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Abstract: Cancer classification is one of the main objectives for analyzing big biological datasets. 

Machine learning algorithms (MLAs) have been extensively used to accomplish this task. Several 

popular MLAs are available in the literature to classify new samples into normal or cancer populations.  

Nevertheless, most of them often yield lower accuracies in the presence of outliers, which leads to 

incorrect classification of samples. Hence, in this study, we present a robust approach for the efficient 

and precise classification of samples using noisy GEDs. We examine the performance of the proposed 

procedure in a comparison of the five popular traditional MLAs (SVM, LDA, KNN, Naïve Bayes, 

Random forest) using both simulated and real gene expression data analysis. We also considered several 

rates of outliers (10%, 20%, and 50%). The results obtained from simulated data confirm that the 

traditional MLAs produce better results through our proposed procedure in the presence of outliers 

using the proposed modified datasets. The further transcriptome analysis found the significant 

involvement of these extra features in cancer diseases. The results indicated the performance 

improvement of the traditional MLAs with our proposed procedure.  Hence, we propose to apply the 

proposed procedure instead of the traditional procedure for cancer classification.   

Keywords: Gene expression data; Classification; Outlier detection and modification; DE gene; MAD 

and Robustness. 
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1. Introduction 

Big data is becoming the main issue in today’s world for its diverse, unstructured and 

fast-changing behavior. Gene expression datasets (GEDs) are high-dimensional and big 

datasets. So, analyzing using these datasets becomes complicated day by day [1,2]. For 

example, a single gene expression dataset consists of thousands of genes/features relative to a 

small number of sample sizes. Many of the features are correlated [3]. Therefore, the curse of 

dimensionality problems hampers the downstream analysis using GEDs. One of the main 

objectives of GEDs is the classification of new samples into one of two or more populations 

(e.g., normal or cancer) based on training datasets whose category membership is known in 

advance. Many supervised machine learning algorithms have been developed to extract useful 

information about the underlying mechanism of gene functions and pathways [4–7]. 

Classification is a two-step process, first step is the training phase, where the classification 

model is constructed by using a training set. The second step is the classification phase, where 
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the model is used to predict class labels and test the built model on test data [8]. MLAs Fisher’s 

linear discriminant analysis (LDA) [9] is the oldest and popular among them. Nearest Neighbor 

like K-Nearest Neighbor [10] used difference metric to find the nearest neighbor for classifying 

unlabeled data. It has been used extensively in GED analysis. It explores the k closest features 

in the training set and allots to the class that seems most regularly. A regression-based 

classification, namely Multi-nomial Logistic Regression Model [11], using dichotomous 

dependent variables to predict. The bayesian-based algorithm, namely Naïve Bayes Classifier 

[12], used Bayes theorem to classify unlabeled data into classes. A support vector machine 

(SVM) algorithm has been extensively used to analyses data and recognizes the patterns for 

classification and regression analysis [13]. It is done by creating hyperplanes in a high or 

infinite-dimensional space, which can then be used for classification, regression, or other tasks. 

Random forest [14] based decision tree also has been applied in GED analysis and accepted by 

the research communities its robustness performance for large-sample case. 

Notwithstanding the classification algorithms for labeling the class, most of these 

algorithms are sensitive to outliers and frequently produce misrepresentative results in the 

presence of outlying observation.  Outliers may originate in microarray datasets because there 

are a number of steps involved in data generating procedures, from hybridization to image 

analysis [15]. Since the GED sets contain many genes, the researcher used some feature 

selection techniques and classification methods [16–25]. These feature selection techniques are 

used to simplify the computational process of grouping disease samples from normal samples 

by reducing the time and cost and increasing classifiers' accuracy.  

The appliance of robust estimating purposes for data analysis and the appliance of 

classical estimating purpose with the reduced/modified datasets are generally the two types of 

statistical procedures to overwhelm the outlying difficulties in the GE data analysis [26]. 

Several research studies have existed to robustify the classifiers by excluding/reducing the 

outliers from the main dataset [27–33]. In this process, the significant genes might be detached 

before the analysis or sample size turns smaller, generating computational intricacy by the 

statistical algorithms. In this case, the process of modification of the dataset is better to analyze 

than the datasets after reducing/excluding outliers, in this case. Since any gene or sample need 

not be detached from the dataset. It interchanges the outlying expressions by the feasible 

values. Hence, in this paper, we propose an outlier modification rule to progress the 

performance of machine learning algorithms (MLAs). We considered five widespread machine 

learning algorithms (SVM, LDA, KNN, Naïve Bayes and Random forest) to explore the 

performance of the proposed procedure.  

The remaining part of this paper is prepared as follows: Section 2 briefly describes the 

formulation of five classification algorithms and the proposed algorithm. After Section 2, a 

comprehensive simulation study and two real data studies have been carried out with results 

and discussion. 

2. Materials and Methods 

2.1. Machine Learning Algorithms to be compared. 

In this study, five popular machine learning algorithms (MLAs) are evaluated, namely, 

Support Vector Machine (SVM), Linear Discriminant Analysis (LDA), K- Nearest Neighbor 

(KNN), Naïve Bayes (NB) and Random Forest (RF).  
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2.1.1. Support Vector Machine (SVM). 

SVM is an essential classification algorithm used to search the hyperplane in an N-

dimensional space explicitly classifies the data points (N- the number of features). The main 

objective of SVM is to search this hyperplane that has the maximum margin [34]. For 

maximizing the margin between the hyperplane and support vectors (data points that are nearer 

to the hyperplane), “Hinge’s loss/cost” function has been used. Suppose X is the features and 

y is the target value that needs to predict. SVM is to predict y class to the actual y.  

Predict y = function (weighted values of X) 

The Hinges’s loss function added with regularization term as: 

Total cost= 
2

*
2

C


+ (sum of all losses for each observation); 

Here, C is the hyper-parameter that reins the amount of regularization. If C is chosen 

sufficiently small, then we call this hard-margin classifier and if C is chosen sufficiently large, 

then we call this soft-margin classifier.   is defined as weight values. 

2.1.2. Linear Discriminant Analysis (LDA). 

The LDA is a classification algorithm first developed by R.A. Fisher in 1936. LDA is 

based upon the concept of searching for a linear combination of predictor variables that best 

separates the target variables in classes [9]. LDA is a general discriminant function with a linear 

decision boundary. For example, the target dataset y can be classified simply by solving the 

discriminant function id  for each class iC  with the rule of classification cR . Let, the prior 

probabilities is ( )ip C , mean of each class is i  and the common covariance matrix is wS . Then 

the discriminant function is: 

1 11
( ) log( ( ))

2

T T

i i i w i w id y p C S y S  − −= − +  

The classification rule for the target dataset given as: 
** **( ) : arg max ( )c i

i

R y i i d y=  =

 

2.1.3. K-Nearest Neighbors (KNN). 

A non-parametric methodology used to discover a group of k samples nearest to 

unknown samples is known as KNN classifier [35], used for supervised learning. For 

determining the nearest sample, it uses distance metric (for example- Euclidian Distance). The 

main function of KNN is to determine the class (label) of unknown samples from those k 

samples by calculating the average of the response variables.  

