robust genes. 

Gene Symbol Full name Score 

Robust up-regulated genes 

APLNR Apelin Receptor 4.251491e-09 

ITPKB Inositol-Trisphosphate 3-Kinase B 3.801006e-06 

AEBP1 AE Binding Protein 1 1.391380e-05 

SERPINA3 Serpin Family A Member 3 4.576840e-05 

ANLN Anillin Actin Binding Protein 1.279258e-04 

Robust down-regulated genes 

VSNL1 Visinin Like 1  4.370754e-08 
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Gene Symbol Full name Score 

CARTPT CART Prepropeptide 2.274075e-07 

NPTX2 Neuronal Pentraxin 2  2.885267e-07 

VGF VGF Nerve Growth Factor Inducible 6.008304e-07 

SYT13 Synaptotagmin 13  7.091239e-7 

3.3. Pathways enriched by differentially expressed genes. 

DAVID was used to find pathways enriched by robust and common DEGs, the top three 

pathways based on a number of genes and P-Values are given in Table 3, interestingly the 

PI3K-Akt signaling pathway was a top pathway enriched by both robust genes and common 

DEGs. Both phosphoinositide 3‐kinase (PI3K) and protein kinase B (PKB or Akt) are kinases.  

Table 3. Three top pathways enriched by up and down-regulated robust and common genes. 

Pathway Number of genes P-Value 

Robust up-regulated genes 

PI3K-Akt signaling pathway 10 1.70e-2 

HTLV-I infection 8 2.60e-2 

Rap1 signaling pathway 7 3.30e-2 

Robust down-regulated genes 

Neuroactive ligand-receptor interaction 13 4.80e-4 

GABAergic synapse 12 2.20e-8 

Retrograde endocannabinoid signaling 12 1.40e-7 

Common up-regulated genes 

Pathways in cancer 140 8.80e-14 

PI3K-Akt signaling pathway 114 4.40e-9 

Focal adhesion 80 3.50e-10 

Common down-regulated genes 

Metabolic pathways 444 4.60e-7 

Huntington's disease 108 1.20e-13 

Alzheimer's disease 102 7.00e-16 

 
Figure 2. PI3K-Akt signaling pathway enriched by both robust and common genes that are marked by red stars 

reproduced with copyright permission from KEGG [24,35].  
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3.4. miRs targeting genes involved in the PI3K-Akt signaling pathway. 

Results of miRs analyses for genes involved in PI3K-Akt signaling pathway using 

GS2M yielded 38 miRs, of those 7 miRs had the P-value less than 0.05 and showed to be 

statistically significant. The top three miRs based on a number of target genes and P-values are 

given in table 4; Including HSA-MIR-29B.4, HSA-MIR-29B.5 and HSA-MIR-29C.5 that 

target 21, 17 and 15 genes, respectively.  

Table 4. Top three predicted miRs targeting genes involved in the PI3K-Akt signaling pathway 

miR P-value Number of targeting genes 

HSA-MIR-29B.4 7.57229967044858e-05 (21): CDK6, CDK2, COL1A2, COL4A1,  COL4A4,  

COL4A5, COL6A3, COL11A1, ITGA6,  ITGB1, LAMC1, 

LAMA2, MCL1, PDGFRB, PTEN, SGK1, COL5A3, 

GNG12, PDFGC, THBS2, ITGA11. 

HSA-MIR-29B.5 1.28970003513928e-06 (17): CDK6, COL1A2, COL4A1, COL4A4, COL4A5, 

COL6A3, COL11A1, ITGA6, ITGB1, LAMC1, MCL1, 

PDGFRB, PTEN, SGK1, COL5A3, GNG12, PDFGC.  

HSA-MIR-29C.5 0.000126067421820976 (15): CDK6, COL1A2, COL4A1, COL4A4, COL4A5, 

COL6A3, COL11A1, ITGB1, LAMC1, MCL1, PDGFRB, 

PTEN, SGK1, COL5A3, GNG12. 

