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Abstract: Cyclin-dependent kinase 14 plays an essential role in multiple cancers. Cyclin-dependent 

kinase 14 is a serine/threonine kinase and is a member of the cell division cycle 2(cdc2) related protein 

kinase family, which plays a key role in promoting Wnt signaling pathway of the cell cycle and its 

overexpression causes various human cancers. The 3D structure of cyclin-dependent kinase 14 was 

built using the homology-based modeling technique. The generated model is optimized by NAMD-

VMD software. The quality of stabilized CDK14 protein was checked using Ramachandran plot and 

ProSA servers. The potential binding site region was recognized using SiteMap and manual correlation 

techniques from literature studies. The virtual screening was performed with the TOSLab database of 

27253 output molecules against CDK14 protein using Glide docking to assess novel chemical entities. 

Their binding energies were calculated from PrimeMMGSA and AutoDock. The novel lead molecules 

have been prioritized based on efficient binding energies (from AutoDock and PrimeMMGBSA), better 

glide scores, good bioavailability, and acceptable ADME properties. Thus, these are considered as 

CDK14 protein inhibitors for cancer therapeutics. 

Keywords: multiple cancer; Wnt signaling pathway; NAMD-VMD; PrimeMMGBSA; AutoDock and 

ADME properties. 
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1. Introduction 

Cancer is currently rising rapidly worldwide, with a high rate of morbidity and mortality 

[1]. Cyclin-dependent kinases (CDKs) belong to the serine/threonine kinases family, regulates 

the cell cycle progression, transcription and cell differentiation via their association with 

cyclins [2]. The dysregulation of the CDK-cyclin complex is involved in various cancers [3]. 

Cyclin-dependent kinase-14(CDK14), also named PFTK1 is a member of CDKs. The activity 

of CDK14 depends on binding with its partners Cyclin Y and Cyclin D3, which are regulated 

in higher eukaryotic cell cycles [4,5]. Overexpression of CDK14/Cyclin Y complex causes 

dysregulation in the Wnt/β-catenin signaling pathway resulting in hyperphosphorylation and 

activation of LRP6 receptors, thereby upregulating β-catenin. Eventually, overexpressed β-

catenin migrates to the nucleus from the cytoplasm and then combines with TCF/LEF 

enhancing translational co-activators such as C-myc, Cyclin D1 and MMP9 genes, which 

participates in cancer cell cycle progression during the G2/M phase (Figure1) [6,7,8,9].The β-
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catenin can affect the centrosomal activity localized at kinetochores, disturbs the dynamics of 

microtubules and misorientation of alignment of the mitotic spindles in mitosis [10]. 

Irregular activation of CDK14 protein has been involved in multiple cancers such as 

breast cancer [9], non-small cell lung cancer [11], pancreatic cancer [12], colon cancer [13], 

ovarian cancer [14,15] and gastric cancer [16].  

The present study involves establishing the 3D structure of CDK14 protein, stabilized 

by the NAMD-VMD Tool. The quality of the 3D structure was validated using ProSA and 

Ramachandran plot. The glide docking is carried out at the active site of CDK14 protein using 

TOSLab database molecules. PrimeMMGBSA and AutoDock calculated the binding energies 

of protein-ligand complexes for further optimization of final hits, which were analyzed with 

pharmacokinetic properties. Therefore, novel lead molecules were designed, which bind to 

CDK14 protein at the active site to halt the progression of cancer cells within G2-M Phase. 

 
Figure 1. Biochemical pathway of CDK14 protein in cancer cell progression. Overexpression of CDK14 protein 

combined with Cyclin Y hyperphosphorylated the LRP6 activating Wnt/ β-catenin signaling pathway via 

increase the amount of β-catenin and then move from cytoplasm to nucleus. The β-catenin binds to TCF/LEF to 

activate transcription genes (C-Myc, Cyclin–D1 and MMP9), leading to cancer cell proliferation. 