Suppose, jX  be the values of the features and jK denotes labels of jX  for each j . Let 

the number of a class is k  and x  be the points for which label is unknown. The steps of finding 

a class for unknown labels by KNN are: 

Step 1: Determine ( , ), j 1,2,...,njd x X = for all values of k ( d  is a distance metric) 
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Step 2: For n determined distances, arrange the values in increasing order and take D

distances from the sorted list ( 0D  ). 

Step 3: Find the D points corresponding to these D distances. 

Step 4: let Dj denotes the number of points belonging to the jth class among the D 

points. 

Step 5: If ,j iD D j i   , then put x  in class i. 

2.1.4. Naïve Bayes.  

The probabilistic machine learning model used to solve classification problems based 

on Bayes Theorem where the features are independent is known as Naïve Bayes Classifier [12]. 

Let, y is a class variable that needs to predict and x1, x2,…xn are the features; then, 

according to Bayes Theorem, the probability of getting classes for y based on x’s is: 

1 2
1 2

1 2

( | ) ( | )...... ( | ) ( )
( | , x ,..., )

( ) ( )..... ( )

n
n

n

P x y P x y P x y P y
P y x x

P x P x P x
=

 
Since the features are independent and the denominator is unchangeable, then by 

removing the denominator and get result proportionally, 

                                      

=


n

i

in yxPyPxxxyP
1

21 )()(),....,,(

 
So, we can obtain the class based on features by finding the maximum probability as: 

                                        


=

n

i

iK

K

yxPyP
1

)()(maxarg


 
Where, K is the finite classes of y.  

2.1.5. Random Forest. 

An ensemble learning proposed by Breiman [36] constructing several decision trees 

based on a random averaging selection of independent variables of the training set is known as 

a classification algorithm. For the classification problem, the variables are ranked through their 

importance. Let the dataset  ( , )n i iS x y= , 1,2,....,i n=  , we fit a random forest to that data to 

quantify the importance of a variable. Throughout the fitting procedure, the error for each data 

point is intended and averaged over the forest. To quantity, the importance of the ith feature 

after training, the values of the ith feature are permuted among the training data and the error is 

again calculated on this data set. The importance score for the ith feature is calculated by 

averaging the difference in error before and after the permutation for all the trees. 

Standardization of the score is done by the standard deviation of these differences and classifies 

each group according to the training group importance score. Features which yield large values 

for this score are more important than features that produce small values. Random forests 

deliver evidence about the importance of a variable and the closeness of the data points. 
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2.2. Proposed method. 

The simple, robust estimate of location is a median and the simple, robust estimate of 

scale is a median absolute deviation (MAD). For that reason, an outlier detection and 

modification technique using median and MAD introduce in this paper. Let us suppose that 

𝒙𝑖𝑗𝑘 stand the ith gene expression for the jth replicates in kth class then median and MAD is 

defined by medi,k =median(𝒙𝑖𝑗𝑘; i =1, 2,…, G; j =1,2,…, nk; k=1,2) and MADi,k =med𝑗(|𝒙𝑖𝑗𝑘 − 

med𝑖,𝑘 |), respectively. The proposed robust technique is as follows: 

i. We proclaim an outlying observation within the expressions of a gene-based on training 

dataset if it does not fall within a certain interval, i.e., Pr (medi,k – 3×1.4828×MADi,k ≤

   𝒙𝑖𝑗𝑘   ≤ medi,k + 3×1.4828×MADi,k)=0.  Otherwise, we declare that gene as a non-

outlying gene. 

ii. If outliers occur, then modify the outlying observation by the median of this gene and 

obtain modified training gene expression (MTGE) data. 

iii.  Apply t-test to select the most informative features based on MTGE data and rank these 

features according to their adjusted p-values. 

iv. Select top k<max(n1,n2) features out of G genes using the adjusted p-values and apply 

them to train the popular classifiers. 

v. Calculate different indices of the confusion matrices (accuracy, sensitivity, specificity, 

FPR, PPV, NPV and detection rate) to investigate the performance of the classifiers using 

top k-features of the modified training dataset. 

The R-codes of the proposed algorithm have been implemented in the R package 

MLOutMod, which can be found in https://github.com/snotjanu/MLOutMod. The workflow of 

this proposed procedure has been visualized in Figure 1. 

 
Figure 1. Schematic flowchart of the proposed procedure. 

2.3. Performance measure. 

In order to measure the performance of different classification algorithms for binary 

classification tests such as DE genes or EE genes, we use receiving operating characteristics 
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(ROC) curve, area under the ROC curve (AUC) and all the measures related to this curve. We 

compute the following measures of performance: 

False positive rate (FPR) = ,
TNFP

FP

+  
Accuracy = 

FNTNFPTP

TNTP

+++

+
 

Sensitivity = ,
FNTP

TP

+  
Specificity = ,

FPTN

TN

+
 Positive predicted value (PPV) = 

FPTP

TP

+
, 

Negative predicted value (NPV) =
FNTN

TN

+  
 and Detection Rate = 

FNTNFPTP

TP

+++  
Where, TP, TN, FP and FN denote the number of true positives, number of true 

negatives, number of false-positive and number of false negatives, respectively. PPV, NPV are 

positive predicted values and negative predicted values, respectively. Based on these 

parameters, we announce an algorithm as a good performer if it produces greater values of 

accuracy, sensitivity, specificity and lesser values of FPR and NPV. 

3. Results and Discussion 

We examine the performance of the proposed procedure in comparison with the 

classical procedure through five widely used classification algorithms (SVM, LDA, KNN, 

Naïve Bayes and RF) using one simulated and two real microarray gene expression datasets, 

namely and head- -neck cancer [37] and colon cancer [38]. We used R packages class for LDA, 

knn for KNN, caret for Random Forest, e1071 for SVM and naïve Bayes. The R package MASS 

was used to evaluate the performance of these algorithms. The comprehensive R archive 

network (cran) or Bioconductor are the main sources of these packages. 

Table 1.  Simulated data-generating model. 

Group Name Normal sample (n1) Cancer Sample (n2) 

p1 N(µ, 𝜎2)  N(+µ, 𝜎2) 

 p2 N(-µ, 𝜎2) N(+µ, 𝜎2) 

 p3 N(0, 𝜎2) N(0, 𝜎2) 

3.1. Simulated data analysis.  

The simulated data were generated with known characteristics for two (k=2) groups 

with and without outliers that imitative the behavior of real gene expression data. The model 

used to generate this simulated data is defined in Table 1, where the row and column represent 

the genes and sample groups (normal and cancer), respectively. For randomizing, the datasets 

are contaminated with Gaussian noise. Two categories of datasets were generated from this 

model: one comprises of G=1,000 genes with small sample size, 10 in each group (n1=n2=10), 

and others comprise G=1,000 genes with a large sample size, 50 in each group (n1=n2=50). The 

gene expression profiles of 1,000 genes with n= (n1+n2) samples represent both datasets. We 

generated 100 differentially expressed (DE) genes and 900 equally expressed (EE) genes 

(pattern 3) from G=1,000 genes that were represented in each dataset. These 100 DE genes are 

then divided into P1 =50, up-regulated (pattern 1) and P2=50, down-regulated (pattern 2) DE 

genes of two groups. To generate both of these datasets, we fixed the value of the Gaussian 

noise parameter, σ2= 0.05 and the parameter µ as 0.2. 
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Table 2. Classification performance of five classifiers based on original and modified training dataset for a 

small sample case. 