Herein, we have performed an integrated genomic analysis on microarray datasets from 

187 AD patients and 167 healthy controls, our results showed significant up-regulation of genes 

involved in the PI3K-Akt signaling pathway in AD brains compared to healthy controls.  

A PI3K-Akt signaling pathway is an essential modulator of insulin effects and its 

impairment is a key pathological event in type 2 diabetes (T2D), recently impaired PI3K-Akt 

signaling pathway has been reported in AD patients and has been proposed as a mechanism 

linking AD and T2D; however results are almost inconsistent, while most of the reports 

reported down-regulation of this pathway in AD patients [36,37], a few numbers of evidence 

indicated up-regulation of this pathway in AD and causing cognitive impairment [38,39], 

moreover, there is also some evidence indicating up-regulation of this pathway in an early stage 

of AD, possibly as a compensatory response which is then down-regulated upon AD 

progression [37,39,40]. PI3K and Akt are two kinases that are involved in different signaling 

pathways, including glycogen synthase kinase 3 beta (GSK‐3β) inactivation; GSK‐3β is 

responsible for tau protein phosphorylation and played a key role in AD pathogenesis, GSK‐

3β is usually inactivated through phosphorylation by Akt, which its activation is modulated by 

PI3K. Therefore, the mechanism for the role of the PI3K-Akt signaling pathway in AD 

pathogenesis is based on its deregulation leading to GSK‐3β activation, which in turn increased 

tau phosphorylation [36]. However, the results of this study showed the up-regulation of the 

PI3K-Akt signaling pathway, which is in contrast to this mechanism, which is possibly a part 

of the compensatory response in an early stage of AD. Moreover, herein we have identified 

miRs targeting genes involved in the PI3K-Akt signaling pathway, which may be down-

regulated in AD patients, specifically in early stages, although experimental studies are needed 

to confirm our results, these miRs may be potential therapeutic targets and biomarkers for AD 

treatment or early diagnosis.  

4. Conclusions 

In conclusion, in this study, we reached from thousands of differentially expressed 

genes in AD brain to tens of robust genes and tens of common genes between at least two 
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studies and showed the impaired PI3K-Akt signaling pathway in AD, subsequently, the miRs 

analysis showed the potential miRs targeting genes involved in PI3K-Akt signaling pathway 

with potential application as therapeutic and diagnostic biomarkers in AD.  

Funding 

This research received no external funding. 

Acknowledgments 

We want to express our sincere gratitude to the anonymous reviewers for their valuable 

comments and suggestions to improve the paper's quality.  

Conflicts of Interest 

The authors declare no conflict of interest 

References 

1. Saez-Atienzar, S.; Masliah, E. Cellular senescence and Alzheimer disease: the egg and the chicken scenario. 

Nature Reviews Neuroscience 2020, 21, 433-444, https://doi.org/10.1038/s41583-020-0325-z.  

2. Janelidze, S.; Berron, D.; Smith, R.; Strandberg, O.; Proctor, N.K.; Dage, J.L.; Stomrud, E.; Palmqvist, S.; 

Mattsson-Carlgren, N.; Hansson, O. Associations of plasma phospho-Tau217 levels with tau positron 

emission tomography in early Alzheimer disease. JAMA neurology 2021, 78, 149-156, 

https://doi.org/10.1001/jamaneurol.2020.4201.  

3. WHO. Dementia fact sheet December 2017;. World Health Organisation 2020, https://www.who.int/news-

room/fact-sheets/detail/dementia 

4. Abyadeh, M.; Djafarian, K.; Heydarinejad, F.; Alizadeh, S.; Shab-Bidar, S. Association between 

Apolipoprotein E Gene Polymorphism and Alzheimer's Disease in an Iranian Population: A Meta-Analysis. 