2. Materials and Methods 

2.1. Homology modeling. 

The experimental methods such as X-ray crystal and NMR structure are not available 

for CDK14 protein. Therefore, knowledge-based modeling was used to produce the 3D 

structure of CDK14 protein. The fasta sequence CDK14 was retrieved from UniprotKB with 

accession id O94921 with 469 amino acids [17]. This target fasta sequence was subjected to 

BlastP and J Pred4 servers to search for experimentally determined homologous template 

protein (PDB ID: 3MTL), based on parameters such as query coverage low and lowest E value 

[18,19]. The sequence alignment between CDK14 and 3MTL is carried out in ClustalX1.2 to 

define the similarity sequences of structural and functional regions. Modeller9.9 program was 

used to build the 20 homology modeled structures of CDK14 protein and the best model was 

selected based on MolPDF (molecular probability density function) for further studies [20]. 
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2.2. Energy minimization of CDK14 protein. 

The constructed 3D model had unfavorable bond distances, bond angles, and improper 

planarity of dihedral angles and hence is mandatory to reduce the potential energy of CDK14 

protein [21]. NAMD-VMD (NanoScale Molecular Dynamic-Visual Molecular Dynamics) 

program was used for the refinement of CDK14 protein [22]. It worked with CHARMM 

(Chemistry at Harvard Molecular Mechanics) force field and visualized in the VMD tool. The 

modeled protein was solvated with water molecules in periodic boundary conditions and 

simulation was carried out within 100000-time steps [23]. The lowest energy state of CDK14 

protein was analyzed by final RMSD trajectory files and monitored with RMSD values against 

time steps.  

2.3. Validation. 

It is necessary to evaluate the correctness of constructed 3D model protein in receptor-

based drug design. Energy minimized 3D model protein was validated using ProSA (Protein 

structure analysis), Errat and Ramachandran plot. ProSA is a program that gives information 

about the quality of protein and energy level of amino acid residues [24]. Errat is a tool used 

for the evaluation of non-bonded atom-atom interactions in 3D modeled proteins. The 

stereochemical quality of the 3D model protein was evaluated by considering steric hindrance 

between phi (Φ) and psi (ψ) torsional angles of amino acid residues in the Ramachandran plot 

[25]. 

2.4. Protein preparation and Ligand preparation. 

The homology modeled CDK14 protein is accurately optimized for molecular docking 

studies. The refinement of CDK14 protein was carried out by the protein preparation wizard in 

the maestro version (9.0.111) [26]. Protein preparation wizard involves adding missing 

hydrogen atoms, water molecules were deleted and correct bond orders were assigned at force 

field OPLS-2005. The energy minimization in impref module was terminated at the default 

constraint reaches the specific RMSD value of 0.30Å. LigPrep module of Schrodinger suite 

was used to refine the ligand molecules by submitting the TOSLab database molecules of data 

set 17643 and using forcefield OPLS-2005. Various ionic states, tautomeric states and stereo 

chemistries generated from each input ligand molecule at pH 7.0+/-2.0 using Epik. The low-

energy ring conformations produced up to five [27,28]. 

2.5. Identification of binding site. 

Structure-based drug design involves the identification of binding sites of targeted 

protein for inhibiting cell progression. The binding site of CDK14 protein has been identified 

using SiteMap, literature studies and manual correlation techniques. SiteMap module of 

Schrodinger suite provides potential binding sites of CDK14 protein with their surface area of 

hydrogen bond acceptors, hydrogen bond donors, hydrophilic and hydrophobic regions [29]. 

The reported active site residues of the template were manually correlated to the CDK14 

protein sequence inClustalX2.1 [30]. These residues are considered as active site residues of 

CDK14 protein for docking studies. The 3-dimensional grid was generated for favorable 

binding mode in glide docking. The 3-dimensional grid box was built with the active site amino 

acid residues of CDK14 protein using the receptor grid generation program in the glide tool 

[31].   
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2.6. Virtual screening using glide. 