Algorithms 
% of 

Outliers 
Accuracy 

95% CI of 

Accuracy 
Sensitivity Specificity PPV NPV 

Detection 

Rate 

SVM 

No 

Outlier 

(0.996) 

[0.995] 

(0.686,0.999) 

[0.684,0.999] 

(0.996) 

[0.996] 

(0.996) 

[0.996] 

(0.997) 

[0.996] 

(0.997) 

[0.996] 

(0.996) 

[0.995] 

10% 

outliers 

(0.834) 

[0.994] 

(0.494,0.970) 

[0.683,0.999] 

(0.832) 

[0.992] 

(0.836) 

[0.996] 

(0.867) 

[0.979] 

(0.862) 

[0.993] 

(0.832) 

[0.992] 

20% 

outliers 

(0.673) 

[0.995] 

(0.336,0.905) 

[0.685,0.999] 

(0.664) 

[0.996] 

(0.682) 

[0.994] 

(0.705) 

[0.995] 

(0.680) 

[0.997] 

(0.664) 

[0.996] 

50% 

outliers 

(0.509) 

[0.993] 

(0.205,0.807) 

[0.682,0.999] 

(0.488) 

[0.990] 

(0.530) 

[0.996] 

(0.494) 

[0.997] 

(0.507) 

[0.992] 

(0.488) 

[0.990] 

LDA 

No 

Outlier 

(0.934) 

[0.934] 

(0.609,0.991) 

[0.607,0.999] 

(0.928) 

[0.926] 

(0.940) 

[0.938] 

(0.945) 

[0.943] 

(0.939) 

[0.937] 

(0.928) 

[0.927] 

10% 

outliers 

(0.835) 

[0.935] 

(0.498,0.966) 

[0.622,0.994] 

(0.826) 

[0.642] 

(0.844) 

[0.998] 

(0.857) 

[0.955] 

(0.846) 

[0.948] 

(0.826) 

[0.942] 

20% 

outliers 

(0.698) 

[0.946] 

(0.366,0.910) 

[0.625,0.992] 

(0.706) 

[0.934] 

(0.690) 

[0.958] 

(0.723) 

[0.961] 

(0.713) 

[0.945] 

(0.923) 

[0.999] 

50% 

outliers 

(0.511) 

[0.926] 

(0.205,0.810) 

[0.602,0.988] 

(0.496) 

[0.904] 

(0.526) 

[0.948] 

(0.419) 

[0.951] 

(0.503) 

[0.922] 

(0.496) 

[0.904] 

KNN 

No 

Outlier 

(0.995) 

[0.995] 

(0.685,0.999) 

[0.685,0.999] 

(0.992) 

[0.992] 

(0.998) 

[0.997] 

(0.998) 

[0.997] 

(0.993) 

[0.992] 

(0.992) 

[0.992] 

10% 

outliers 

(0.838) 

[0.995] 

(0.496,0.973) 

[0.685,0.999] 

(0.838) 

[0.992] 

(0.828) 

[0.998] 

(0.866) 

[0.998] 

(0.866) 

[0.993] 

(0.838) 

[0.992] 

20% 

outliers 

(0.706) 

[0.993] 

(0.366,0.922) 

[0.682,0.999] 

(0.712) 

[0.996] 

(0.700) 

[0.990] 

(0.729) 

[0.992] 

(0.726) 

[0.997] 

(0.712) 

[0.996] 

50% 

outliers 

(0.502) 

[0.986] 

(0.201,0.802) 

[0.672,0.999] 

(0.474) 

[0.986] 

(0.530) 

[0.996] 

(0.485) 

[0.988] 

(0.524) 

[0.988] 

(0.474) 

[0.987] 

NB 

No 

Outlier 

(0.997) 

[0.995] 

(0.688,0.999) 

[0.684,0.999] 

(0.998) 

[0.996] 

(0.996) 

[0.994] 

(0.996) 

[0.994] 

(0.998) 

[0.996] 

(0.998) 

[0.998] 

10% 

outliers 

(0.932) 

[0.987] 

(0.688,0.990) 

[0.688,0.999] 

(0.936) 

[0.978] 

(0.928) 

[0.996] 

(0.945) 

[0.996] 

(0.952) 

[0.983] 

(0.936) 

[0.978] 

20% 

outliers 

(0.817) 

[0.981] 

(0.677,0.961) 

[0.677,0.999] 

(0.858) 

[0.976] 

(0.776) 

[0.986] 

(0.842) 

[0.989] 

(0.870) 

[0.982] 

(0.858) 

[0.976] 

50% 

outliers 

(0.498) 

[0.980] 

(0.390,0.802) 

[0.690,0.997] 

(0.408) 

[0.968] 

(0.488) 

[0.992] 

(0.510) 

[0.993] 

(0.492) 

[0.978] 

(0.508) 

[0.968] 

RF 

No 

Outlier 

(0.999) 

[0.999] 

(0.692,0.999) 

[0.929,0.999] 

(0.999) 

[0.999] 

(0.999) 

[0.999] 

(0.999) 

[0.999] 

(0.999) 

[0.999] 

(0.999) 

[0.999] 

10% 

outliers 

(0.950) 

[0.999] 

(0.626,0.997) 

[0.692,0.999] 

(0.646) 

[0.999] 

(0.954) 

[0.999] 

(0.961) 

[0.999] 

(0.956) 

[0.999] 

(0.936) 

[0.999] 

20% 

outliers 

(0.817) 

[0.998] 

(0.465,0.961) 

[0.692,0.999] 

(0.822) 

[0.999] 

(0.792) 

[0.999] 

(0.810) 

[0.999] 

(0.839) 

[0.999] 

(0.822) 

[0.999] 

50% 

outliers 

(0.513) 

[0.999] 

(0.208,0.810) 

[0.692,0.999] 

(0.488) 

[0.999] 

(0.538) 

[0.999] 

(0.513) 

[0.999] 

(0.517) 

[0.999] 

(0.488) 

[0.999] 
1The brackets types () and [ ] indicate the result obtained from the original training data and proposed modified 

training data, respectively. 

Table 3. Classification performance of five classifiers based on original and modified training dataset for a 

large-sample case. 