Journal of Molecular Neuroscience 2019, 69, 557-562, https://doi.org/10.1007/s12031-019-01381-1.  

5. Fyfe, I. Epigenetics links ageing with Alzheimer disease. Nature Reviews Neurology 2018, 14, 254-254, 

https://doi.org/10.1038/nrneurol.2018.36.  

6. Selkoe, D.J. Alzheimer disease and aducanumab: adjusting our approach. Nature Reviews Neurology 2019, 

15, 365-366, https://doi.org/10.1038/s41582-019-0205-1.  

7. Cummings, J.; Feldman, H.H.; Scheltens, P. The “rights” of precision drug development for Alzheimer’s 

disease. Alzheimer's research & therapy 2019, 11, 1-14, https://doi.org/10.1186/s13195-019-0529-5.  

8. Abyadeh, M.; Meyfour, A.; Gupta, V.; Zabet Moghaddam, M.; Fitzhenry, M.J.; Shahbazian, S.; Hosseini 

Salekdeh, G.; Mirzaei, M. Recent Advances of Functional Proteomics in Gastrointestinal Cancers-a Path 

towards the Identification of Candidate Diagnostic, Prognostic, and Therapeutic Molecular Biomarkers. 

International Journal of Molecular Sciences 2020, 21, 8532, https://doi.org/10.3390/ijms21228532.  

9. Wingo, A.P.; Liu, Y.; Gerasimov, E.S.; Gockley, J.; Logsdon, B.A.; Duong, D.M.; Dammer, E.B.; Robins, 

C.; Beach, T.G.; Reiman, E.M. Integrating human brain proteomes with genome-wide association data 

implicates new proteins in Alzheimer’s disease pathogenesis. Nature Genetics 2021, 53, 143-146, 

https://doi.org/10.1038/s41588-020-00773-z.  

10. Piras, I.S.; Krate, J.; Delvaux, E.; Nolz, J.; Mastroeni, D.F.; Persico, A.M.; Jepsen, W.M.; Beach, T.G.; 

Huentelman, M.J.; Coleman, P.D. Transcriptome changes in the Alzheimer’s disease middle temporal gyrus: 

importance of RNA metabolism and mitochondria-associated membrane genes. Journal of Alzheimer's 

Disease 2019, 70, 691-713, https://doi.org/10.3233/JAD-181113.  

11. Belonwu, S.; Li, Y.; Bunis, D.; Rao, A.A.; Solsberg, C.W.; Oskotsky, T.; Taubes, A.; Grone, B.; Zalocusky, 

K.; Fragiadakis, G. Single-cell transcriptomic analysis elucidates APOE genotype specific changes across 

cell types in two brain regions in Alzheimer’s disease. 2021, https://doi.org/10.21203/rs.3.rs-291648/v1.  

12. Hosseinian, S.; Arefian, E.; Rakhsh-Khorshid, H.; Eivani, M.; Rezayof, A.; Pezeshk, H.; Marashi, S.-A. A 

meta-analysis of gene expression data highlights synaptic dysfunction in the hippocampus of brains with 

Alzheimer’s disease. Scientific reports 2020, 10, 1-9, https://doi.org/10.1038/s41598-020-64452-z.  

13. Noori, A.; Mezlini, A.M.; Hyman, B.T.; Serrano-Pozo, A.; Das, S. Systematic review and meta-analysis of 

human Transcriptomics reveals Neuroinflammation, deficient energy metabolism, and Proteostasis failure 

across Neurodegeneration. Neurobiology of Disease 2020, 105225, 

https://doi.org/10.1016/j.nbd.2020.105225.  