A virtual screening study is a good method to search lead molecules from large 

databases against the biological target protein in the drug discovery process. A TOSlab 

database 27253 output molecules were subjected to virtual screening by the filtering mode in 

HTVS, SP and XP docking at the active site of CDK14 protein using virtual screening 

workflow of glide tool [32]. 10% of molecules are filtered at each step and the best protein-

ligand docked molecule was analyzed based on scoring functions and visualized using 

Discovery studio 3.5 [33].   

2.7. Binding free energy calculation. 

The XP docked output molecules are used to calculate the binding free energy of 

protein-ligand complexes using prime MMGBSA (molecular mechanics generalized born 

surface area) at forcefield OPLS-2005 [34]. Free energy of binding describes the affinity of 

ligand molecule with a protein. The binding free energy was calculated at binding poses of 

protein-ligand complexes as follows 

G Binding = G complex– ( G protein+ G ligand) 

Where G Binding is the Minimized binding free energy; Whereas G complex, G protein and 

G ligand represent the free energy of protein-inhibitor complex, protein, inhibitor, respectively. 

2.8. AutoDock. 

The program AutoDock4.2 is a computer-aided docking tool used to identify the 

binding energy of ligand molecules against the target protein. Thirteen XP output docked 

ligand molecule and CDK14 protein are prepared in PDBQT format files for docking. GPF and 

DPF files were generated by given grid and docking parameters. The conformations of hit 

molecules and binding energies of docked complexes were identified using Lamarckian genetic 

algorithm in AutoDock4.2 [35,36].    

2.9. ADME properties. 

Most of the new drugs have failed in clinical trials in drug development because of 

ADME characteristics, thereby increasing the time and cost. Qikprop tool is useful for 

predicting the accurate ADME properties of hit molecules so as to reduce the cost and avoid 

spending valuable time [37]. The pharmacokinetic and physicochemical properties were 

observed for more drug-likeness candidates. Final hit molecules were filtered using ADME 

properties such as Octanol-water partition coefficient, % Human oral absorption. The ligand 

molecules with acceptable pharmacokinetic and physicochemical properties were considered 

potential biological inhibitors of CDK14 protein [38].  

3. Results and Discussion 

3.1. Analysis of CDK14 protein structure and validation. 

Experimentally, the 3-D model by NMR, X-ray crystallography studies of CDK14 

protein was not reported. Hence, a model is constructed based on a homologous template using 

modeller9.9. Residue sequences of CDK14 were taken from UniportKB, consisting of 469 
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amino acid residues with accession ID O94921. The template 3MTL (CDK16) was chosen 

from BlastP and Jpred servers by submitting the fasta sequences of CDK14 protein, resulting 

in E-value (5e-127), sequence similarity(59%) and Query coverage (68%) are illustrated in 

Table 1 [39]. The conserved domain of CDK14 protein obtained from BlastP is showing 

binding site residues between135-420 displayed in Figure 2. Pairwise sequence alignment 

between CDK14 and CDK16 protein is carried out in ClusterX 1.2 and visualized with 

discovery studio 3.5 (Figure 3). Twenty homology models of CDK14 protein were generated 

using modeller9.9 [40]. The O94921.B99990009.pdb model of CDK14 protein having the 

lowest molpdf (molecular probability density function) value of 2458.40 is used for future 

studies. The modeled CDK14 protein consisting of steric errors is energy minimized using 

NAMD-VMD software applying CHARMM++ forcefield. The CDK14 protein was solvated 

in all directions in created periodic boundary conditions with a 10 Å  layer of water molecules. 

Counter ions are added for the neutralizing system. The 100000 steps were run to minimize 

CDK14 protein at 1 atmospheric pressure and constant temperature. The whole minimization 

process was analyzed by RMSD value with 1969 time steps. Figure 4 shows the average RMSD 

value of 1.2 Å is considered the lowest energy of CDK14 protein at time stages (821-985fs) 

[41]. This resulting stabilized protein is used for further docking studies. The quality of 3D 

model of CDK14 protein was validated with the Ramachandran plot and ProSA servers. The 

Ramachandran plot revealed that 99% of residues fall within the most favorable region, 

indicating the good stereochemical model quality of CDK14 protein, as shown in figure 5. 