Algorithms 
% of 

Outliers 
Accuracy 

95% CI of 

Accuracy 
Sensitivity Specificity PPV NPV 

Detection 

Rate 

SVM 

No 

Outlier 

(0.999) 

[0.999] 

(0.929,0.999) 

[0.929,0.999] 

(0.999) 

[0.999] 

(0.999) 

[0.999] 

(0.999) 

[0.999] 

(0.999) 

[0.999] 

(0.999) 

[0.999] 

10% 

outliers 

(0.986) 

[0.999] 

(0.905,0.998) 

[0.929,0.999] 

(0.979) 

[0.999] 

(0.992) 

[0.999] 

(0.992) 

[0.999] 

(0.980) 

[0.999] 

(0.979) 

[0.999] 

20% 

outliers 

(0.821) 

[0.999] 

(0.691,0.910) 

[0.929,0.999] 

(0.761) 

[0.999] 

(0.880) 

[0.999] 

(0.889) 

[0.999] 

(0.813) 

[0.999] 

(0.761) 

[0.999] 

50% 

outliers 

(0.495) 

[0.999] 

(0.351,0.640) 

[0.929,0.999] 

(0.341) 

[0.999] 

(0.649) 

[0.999] 

(0.480) 

[0.999] 

(0.474) 

[0.999] 

(0.341) 

[0.999] 

LDA 

No 

Outlier 

(0.999) 

[0.999] 

(0.929,0.999) 

[0.929,0.999] 

(0.999) 

[0.999] 

(0.999) 

[0.999] 

(0.999) 

[0.999] 

(0.999) 

[0.999] 

(0.999) 

[0.999] 

10% 

outliers 

(0.995) 

[0.999] 

(0.921,0.998) 

[0.926,0.998] 

(0.996) 

[0.999] 

(0.995) 

[0.998] 

(0.996) 

[0.999] 

(0.996) 

[0.999] 

(0.996) 

[0.999] 

20% 

outliers 

(0.934) 

[0.999] 

(0.833,0.977) 

[0.929,0.998] 

(0.923) 

[0.999] 

(0.946) 

[0.998] 

(0.950) 

[0.999] 

(0.934) 

[0.999] 

(0.923) 

[0.999] 

50% 

outliers 

(0.495) 

[0.999] 

(0.352,0.640) 

[0.929,0.998] 

(0.525) 

[0.999] 

(0.466) 

[0.998] 

(0.487) 

[0.999] 

(0.503) 

[0.999] 

(0.525) 

[0.999] 
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Algorithms 
% of 

Outliers 
Accuracy 

95% CI of 

Accuracy 
Sensitivity Specificity PPV NPV 

Detection 

Rate 

KNN 

No 

Outlier 

(0.999) 

[0.999] 

(0.929,0.999) 

[0.929,0.999] 

(0.999) 

[0.999] 

(0.999) 

[0.999] 

(0.999) 

[0.999] 

(0.999) 

[0.999] 

(0.999) 

[0.999] 

10% 

outliers 

(0.835) 

[0.999] 

(0.709,0.917) 

[0.929,0.999] 

(0.741) 

[0.999] 

(0.929) 

[0.999] 

(0.936) 

[0.999] 

(0.817) 

[0.999] 

(0.741) 

[0.999] 

20% 

outliers 

(0.610) 

[0.999] 

(0.465,0.742) 

[0.929,0.999] 

(0.356) 

[0.999] 

(0.864) 

[0.999] 

(0.815) 

[0.999] 

(0.615) 

[0.999] 

(0.356) 

[0.999] 

50% 

outliers 

(0.495) 

[0.999] 

(0.351,0.640) 

[0.929,0.999] 

(0.264) 

[0.999] 

(0.726) 

[0.999] 

(0.472) 

[0.999] 

(0.492) 

[0.999] 

(0.264) 

[0.999] 

NB 

No 

Outlier 

(0.999) 

[0.999] 

(0.929,0.999) 

[0.929,0.999] 

(0.999) 

[0.999] 

(0.999) 

[0.999] 

(0.999) 

[0.999] 

(0.999) 

[0.999] 

(0.999) 

[0.999] 

10% 

outliers 

(0.977) 

[0.999] 

(0.929,0.990) 

[0.929,0.999] 

(0.968) 

[0.999] 

(0.986) 

[0.999] 

(0.989) 

[0.999] 

(0.976) 

[0.999] 

(0.968) 

[0.999] 

20% 

outliers 

(0.854) 

[0.999] 

(0.629,0.910) 

[0.929,0.999] 

(0.835) 

[0.999] 

(0.874) 

[0.999] 

(0.924) 

[0.999] 

(0.897) 

[0.999] 

(0.835) 

[0.999] 

50% 

outliers 

(0.612) 

[0.999] 

(0.429,0.737) 

[0.929,0.999] 

(0.556) 

[0.999] 

(0.668) 

[0.999] 

(0.757) 

[0.999] 

(0.685) 

[0.999] 

(0.556) 

[0.999] 

RF 

No 

Outlier 

(0.999) 

[0.999] 

(0.929,0.999) 

[0.929,0.999] 

(0.999) 

[0.999] 

(0.999) 

[0.999] 

(0.999) 

[0.999] 

(0.999) 

[0.999] 

(0.999) 

[0.999] 

10% 

outliers 

(0.999) 

[0.999] 

(0.929,0.999) 

[0.929,0.999] 

(0.999) 

[0.999] 

(0.999) 

[0.999] 

(0.999) 

[0.999] 

(0.999) 

[0.999] 

(0.999) 

[0.999] 

20% 

outliers 

(0.999) 

[0.999] 

(0.929,0.999) 

[0.929,0.999] 

(0.999) 

[0.999] 

(0.999) 

[0.999] 

(0.999) 

[0.999] 

(0.999) 

[0.999] 

(0.999) 

[0.999] 

50% 

outliers 

(0.999) 

[0.999] 

(0.927,0.999) 

[0.929,0.999] 

(0.999) 

[0.999] 

(0.998) 

[0.999] 

(0.998) 

[0.999] 

(0.999) 

[0.999] 

(0.999) 

[0.999] 
1The brackets types () and [ ] indicate the result obtained from the original training data and proposed modified 

training data, respectively. 

The performance of the proposed procedure compared with the classical procedure for 

sample classification as normal or cancer groups, we employed five popular classifiers such as 

SVM, LDA, KNN, naive Bayes and random forest. We generated 100 simulated datasets from 

Table 1 for each of small (n=20, n1=10, n2=10) and large (n=100, n1=50, n2=50) sample cases, 

respectively. To demonstrate the classification performance of these methods, each of the 100 

simulated datasets was randomly divided into two independent datasets for constructing the 

training and test dataset, where these training and test datasets comprised of a same number of 

samples. The performance of these algorithms is also estimated with outlier observations. We 

multiply a constant, z term with the maximum value of the gene expressions within the groups 

to generate outlying datasets using ),...2,1;,...,2,1;2,1;(**

kijkijk njGikxzvx ===+= . Here,

ijkx it symbolizes the thi gene expression of 
thj samples in thk a group, v ∈ (5, 10) and z ∈ (2, 

4). We considered different outlying percentages of genes (10%, 20% and 50%) with one or 

two randomly selected samples.  

 
Figure 2. Performance evaluation using the average value of accuracy for small-sample case 
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First, we apply the proposed outlier modification rule in the 100 training datasets to 

reconstruct 100 modified training gene expression (MTGE) datasets.  We computed average 

values of different performance measurements of these five classifiers: sensitivity, specificity, 

positive predictive value (PPV), negative predictive value (NPV), accuracy, and detection rate 

based on the estimated 100 DE genes. Table 2 and Table 3 summarized these performance 

measures by averaging these 100 values for small and large sample cases, respectively. We 

noticed in Table 2 that for small-sample cases, all five classifiers (SVM, LDA, KNN, NB and 

RF) produce the same results using original data and proposed modified training datasets with 

the absence of outlier. The values within the brackets ( ) and [ ] indicate the results obtained 

from the original training data and proposed modified training data, respectively. However, in 

the presence of 10%, 20% and 50% outliers, in this case, the five classifiers produce much 

better results using the proposed modified training dataset than the original training dataset. 