14. Schwartzentruber, J.; Cooper, S.; Liu, J.Z.; Barrio-Hernandez, I.; Bello, E.; Kumasaka, N.; Young, A.M.; 

Franklin, R.J.; Johnson, T.; Estrada, K. Genome-wide meta-analysis, fine-mapping and integrative 

https://doi.org/10.33263/BRIAC122.23322339
https://biointerfaceresearch.com/
https://doi.org/10.1038/s41583-020-0325-z
https://doi.org/10.1001/jamaneurol.2020.4201
https://doi.org/10.1007/s12031-019-01381-1
https://doi.org/10.1038/nrneurol.2018.36
https://doi.org/10.1038/s41582-019-0205-1
https://doi.org/10.1186/s13195-019-0529-5
https://doi.org/10.3390/ijms21228532
https://doi.org/10.1038/s41588-020-00773-z
https://doi.org/10.3233/JAD-181113
https://doi.org/10.21203/rs.3.rs-291648/v1
https://doi.org/10.1038/s41598-020-64452-z
https://doi.org/10.1016/j.nbd.2020.105225


https://doi.org/10.33263/BRIAC122.23322339  

 https://biointerfaceresearch.com/ 2338 

prioritization implicate new Alzheimer’s disease risk genes. Nature Genetics 2021, 53, 392-402, 

https://doi.org/10.1038/s41588-020-00776-w.  

15. Asefi, Y.; Gohari Mahmoudabad, A.; Habibian Sezavar, A.; Mirshahvaladi, S.; Abyadeh, M.; Abyareh, M. 

Association between maternal cadmium exposure and preterm birth: a meta-analysis. International Journal 

of Environmental Health Research 2020, 1-10, https://doi.org/10.1080/09603123.2020.1789947.  

16. Li, X.; Long, J.; He, T.; Belshaw, R.; Scott, J. Integrated genomic approaches identify major pathways and 

upstream regulators in late onset Alzheimer’s disease. Scientific reports 2015, 5, 1-12, 

https://doi.org/10.1038/srep12393.  

17. Abyadeh, M.; Heydarinejad, F.; Khakpash, M.; Asefi, Y.; Shab-Bidar, S. Association of Apolipoprotein E 

gene polymorphism with Preeclampsia: a meta-analysis. Hypertension in pregnancy 2020, 39, 196-202, 

https://doi.org/10.1080/10641955.2020.1753068.  

18. Sun, Z.; Tan, J.; Zhao, M.; Peng, Q.; Zhou, M.; Zuo, S.; Wu, F.; Li, X.; Dong, Y.; Xie, M. Integrated genomic 

analysis reveals regulatory pathways and dynamic landscapes of the tRNA transcriptome. Scientific reports 

2021, 11, 1-16, https://doi.org/10.1038/s41598-021-83469-6.  

19. García-Gómez, B.E.; Salazar, J.A.; Nicolás-Almansa, M.; Razi, M.; Rubio, M.; Ruiz, D.; Martínez-Gómez, 

P. Molecular Bases of Fruit Quality in Prunus Species: An Integrated Genomic, Transcriptomic, and 

Metabolic Review with a Breeding Perspective. International Journal of Molecular Sciences 2021, 22, 333, 

https://doi.org/10.3390/ijms22010333.  

20. Moradifard, S.; Hoseinbeyki, M.; Ganji, S.M.; Minuchehr, Z. Analysis of microRNA and gene expression 

profiles in Alzheimer’s disease: a meta-analysis approach. Scientific reports 2018, 8, 1-17, 

https://doi.org/10.1038/s41598-018-20959-0.  

21. Kolde, R.; Laur, S.; Adler, P.; Vilo, J. Robust rank aggregation for gene list integration and meta-analysis. 

Bioinformatics 2012, 28, 573-580, https://doi.org/10.1093/bioinformatics/btr709.  

22. Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID 

bioinformatics resources. Nature protocols 2009, 4, 44, https://doi.org/10.1038/nprot.2008.211.  

23. Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Bioinformatics enrichment tools: paths toward the 

comprehensive functional analysis of large gene lists. Nucleic acids research 2009, 37, 1-13, 

https://doi.org/10.1093/nar/gkn923.  