ProSA analysis is employed to check the quality of modeled CDK14 protein with respect to 

that of experimentally solved proteins. Figure 6a shows a z-score of the 3-D model of CDK14 

protein as -6.61, denoting the overall model quality, falling within the region of z-scores of all 

determined proteins by X-ray and NMR techniques. Figure 6b shows the local model quality 

with most amino acid residues' energies falling in the negative region, revealing a good protein 

model quality. The secondary structure details of CDK14 protein were obtained from the 

PDBsum server showing 16 helices, 19 helix-helix interactions, 23 beta turns, and 6 gamma 

turns (Table2) [42]. The 3D model of CDK14 protein is visualized using the Pymol tool 

(Figure7) [43]. 

Table 1. BlastP and JPred servers are used for Suitable template recognition of CDK14 Protein 

S. No 
Database 

server 

Template selection 

Parameters 
E-Score PDB-Code 

1 NCBI Server Sequence position 4e-127 3MTL 

2 JPred 
Secondary structure, solvent accessibility 

and coiled-coil regions of prediction 
1e-101 3MTL 

 
Figure 2. The conserved domain of CDK14 protein. The domain region showing active residues between 135-

420. 
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Figure 3. Amino acid sequences of CDK14 were aligned with template 3MTL in ClusterX1.2 and visualized in 

Discovery studio 3.5. Identical Residues shown in Red region, the yellow color representing the strong zone, 

blue color region indicating that the residues fall in the weak zone and light green color are shown in the 

alignment of unmatching residues. 

 
Figure 4. Graphical representation of different energy levels was observed in RMSD with various time steps. 

The CDK14 protein was stabilized at an average RMSD value is 1.2 Å with time frames 821-985 fs. 

 
Figure 5. Stereochemical analysis of CDK14 protein in Ramachandran plot. The red color field represents the 

most favored region energetically, the brown color field indicates the additionally allowed region and the yellow 

area represents generously allowed regions. Ramachandran plot shows 98.9% of residues are present in the 

energetically allowed regions, indicating stereochemically stable protein. 
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plot statistics 

 No of residues %age 

Most favoured regions [A,B,L]      259 89.6% 

Additonally allowed regions [a,b,l,p]       27 9.3% 

Generously allowed regions [~a,~b,~l,~p]        2 0.7% 

Disallowed regions [XX]        1 0.3% 

Nonglycine and non-proline residues      289 100% 

End residues (excl.Gly and Pro)        2  

Glycine  residues       20  

Proline  residues      20  

Total no of residues     331  

 
Figure 6. ProSA server was analyzed for quality of modeled CDK14 protein; (6A). The z-score of CDK14 

protein shown as a black spot is -6.61, indicating the good model quality of CDK14 protein falling in the 

experimentally determined region of proteins by NMR and X-ray studies; (6B). The local model quality of 

CDK14 protein exhibited maximum residues in the negative region, indicating the good model quality of 

CDK14 protein 

 
Figure 7. The 3- dimensional structure of CDK14 protein contains 16 helices, 19 helix-helix interacts, 23 beta 

turns, 6 gamma turns, C-terminal and N-terminal, shown in blue and magentas colors and conserved domain 

exhibited in green color. The 3D structure was visualized by Pymol software. 

Table 2. The Secondary structure data of CDK14 protein recognized from the PDBsum server. 