For example, the average accuracies 0.994, 0.935, 0.995, 0.987 and 0.999 produced by SVM, 

LDA, KNN, NB and RF, respectively, with the presence of one outlier in each of 10% genes 

that are larger than 0.834, 0.835, 0.838, 0.932 and 0.950, those were produced by the aforesaid 

classifiers with the same condition using proposed modified training dataset (see the second 

row of each classifier in Table 2). Contrariwise, for large sample cases (see Table 3) with the 

presence of outliers, the five classifiers' performance deteriorated with the original training 

dataset except for RF. This is because for large sample cases, the random forest (RF) is robust 

with outliers. Notwithstanding, the performance of all the classifiers improved while using the 

modified training dataset.  

 
Figure 3. Performance evaluation of five classifiers using ROC curve for a small-sample case. (a) In the 

absence of outliers (b) in the presence of 10% outliers (c) in the presence of 20% outliers and (d) in the presence 

of 50% outliers. 
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Figures 2 & Figure S1 represent the barplot of average accuracies for small sample and 

large sample cases, respectively. Figures 3 & Figure S2 represent the ROC curve formed by 

five algorithms for small sample and large sample cases, respectively. In Figure 3 & Figure S2 

the solid and dash lines indicate the performance of five classifiers in original and modified 

datasets, respectively. These barplots and ROC curves also describe the same results as drawn 

from Table 2 and Table 3. Therefore, from this simulation experiment, we may decide that the 

performance of the popular classifiers is improved by using the proposed method through 

modifying the training datasets in the presence of outliers. Otherwise, these classifiers produce 

the same results using original and modified datasets. 

3.2. Head and neck cancer data analysis.  

The gene expression profiles of head-and-neck cancer (HNC) dataset (GSE6631) were 

acquired from GEO database (http://www.ncbi.nlm.nih.gov/geo/). It was also used in the 

previous study [16]. In this work, a total of 22 paired samples were studied. As a result, the 

gene expression profiles of 12625 genes were obtained from 22 individuals in both normal and 

cancer tissues. 

Table 4. Performance evaluation of five classifiers using average values of accuracies based on head-and neck 

cancer data. 

Datasets SVM LDA KNN NB RF 

HNC 
0.918  

{0.930}  

0.697 

{0.738 } 

0.908 

{0.923 } 

0.915 

{0.924 } 

0.919 

{0.936 } 

Colon 
0.813 

{0.825} 

0.693 

{0.746} 

0.809 

{0.825} 

0.817 

{0.825} 

0.780 

{0.800} 

To explore the classification performance of the widespread five machine learning 

algorithms (SVM, LDA, KNN, NBC and RF); we constructed training and test datasets by 

randomly partitioning the whole HNC dataset into two independent datasets. To remove the 

unusual or extreme values in this dataset, the log-transformed HNC dataset was considered in 

this study. To make the computational simplicity, top twenty genes were selected as top twenty 

features using the paired sample t-test to train the five MLAs. Firstly, the training HNC dataset 

was employed in the proposed procedure of outlier modification to get a modified training 

dataset as described in section 2.2. Then the classical MLAs were applied to train their 

classifiers after selecting the top twenty features in both original and modified HNC datasets. 

Thereafter, accuracies (ACC) were measured using test HNC datasets. In Table 4, the average 

value of accuracies using 100 simulations was summarized. In this table, the without-

parenthesis and parenthesis {} indicates that the average value of accuracies using the original 

HNC dataset and proposed modified HNC dataset, respectively. From this table, we noticed 

that three classifiers (SVM, NB and RF) produce almost similar results in comparing LDA and 

KNN using the original HNC training dataset. 

On the other hand, these classifiers acquire better estimates using the modified HNC 

dataset based on the top 20 features. For example, SVM produces ACC=0.930 using the 

modified training HNC dataset, which is greater than ACC=0.918 using the original training 

HNC dataset. The boxplot of test accuracies (ACC) values is shown in Figure 4(a). This figure 

also supports the results of Table 4. 
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Table 5. KEGG pathways for top twenty features identified by t-test using modified head-and-neck cancer 

dataset. 

KEGG ID Pathway  No. of genes Adj. p-value 

hsa04512 ECM-receptor interaction 2 0.003 

hsa04926 Relaxin signaling  2 0.007 

hsa04510 Focal adhesion 2 0.012 

hsa00514 Other types of O-glycan biosynthesis 1 0.015 

hsa00534 Glycosaminoglycan biosynthesis 1 0.018 

hsa05206 MicroRNAs in cancer 1 0.021 

hsa05219 Bladder cancer 1 0.027 

hsa05165 Human papillomavirus infection 1 0.030 

hsa04151 PI3K-Akt signaling pathway 1 0.041 

hsa00310 Lysine degradation 1 0.045 

 

To reveal the KEGG pathway enrichment analysis and gene ontology (GO) of 20 

features obtained from the modified HNC dataset, the functional enrichment analysis web-

based tool WebGestalt was performed [39]. The GO analysis results confirmed the involvement 

of these 20 genes in different biological processes such as extracellular matrix organization, 

collagen metabolic process, extracellular structure organization, negative regulation of 

response to external stimulus and so on (see Table S1). The KEGG analysis shown that these 

genes are meaningfully enriched in ECM-receptor interaction, relaxin signaling, focal 

adhesion, MicroRNAs in cancer, bladder cancer, PI3K-Akt signaling pathway etc. (see Table 

5). In this table, the p-values were adjusted using the Benjamini-Hochberg method [40]. 

Moreover, a protein-protein interaction (PPI) network of 20 features was made using the 

GeneMANIA database and visualize via Cytoscape [41,42] was shown in Figure 5. In this 

figure, the yellow and red color circle indicates the top 20 features identified by the proposed 

procedure, among which 12 genes (yellow color) are common between original and modified 

HNC data and 8 genes only identified by the proposed procedure using t-test (red color)). 

 
Figure 4. Performance evaluation of five classifiers using boxplot of accuracies. (a) for head-and-neck cancer 

(HNC) data; (b) for colon cancer data. 
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3.3. Colon cancer data analysis. 

The expression profile of 22 healthy normal and 40 tumor tissue samples contains 6,500 

transcripts. Affymetrix technology was used to generate this dataset. Among 6,500, the gene 

expression profiles of 2000 genes were screen out by choosing the maximum minimal intensity 

through the samples. This dataset can be downloaded from R package plsgenomics [43] and 

also from http://microarray.princeton.edu/oncology. 

 

Figure 5. PPI network of top 20 features identified by a proposed procedure for HNC data. 

To demonstrate the performance of the proposed procedure in a comparison of the 

classical procedure for classification of normal and colon samples, the entire dataset was 

arbitrarily divided into two independent datasets to produce a training and test dataset. The 

dataset was divided so that the number of training samples and a number of the test sample was 

the same in training and test datasets (11 normal and 22 cancer in each dataset). At first, applied 

the proposed outlier modification rule as described in section 2.2 in the training dataset to 

reconstruct the modified colon cancer training dataset. Then we selected the top 20 features 

using a t-test from both the original training dataset and the modified training dataset by ranking 

the adjusted p-values. The Benjamini-Hochberg method [19] was used to adjusted p-values. 