24. Kanehisa, M.; Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic acids research 2000, 28, 

27-30, https://doi.org/10.1093/nar/28.1.27.  

25. Antonov, A.V.; Dietmann, S.; Wong, P.; Lutter, D.; Mewes, H.W. GeneSet2miRNA: finding the signature 

of cooperative miRNA activities in the gene lists. Nucleic acids research 2009, 37, W323-W328, 

https://doi.org/10.1093/nar/gkp313.  

26. Xiao, F.; Zuo, Z.; Cai, G.; Kang, S.; Gao, X.; Li, T. miRecords: an integrated resource for microRNA–target 

interactions. Nucleic acids research 2009, 37, D105-D110, https://doi.org/10.1093/nar/gkn851.  

27. Aghaee-Bakhtiari, S.H.; Arefian, E.; Lau, P. miRandb: a resource of online services for miRNA research. 

Briefings in bioinformatics 2018, 19, 254-262, https://doi.org/10.1093/bib/bbw109.  

28. Patel, H.; Hodges, A.K.; Curtis, C.; Lee, S.H.; Troakes, C.; Dobson, R.J.; Newhouse, S.J. Transcriptomic 

analysis of probable asymptomatic and symptomatic alzheimer brains. Brain, behavior, and immunity 2019, 

80, 644-656, https://doi.org/10.1016/j.bbi.2019.05.009.  

29. Liang, W.S.; Dunckley, T.; Beach, T.G.; Grover, A.; Mastroeni, D.; Ramsey, K.; Caselli, R.J.; Kukull, W.A.; 

McKeel, D.; Morris, J.C. Altered neuronal gene expression in brain regions differentially affected by 

Alzheimer's disease: a reference data set. Physiological genomics 2008, 33, 240-256, 

https://doi.org/10.1152/physiolgenomics.00242.2007.  

30. Liang, W.S.; Dunckley, T.; Beach, T.G.; Grover, A.; Mastroeni, D.; Walker, D.G.; Caselli, R.J.; Kukull, 

W.A.; McKeel, D.; Morris, J.C. Gene expression profiles in anatomically and functionally distinct regions of 

the normal aged human brain. Physiological genomics 2007, 28, 311-322, 

https://doi.org/10.1152/physiolgenomics.00208.2006.  

31. Hokama, M.; Oka, S.; Leon, J.; Ninomiya, T.; Honda, H.; Sasaki, K.; Iwaki, T.; Ohara, T.; Sasaki, T.; LaFerla, 

F.M. Altered expression of diabetes-related genes in Alzheimer's disease brains: the Hisayama study. 

Cerebral cortex 2014, 24, 2476-2488, https://doi.org/10.1093/cercor/bht101.  

32. Ohara, T.; Ninomiya, T.; Kubo, M.; Hirakawa, Y.; Doi, Y.; Hata, J.; Iwaki, T.; Kanba, S.; Kiyohara, Y. 

Apolipoprotein genotype for prediction of Alzheimer's disease in older Japanese: the Hisayama Study. 

Journal of the American Geriatrics Society 2011, 59, 1074-1079, https://doi.org/10.1111/j.1532-

5415.2011.03405.x.  

33. McKay, E.C.; Beck, J.S.; Khoo, S.K.; Dykema, K.J.; Cottingham, S.L.; Winn, M.E.; Paulson, H.L.; 

Lieberman, A.P.; Counts, S.E. Peri-infarct upregulation of the oxytocin receptor in vascular dementia. 

Journal of Neuropathology & Experimental Neurology 2019, 78, 436-452, 

https://doi.org/10.1093/jnen/nlz023.  