S. No Start    End  No. of. residues Length In Å Sequence  

1 Val212 Leu215  4 5.78 VSLL 

2 Leu247 Asp253 7 10.94 LKQYLDD 

3 Met260 Arg279 20 30.63 MHNVKLFLFQLLRGLAYCHR 

6 Pro330 Leu333 4 6.53 PDIL 

7 Gln342 Thr357 16 24.65 QIDMWGVGVGCIFYEMAT 

8 Val367 Leu378 12 17.57 VEEQLHFIFRIL 

10 Glu393 Thr397 5 8.41 EEFKT 

11 Leu408 His411 4 6.74 LLSH 

12 Ser417 Leu426 10 15.56 SDGADLLTKL 
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S. No Start    End  No. of. residues Length In Å Sequence  

14 Ala437 Ala440 4 6.30 AEDA 

15 Pro444 Leu449 6 10.60 PFFLSL 

3.2. Binding cavity recognition of CDK14 protein. 

The identification of active site pockets is mandatory for lead optimization and virtual 

screening hits. A siteMap is a tool used to recognize the active sites of CDK14 protein. It 

provides graphical data and quantitative numbers that can be a guide to identify ligand 

molecules with enhanced potency in lead optimization [44]. The surfaces of the hydrophilic 

region, hydrophobic region, hydrogen bond acceptors and hydrogen-bond donors suitable for 

the nature of binding regions and their graphical surface region measurement in angstrom units 

(Å) obtained for SiteMap is illustrated in Table 3 (Figure 8) [45]. The active site residues of 

homologous template 3MTL are taken from pdbsum server by analyzing ligplot 2D diagram 

(Figure 9). These residues were manually correlated to CDK14 residues using ClusterX1.2 

server, resulting in active site residues Leu191, Val199, Ala212, Val244, Phe260, Glu261, 

Tyr262, Asp266, Gln269, Gln310, Asn291, Leu313, Asn324 and Phe325 of CDK14 protein 

(Figure 10) [46]. These active residues were used to build a 3-dimensional grid box using the 

Glide tool of the Schrodinger suite. 

Table 3. The active site binding regions and their volumes of the CDK14 protein are identified from the 

sitemap. 

Cavity Binding region Volume 

1 HBacceptor 741.818 

2 HBdonar 1133.525 

3 Hydrophilic 1889.974 

4 Hydrophobic 166.138 

5 Metal-binding 0.00 

 6  Surface 3065.139 

 
Figure 8. Putative binding site of CDK14 protein recognized from SiteMap. The Hydrogen acceptor region 

showed with magenta, hydrogen donor region indicated in the light blue, hydrophilic and hydrophobic field 

represents in red and yellow color respectively. Gray dots indicate the active site of CDK14 protein. 

 

Figure 9. The active site residues of the 3MTL protein interacting with the ligand molecule to identify the active 

residues of the CDK14 protein. 
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191199 
sp|O94921|CDK14_HUMAN      INFKTSSTGKESPKVRRHSSPSSPTSPKFGKADSYEKLEKLGEGSYATVY 
3mtl                       -------------------------------METYIKLDKLGEGTYATVY 
                                                           ::* **:*****:***** 
212244 
sp|O94921|CDK14_HUMAN      KGKSKVNGKLVALKVIRLQEEEGTPFTAIREASLLKGLKHANIVLLHDII 
3mtl                       KGKSKLTDNLVALKEIRL------PCTAIREVSLLKDLKHANIVTLHDII 
                           *****:..:***** ***      * *****.****.******* ***** 
260,261,262266269 
sp|O94921|CDK14_HUMAN      HTKETLTLVFEYVHTDLCQYMDKHPGGLHPDNVKLFLFQLLRGLSYIHQR 
3mtl                       HTEKSLTLVFEYLDKDLKQYLDDCGNIINMHNVKLFLFQLLRGLAYCHRQ 
                           **:::*******:..** **:*.  . :: .*************:* *:: 
310,311313324,325 
sp|O94921|CDK14_HUMAN      YILHRDLKPQNLLISDTGELKLADFGLARAKSVPSHTYSNEVVTLWYRPP 
3mtl                       KVLHRDLKPQNLLINERGELKLADFGLARAK------------TLWYRPP 
                            :************.: **************            ******* 
 
sp|O94921|CDK14_HUMAN      DVLLGSTEYSTCLDMWGVGCIFVEMIQGVAAFPGMKDIQDQLERIFLVLG 
3mtl                       DILLGSTDYSTQIDMWGVGCIFYEMATGRPLFPGS-TVEEQLHFIFRILG 
                           *:*****:*** :********* **  * . ***   :::**. ** :** 
 