After that, the classical MLAs were employed to learn the classifiers based on the top 20 

features. This process was continued by 100 times and accuracy measures were recorded. The 

average values of these measures were summarized in table 4. This table clarifies that SVM, 

KNN, NB, and RF produce better results than LDA in the original colon cancer dataset. 

However, these machine learning algorithms produce improved results while using the 

modified colon cancer dataset (bracketed values in Table 4). For example, SVM, KNN and RF 

produce accuracies 0.825, 0.825 and 0.800 using the proposed modified colon cancer dataset, 

which is larger than 0.813, 0.809 and 0.780 that are produced by the same classifiers using the 

original colon cancer dataset. Figure 4(b) displays the boxplot of test ACC using 100 times 

simulation and supported Table 4.  
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Figure 6. PPI network of top 20 features identified by a proposed procedure for colon cancer data. 

To elucidate the biological functions and pathways of top 20 features obtained from the 

modified colon cancer dataset, we performed GO (gene ontology) and KEGG pathway 

enrichment analysis using webgestalt software packages [18]. Among the 20 gene bank IDs 

this database unambiguously mapped to 10 unique entrezgene IDs. Out of 10 IDs, 9 IDs 

(corresponding to genes SNRPE, HSPD1, NPM1, CKS2, CDH3, ITGA6, MARCKSL1, DARS 

and KIF5B) are used to annotate the functional categories. From the GO analysis, we revealed 

that these genes are involved in different biological processes like the molting cycle, hair cycle, 

response to extracellular stimulus, positive regulation of molecular function and so on (see 

Table S2). From the KEGG pathway analysis, we explored different pathways such as Type I 

diabetes mellitus, Small cell lung cancer, Cell adhesion molecules (CAMs), ECM-receptor 

interaction etc. (see Table 6). In addition, we also constructed a PPI–network using Cytoscape 

software via GeneMANIA plug-in [20], which was shown in Figure 6. Among the 9 genes, 4 

genes (HSPD1, NPM1, CDH3, ITGA6) are common in the original colon dataset and 5 genes 

(SNRPE, CKS2, MARCKSL1, DARS, KIF5B) are uncommon, identified by a proposed 

procedure in modified colon datasets is shown by a yellow and red circle, respectively in Figure 

6. 

Table 6. KEGG pathways for top 20 features identified by t-test using modified colon cancer dataset. 

KEGG ID Pathway  No. of genes Adj. p-value 

hsa05222 Small cell lung cancer 2 0.004 

hsa03040 Spliceosome 2 0.005 

hsa04514 Cell adhesion molecules (CAMs) 2 0.010 

hsa04940 Type I diabetes mellitus 1 0.017 

hsa05134 Legionellosis 1 0.024 

hsa00970 Aminoacyl-tRNA biosynthesis 1 0.032 

hsa05412 Arrhythmogenic right ventricular 

cardiomyopathy (ARVC) 
1 0.038 

hsa05140 Leishmaniasis 1 0.040 

hsa03018 RNA degradation 1 0.046 

hsa04512 ECM-receptor interaction 1 0.050 
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4. Conclusions 

Classification of samples into two or more populations is one of the key purposes of 

gene expression data analysis. Various machine learning algorithms have been developed to 

accomplish this job. However, most of them suffer from the dimensional complexity of the 

gene expression data matrix. To get rid of the dimensionality problem, most of the methods 

incorporated prior feature selection based on training dataset with their classifier. Nevertheless, 

this type of feature selection can also be hampered in the presence of outlying observations in 

the training datasets and consequently, using this preselected feature in the downstream 

analysis may lead to poor classification accuracies by the popular machine learning algorithms. 

Consequently, an outlier modification rule is proposed to modify the outlying observation in 

the training datasets in this paper. The performance of the proposed procedure was verified in 

one simulated and two real cancer gene expression datasets (HNC and colon) using five popular 

MLAs (SVM, LDA, KNN, NB and RF). In the simulation and real data analysis study, 

improved performance of the five MLAs was seen using the modified training datasets than 

the original training dataset, in the presence of outliers. While, in the absence of outliers, all 

the five MLAs produced almost the same results using modified training datasets and original 

training datasets. 

Abbreviations 

DEGs, differentially expressed genes; MAD, median absolute deviation; SVM, support vector 

machine; LDA, linear discriminant analysis; KNN, K-Nearest Neighbor; NB, naïve Bayes; RF, 

random forest; PPV, Positive predicted value; NPV, Negative predicted value. 
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https://github.com/snotjanu/MLOutMod.  

Funding 

This research received no external funding. 

Acknowledgments 

We would like to thank the referees and the journal editorial team for providing valuable advice 

that improved the quality of the original manuscript. This work is supported by the National 

Nature Sciences Foundation of China (12071096). 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1.  Li, Y.; Chen, L. Big biological data: Challenges and opportunities. Genomics Proteomics Bioinformatics 

2014, 12, 187–189, https://doi.org/10.1016/j.gpb.2014.10.001.  

2.  Nadon, R.; Shoemaker, J. Statistical issues with microarrays: processing and analysis. TRENDS Genet. 2002, 

https://doi.org/10.33263/BRIAC122.24222439
https://biointerfaceresearch.com/
https://dx.doi.org/10.1016%2Fj.gpb.2014.10.001


https://doi.org/10.33263/BRIAC122.24222439  

 https://biointerfaceresearch.com/ 2436 

18, 265–271, https://doi.org/10.1016/s0168-9525(02)02665-3.  

3.  Omae, K.; Osamu, K.; Eguchi, S. Quasi-linear score for capturing heterogeneous structure in biomarkers. 

BMC Bioinformatics 2017, 18, 308, https://doi.org/10.1186/s12859-017-1721-x.  

4.  Marisa, L.; de Reyniès, A.; Duval, A.; Selves, J.; Gaub, M.P.; Vescovo, L.; Etienne-Grimaldi, M.-C.; 

Schiappa, R.; Guenot, D.; Ayadi, M.; Kirzin, S.; Chazal, M.; Fléjou, J.-F.; Benchimol, D.; Berger, A.; 

Lagarde, A.; Pencreach, E.; Piard, F.; Elias, D.; Parc, Y.; Olschwang, S.; Milano, G.; Laurent-Puig, P.; Boige, 

V. Gene Expression Classification of Colon Cancer into Molecular Subtypes: Characterization, Validation, 

and Prognostic Value. PLoS Med. 2013, 10, e1001453, https://doi.org/10.1371/journal.pmed.1001453.  

5.  Dam, S.; Vosa, U.; Graaf, A. van der; Franke, L.; Magalhaes, J.P. de Gene co-expression analysis for 

functional classifcation and gene–disease predictions. Briefngs Bioinforma. 2018, 19, 575–592, 

https://doi.org/10.1093/bib/bbw139.  

6.  Coebergh van den Braak, R.R.J.; ten Hoorn, S.; Sieuwerts, A.M.; Tuynman, J.B.; Smid, M.; Wilting, S.M.; 

Martens, J.W.M.; Punt, C.J.A.; Foekens, J.A.; Medema, J.P.; Ijzermans, J.N.M.; Vermeulen, L. 

Interconnectivity between molecular subtypes and tumor stage in colorectal cancer. BMC Cancer 2020, 20, 

850, https://doi.org/10.1186/s12885-020-07316-z.  