34. Van der Peer Lab; http://bioinformatics.psb.ugent.be/webtools/Venn/ 

35. Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Science 2019, 

28, 1947-1951, https://doi.org/10.1002/pro.3715.  

https://doi.org/10.33263/BRIAC122.23322339
https://biointerfaceresearch.com/
https://doi.org/10.1038/s41588-020-00776-w
https://doi.org/10.1080/09603123.2020.1789947
https://doi.org/10.1038/srep12393
https://doi.org/10.1080/10641955.2020.1753068
https://doi.org/10.1038/s41598-021-83469-6
https://doi.org/10.3390/ijms22010333
https://doi.org/10.1038/s41598-018-20959-0
https://doi.org/10.1093/bioinformatics/btr709
https://doi.org/10.1038/nprot.2008.211
https://doi.org/10.1093/nar/gkn923
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1093/nar/gkp313
https://doi.org/10.1093/nar/gkn851
https://doi.org/10.1093/bib/bbw109
https://doi.org/10.1016/j.bbi.2019.05.009
https://doi.org/10.1152/physiolgenomics.00242.2007
https://doi.org/10.1152/physiolgenomics.00208.2006
https://doi.org/10.1093/cercor/bht101
https://doi.org/10.1111/j.1532-5415.2011.03405.x
https://doi.org/10.1111/j.1532-5415.2011.03405.x
https://doi.org/10.1093/jnen/nlz023.%2034
https://doi.org/10.1093/jnen/nlz023.%2034
https://doi.org/10.1002/pro.3715


https://doi.org/10.33263/BRIAC122.23322339  

 https://biointerfaceresearch.com/ 2339 

36. Gabbouj, S.; Ryhänen, S.; Marttinen, M.; Wittrahm, R.; Takalo, M.; Kemppainen, S.; Martiskainen, H.; 

Tanila, H.; Haapasalo, A.; Hiltunen, M. Altered insulin signaling in Alzheimer’s disease brain–special 

emphasis on PI3K-Akt pathway. Frontiers in neuroscience 2019, 13, 629, 

https://doi.org/10.3389/fnins.2019.00629.  

37. Curtis, D.; Bandyopadhyay, S. Mini‐review: Role of the PI3K/Akt pathway and tyrosine phosphatases in 

Alzheimer's disease susceptibility. Annals of Human Genetics 2021, 85, 1-6, 

https://doi.org/10.1111/ahg.12410.  

38. Shu, Y.; Zhang, H.; Kang, T.; Zhang, J.-j.; Yang, Y.; Liu, H.; Zhang, L. PI3K/Akt signal pathway involved 

in the cognitive impairment caused by chronic cerebral hypoperfusion in rats. PLoS One 2013, 8, e81901, 

https://doi.org/10.1371/journal.pone.0081901.  

39. Perluigi, M.; Pupo, G.; Tramutola, A.; Cini, C.; Coccia, R.; Barone, E.; Head, E.; Butterfield, D.A.; Di 

Domenico, F. Neuropathological role of PI3K/Akt/mTOR axis in Down syndrome brain. Biochimica et 

Biophysica Acta (BBA)-Molecular Basis of Disease 2014, 1842, 1144-1153, 

https://doi.org/10.1016/j.bbadis.2014.04.007.  

40. Abyadeh, M.; Gupta, V.; Chitranshi, N.; Gupta, V.; Wu, Y.; Saks, D.; Wander Wall, R.; Fitzhenry, M.J.; 

Basavarajappa, D.; You, Y.; Salekdeh, G.H.; Haynes, P.; Graham, S.L.; Mirzaei, M. Mitochondrial 

Dysfunction in Alzheimer’s Disease - a Proteomics Perspective. Expert Review of Proteomics 2021, 

https://doi.org/10.1080/14789450.2021.1918550.  

 

https://doi.org/10.33263/BRIAC122.23322339
https://biointerfaceresearch.com/
https://doi.org/10.3389/fnins.2019.00629
https://doi.org/10.1111/ahg.12410
https://doi.org/10.1371/journal.pone.0081901
https://doi.org/10.1016/j.bbadis.2014.04.007
https://doi.org/10.1080/14789450.2021.1918550