sp|O94921|CDK14_HUMAN      TPNEDTWPGVHSLPHFKPERFTLYSSKNLRQAWNKLSYVNHAEDLASKLL 
3mtl                       TPTEETWPGILSNEEFKTYNYPKYRAEALLSHAPRLD--SDGADLLTKLL 
                           **.*:****: *  .**. .:. * :: * .   :*.  ... ** :*** 
 
sp|O94921|CDK14_HUMAN      QCSPKNRLSAQAALSHEYFSDLPPRLWELTDMSSIFTVPNVRLQPEAGES 
3mtl                       QFEGRNRISAEDAMKHPFFLSLGERIHKLPDTTSIFALKEIQLQKE---- 
                           * . :**:**: *:.* :* .*  *: :*.* :***:: :::** *     

Figure 10. Identification of active site residues of CDK14 protein obtained by aligning with 3MTL template 

protein using ClusterX1.2. The active residues of CDK14 and 3MTL are highlighted green color and magenta 

color, respectively and active residues number shown in cyan color. 

3.3. Docking analysis and binding energies. 

 3.3.1. Docking using GLIDE. 

Virtual screening is done with the Glide tool to predict the lead molecules that 

selectively bind to the biologically active residues of CDK14 protein to inhibit the function of 

CDK14 protein during cell proliferation. A gridbox is generated with active residues of CDK14 

protein using receptor grid generation in glide tool of Schrodinger suite, to obtain produces the 

good docking interaction at the created binding domain. TOSlab database of 17643 ligand 

molecules is optimized using ligprep, which gave rise to five low energy of 27253 ligand 

molecules for virtual screening. This process involves filtering by flexible docking through 

HTVS, SP, and XP mode, 10% of molecules filtered by HTVS docking mode gave rise to 1300 

ligand molecules. 10 % of these ligand molecules were further screened in SP docking mode, 

which resulted in 130 molecules. 10% of these molecules were further filtered in XP docking 

mode, which generated 13 lowest energy conformers [47]. The final 13 molecules were 

prioritized based on glide score, glide energy and XP visualizer analysis of the protein-ligand 

interaction. The binding free energy of 13 XP output docked complexes were calculated using 

prime MMGBSA of the Schrodinger suite. The binding free energy explained the affinity of 

H-bond and pi-sigma interaction between target CDK14 protein and small ligand molecules. 

Table 4 shows six docked complexes observed in H-bond length below 3.2 suggested that the 

docked complexes have stable conformation. The binding free energy of docked complexes 

was falling in the range of -34.27 to -60.23, showing negative dG values indicating the 

formation of stable complexes [48,49]. 
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3.3.2. Docking using AutoDock. 

Autodock program was used for molecular docking for the XP out file of Glide 

Schrodinger suite of 13 hit molecules. The prioritization of lead molecules was analyzed based 

on binding energies(-7.16 to -8.75kcal/mol) and protein-ligand interaction.  

Surprisingly in both Glide and AutoDock docking tools, the lead molecules have 

occupied the same binding cavity. Glide score, Glide energy, binding energy(AutoDock) and 

binding free energy (PrimeMMGBSA) indicate the accuracy of the interaction of protein-

ligand molecules to optimize the novel lead molecules shown in Table 4 [50]. 

Table 4. Glide score, glide energy, binding energies (MM/GBSA and AutoDock) and interaction of the lead 

molecules with amino acid residues of CDK14 protein. 