7.  Pratap Singh, M.; Rai, S.; Pandey, A.; K.Singh, N.; Srivastava, S. Molecular subtypes of colorectal cancer: 

An emerging therapeutic opportunity for personalized medicine. Genes Dis. 2019, 

https://doi.org/10.1016/j.gendis.2019.10.013.  

8.  Singh, R.K.; Sivabalakrishnan, M. Feature Selection of Gene Expression Data for Cancer Classifcation: A 

Review. Procedia Comput. Sci. 2015, 50, 52–57, https://doi.org/10.1016/j.procs.2015.04.060.  

9.  Fisher, R.A. The use of multiple measurements in taxonomic problems. Ann. Eugen. 1936, 7, 179–188, 

https://doi.org/10.1111/j.1469-1809.1936.tb02137.x.  

10.  Altman, N. An introduction to kernel and nearest-neighbor non-parametric regression. Am. Stat. 1992, 46, 

175–185, https://doi.org/10.2307/2685209.  

11.  Le Cessie, S.; van Houwelingen, J. Ridge estimators in logistic regression. Appl Stat 1992, 41, 191–201, 

https://doi.org/10.2307/2347628.  

12.  John, G.; Langley, P. Estimating continuous distributions in Bayesian classifiers. In Proceedings of the In: 

Besnard P, Hanks S (eds) Proceedings of the 17th conference on uncertainty in artificial intelligence; Morgan 

Kaufmann, Ed.; USA, 1995; 338–345. 

13.  Vapnik, V. Statistical Learning Theory; Wiley-Interscience: Chichester, 1998; 

14.  Ho, T.K. Random decision forests. Proc. Int. Conf. Doc. Anal. Recognition, ICDAR 1995, 1, 278–282, 

https://doi.org/10.1109/ICDAR.1995.598994.  

15.  Shahjaman, M.; Mollah, M.M.H.; Rahman, M.R.; Islam, S.M.S.; Mollah, M.N.H. Robust identification of 

differentially expressed genes from RNAseq data. Genomics 2020, 112, 2000–2010, 

https://doi.org/10.1016/j.ygeno.2019.11.012.  

16.  Jubair, S.; Alkhateeb, A.; Tabl, A.A.; Rueda, L.; Ngom, A. A novel approach to identify subtype-specific 

network biomarkers of breast cancer survivability. Network Modeling Analysis in Health Informatics and 

Bioinformatics 2020, 9, 43, https://doi.org/10.1007/s13721-020-00249-4.  

17.  Chen, R.-C.; Dewi, C.; Huang, S.-W.; Caraka, R.E. Selecting critical features for data classification based on 

machine learning methods. Journal of Big Data 2020, 7, 52, https://doi.org/10.1186/s40537-020-00327-4.  

18.  Alelyani, S. Stable bagging feature selection on medical data. J. Big data 2021, 8, 

https://doi.org/10.1186/s40537-020-00385-8.  

19.  Omuyaa, Erick Odhiambo Okeyob, George Onyango KimwelecMichael, W. Feature Selection for 

Classification using Principal Component Analysis and Information Gain. Expert Syst. Appl. 2021, 174, 

https://doi.org/10.1016/j.eswa.2021.114765.  

20.  Masoudi-Sobhanzadeh, Y.; Motieghader, H.; Omidi, Y.; Masoudi-Nejad, A. A machine learning method 

based on the genetic and world competitive contests algorithms for selecting genes or features in biological 

applications. Sci. Rep. 2021, 11, 3349, https://doi.org/10.1038/s41598-021-82796-y.  

21.  Auwul, M.R.; Rahman, R.; Gov, E.; Shahjaman, M.; Moni, M.A. Bioinformatics and machine learning 

approach identifies potential drug targets and pathways in COVID-19. Brief. Bioinform. 2021, bbab120, 

https://doi.org/10.1093/bib/bbab120.  

22.  Rostami, M.; Berahmand, K.; Forouzandeh, S. A novel method of constrained feature selection by the 

measurement of pairwise constraints uncertainty. J. Big data 2020, 7, https://doi.org/10.1186/s40537-020-

00352-3.  

23.  Li, X.; Yi, P.; Wei, W.; Jiang, Y.; Le, T. LNNLS-KH: A Feature Selection Method for Network Intrusion 

https://doi.org/10.33263/BRIAC122.24222439
https://biointerfaceresearch.com/
https://doi.org/10.1016/s0168-9525(02)02665-3
https://doi.org/10.1186/s12859-017-1721-x
https://doi.org/10.1371/journal.pmed.1001453
https://doi.org/10.1093/bib/bbw139
https://doi.org/10.1186/s12885-020-07316-z
https://doi.org/10.1016/j.gendis.2019.10.013
https://doi.org/10.1016/j.procs.2015.04.060
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.2307/2685209
https://doi.org/10.2307/2347628
https://doi.org/10.1109/ICDAR.1995.598994
https://doi.org/10.1016/j.ygeno.2019.11.012
https://doi.org/10.1007/s13721-020-00249-4
https://doi.org/10.1186/s40537-020-00327-4
https://doi.org/10.1186/s40537-020-00385-8
https://doi.org/10.1016/j.eswa.2021.114765
https://doi.org/10.1038/s41598-021-82796-y
https://doi.org/10.1093/bib/bbab120
https://doi.org/10.1186/s40537-020-00352-3
https://doi.org/10.1186/s40537-020-00352-3


https://doi.org/10.33263/BRIAC122.24222439  

 https://biointerfaceresearch.com/ 2437 

Detection. Secur. Commun. Networks 2021, 2021, https://doi.org/10.1155/2021/8830431.  

24.  Mansour, N.A.; Saleh, A.I.; Badawy, M.; Ali, H.A. Accurate detection of Covid-19 patients based on Feature 

Correlated Naïve Bayes (FCNB) classification strategy. Journal of Ambient Intelligence and Humanized 

Computing 2021, https://doi.org/10.1007/s12652-020-02883-2.  

25.  Xu, D.; Zhang, J.; Xu, H.; Zhang, Y.; Chen, W.; Gao, R.; Dehmer, M. Multi-scale supervised clustering-

based feature selection for tumor classification and identification of biomarkers and targets on genomic data. 

BMC Genomics 2020, 21, 650, https://doi.org/10.1186/s12864-020-07038-3.  

26.  Shahjman, M.; Kumar, N.; Mollah, N.H. Performance Improvement of Gene Selection Methods using Outlier 

Modi- fication Rule. Curr. Bioinform. 2019, 14, 491–503, 

https://doi.org/10.2174/1574893614666181126110008.  

27.  Tkachev, V.; Sorokin, M.; Mescheryakov, A.; Simonov, A.; Garazha, A.; Buzdin, A.; Muchnik, I.; Borisov, 

N. FLOating-Window Projective Separator (FloWPS): A Data Trimming Tool for Support Vector Machines 

(SVM) to Improve Robustness of the Classifier. Front. Genet. 2019, 15, 717, 

https://doi.org/10.3389/fgene.2018.00717.  

28.  Sun, H.; Cui, Y.; Wang, H.; Liu, H.; Wang, T. Comparison of methods for the detection of outliers and 

associated biomarkers in mislabeled omics data. BMC Bioinformatics 2020, 21, 357, 

https://doi.org/10.1186/s12859-020-03653-9.  

29.  Nnamoko, N.; Korkontzelos, I. Efficient treatment of outliers and class imbalance for diabetes prediction. 

Artif. Intell. Med. 2020, 104, https://doi.org/10.1016/j.artmed.2020.101815.  

30.  Tkachev, V.; Sorokin, M.; Borisov, C.; Garazha, A.; Buzdin, A.; Borisov, N. Flexible Data Trimming 

Improves Performance of Global Machine Learning Methods in Omics-Based Personalized Oncology. Int. J. 

Mol. Sci. 2020, 21, 713, https://doi.org/10.3390/ijms21030713.  

31.  Wang, C.; Long, Y.; Li, W.; Dai, W.; Xie, S.; Liu, Y.; Zhang, Y.; Liu, M.; Tian, Y.; Li, Q.; Duan, Y. 

Exploratory study on classification of lung cancer subtypes through a combined K-nearest neighbor classifier 

in breathomics. Sci. Rep. 2020, 10, 5880, https://doi.org/10.1038/s41598-020-62803-4.  

32.  Ala’raj, M.; Majdalawieh, M.; Abbod, M. Improving binary classification using filtering based on k-NN 

proximity graphs. J. Big data 2020, 7, https://doi.org/10.1186/s40537-020-00297-7.  

33.  Mangiola, S.; A Thomas, E.; Modrák, M.; Vehtari, A.; T Papenfuss, A. Probabilistic outlier identification for 

RNA sequencing generalized linear models. NAR Genomics Bioinforma. 2021, 3, 

https://doi.org/10.1093/nargab/lqab005.  

34.  Boser, B.; Guyon, I.; Vapnik, V. A training algorithm for optimal margin classes. In Proceedings of the In: 

Proceedings of the 5th annual workshop on computational learning theory; Pittsburg, USA, 1992; 144–152. 

35.  Duda, R.; Hart, P. Pattern Classification and Scene Analysis; John Wiley & Sons: New York, NY, USA, 

1973. 

36.  Breiman, L. Random forest. Mach. Learn. 2001, 45, 5–32, https://doi.org/10.1023/A:1010933404324.  

37.  Kuriakose, A.; Chen, W.T.; He, Z.M. Selection and validation of differentially expressed genes in head and 

neck cancer. Cell. Mol. Life Sci. 2004, 61, 1372–1383, https://doi.org/10.1007/s00018-004-4069-0.  

38.  Alon, U.; Barkai, N.; Notterman, D.A.; Gish, K.; Ybarra, S.; Mack, D.; Levine, A.J. Broad patterns of gene 

expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide 

arrays. PNAS 1999, 96, 6745–6750, https://doi.org/10.1073/pnas.96.12.6745.  

39.  Liao, Y.; Wang, J.; Jaehnig, E.J.; Shi, Z.; Zhang, B. WebGestalt 2019: gene set analysis toolkit with revamped 

UIs and APIs. Nucleic Acids Res. 2019, 47, W199–W205, https://doi.org/10.1093/nar/gkz401.  

40.  Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to 

multiple testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. 

41.  Mostafavi, S.; Ray, D.; Warde-farley, D.; Grouios, C.; Morris, Q. GeneMANIA : a real-time multiple 

association network integration algorithm for predicting gene function. Genome Biol. 2008, 9, 1–15, 

https://doi.org/10.1186/gb-2008-9-s1-s4.  

42.  Smoot, M.E.; Ono, K.; Ruscheinski, J.; Wang, P.L.; Ideker, T. Cytoscape 2.8: New features for data 

integration and network visualization. Bioinformatics 2011, 27, 431–432, 

https://doi.org/10.1093/bioinformatics/btq675.  

43.  Boulesteix, A. PLS Dimension Reduction for Classification of Microarray Data. Stat. Appl. Genet. Mol. Biol. 

2004, 3, 1–30, https://doi.org/10.2202/1544-6115.1075.  

 

 

 

https://doi.org/10.33263/BRIAC122.24222439
https://biointerfaceresearch.com/
https://doi.org/10.1155/2021/8830431
https://doi.org/10.1007/s12652-020-02883-2
https://doi.org/10.1186/s12864-020-07038-3
https://doi.org/10.2174/1574893614666181126110008
https://doi.org/10.3389/fgene.2018.00717
https://doi.org/10.1186/s12859-020-03653-9
https://doi.org/10.1016/j.artmed.2020.101815
https://doi.org/10.3390/ijms21030713
https://doi.org/10.1038/s41598-020-62803-4
https://doi.org/10.1186/s40537-020-00297-7
https://doi.org/10.1093/nargab/lqab005
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/s00018-004-4069-0
https://doi.org/10.1073/pnas.96.12.6745
https://doi.org/10.1093/nar/gkz401
https://doi.org/10.1186/gb-2008-9-s1-s4
https://doi.org/10.1093/bioinformatics/btq675
https://doi.org/10.2202/1544-6115.1075


https://doi.org/10.33263/BRIAC122.24222439  

 https://biointerfaceresearch.com/ 2438 

Supplementary materials 
 

 
Figure S1. Performance evaluation using the average value of accuracy for large-sample case. 

 

 

 

 
Figure S2. Performance evaluation of five classifiers using ROC curve for a small-sample case. (A) In the 

absence of outliers (B) in the presence of 10% outliers (C) in the presence of 20% outliers and (D) in the 

presence of 50% outliers. 
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Table S1. GO (Gene ontology) enrichment results for top 20 features identified by t-test using modified HNC 

dataset. 

KEGG ID Pathway  No. of genes Adj. p-value 

GO:0030198 extracellular matrix organization 7 4.17e-8 

GO:0043062 extracellular structure organization 7 1.10e-7 

GO:0009611 response to wounding 6 3.98e-5 

GO:0022617 extracellular matrix disassembly 3 7.07e-5 

GO:1903035 negative regulation of response to 

wounding 

3 9.54e-5 

GO:0032101 regulation of response to external 

stimulus 

6 1.10e-4 

GO:0032963 collagen metabolic process 3 1.46e-4 

GO:0042060 wound healing 5 1.97e-4 

GO:0032102 negative regulation of response to 

external stimulus 

4 2.99e-4 

GO:0002831 regulation of response to biotic stimulus 3 3.47e-4 

                               The p-values were calculated using hypergeometric test and then adjusted 

                                by Benjamini-Hochberg method for multiple testing corrections. 

Table S2. GO (Gene ontology) enrichment results for top 20 features identified  by t-test using modified Colon 

cancer dataset. 

KEGG ID Pathway  No. of genes Adj. p-value 

GO:0044093 positive regulation of molecular function 6 1.72e-4 

GO:0046907 intracellular transport 6 2.26e-4 

GO:0071826 ribonucleoprotein complex subunit 

organization 
3 3.48e-4 

GO:0006913 nucleocytoplasmic transport 3 0.001 

GO:0051169 nuclear transport 3 0.018 

GO:0042303 molting cycle 2 0.001 

GO:0042633 hair cycle 2 0.001 

GO:0051656 establishment of organelle localization 3 0.002 

GO:0006405 RNA export from nucleus 2 0.002 

GO:0009991 response to extracellular stimulus 3 0.002 

                               The p-values were calculated using hypergeometric test and then adjusted  

                                by Benjamini-Hochberg method for multiple testing corrections. 
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