S.No             Structure Glide 

score  

Glide 

energy 

PrimeMM-

GBSA 

Complex 

energy (dG 

Bind) 

Binding 

energy 

from 

AutoDock 

(kcal/Mol) 

Docking complex 

(protein-ligand 

interactions) 

Bond 

Distance 

(Å) 

860371 

(TOSLab) 

 -10.63 -33.10 -49.43 -7.16 ASP274:N-M1:O11 

M1:H21-

:VAL213:O 

Pi-Pi interactions: 

TYR212-M1 

3.02 

1.82 

872480 

(TOSLab) 

 -9.95 -41.79 -34.27 -7.20 M2:H28:VAL213:O 

M2:H29:GLN260:O 

Pi-Pi interactions: 

M2-:TYR212 

1.64 

1.96 

858233 

(TOSLab) 

 -9.46 -35.93 -51.63 -8.47 M3:H26: 

VAL213:O 

VAL213: N-

M3:O14 

Pi-sigma 

interactions: 

PHE210-M3: H42 

2.32 

2.81 

808781 

(TOSLab) 

 

-9.24 -43.57 -60.23 -8.75 M4:H31-:HIS214:O 

M4:H33-

GLN260:O 

ASP216N-M4:Cl19 

1.77 

1.64 

3.19 

23037 

(TOSLab) 

 

-9.22 -46.22 -59.73 -7.80 P:LYS258:NZ-

M5:O16 

P:LYS258:NZ-

M5:N24 

M5:H33-

P:GLU143:O 

Pi-Sigma 

interactions: 

P:PHE210-M5:H40 

2.30 

3.13 

2.06 

836986 

(TOSLab) 

 

-9.05 -35.43 -48.87 -7.10 M6:H26-

P:GLN260:O 

Pi-Sigma 

interactions: 

P:PHE210-M6:H36 

2.11 

3.4. Pharmacokinetic properties. 

The pharmacokinetic properties of all docked molecules were predicted using the 

Qikprop of the Schrodinger suite. The six docked molecules comply with the Lipinski rule of 

five and Jorgensen rule of three and follow permissible ranges ages of ADME properties shown 
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in Table 5. These six molecules have drug-like properties and can be considered potentially 

novel lead molecules for drug design against CDK14 protein [51]. 

Table 5. The ADME properties of the best lead molecules were predicted from the QikProp of the Schrodinger 

suite. 

3.4. Lead optimization. 

The novel leads molecules 860371, 858233, 808781 and 836986 were finalized based 

on good binding free energy (PrimeMMGBSA), least binding energy (AutoDock), and 

interaction protein-ligand complexes with a good percentage of human oral absorption. These 

four ligand molecules have 100% human oral absorption. The binding energy of lead molecules 

860371, 858233, 808781 and 836986 obtained from prime MMGBSA and AutoDock as -

49.43, -51.63, -60.23, -48.87 kcal/mol and -7.16, -8.75, -8.47, -7.10 kcal/mol, respectively 

confirms the formation of most stable protein-ligand complexes which are studied from both 

docking programs Glide and AutoDock. The 860371 and 858233 lead molecules have a 

common pyrimidin-4(3H)-one ring that shows specific binding interactions with Val213. The 

lead molecules 860371 and 858233are also consistently binding with Val 213. The docked 

complex of 808781 lead molecules is forming H-bonds with His214 (1.7Å), Asp216 (3.1Å) 

and Gln260 (1.6Å). All of the above H-bond lengths are observed below 3.2 Å, indicating a 

lower bond length, with increasing the strength of binding interactions of CDK14 protein-

ligand molecules [52]. The lead molecules 860371, 858233, 808781 and 836986 were 

optimized using binding free energy (MM/GBSA), binding energy (AutoDock), percent human 

oral absorption, and interaction protein-ligand molecules, as exhibited in Table 6. Figure 11 

shows 3-D and 2-D structures of docked molecules 860371, 858233, 808781 and 836986 were 

visualized by Discovery studio 3.5. The docked molecules 860371, 858233, 808781 and 

836986 superimposed at an active site of CDK14 protein revealed that they occupy the same 

regions of the binding cavity and interact with Val213, His214, Gln260, Phe210 and Tyr212 

residues as shown in Figure 12 [53].  

Table 6. The best-docked molecules were identified from the TOSLab database by structure-based virtual 

screening against the CDK14 protein. 

 

Compound 

ID 

 

Structure 

Protein-ligand 

binding free 

energy (dG) 

%of Human 

oral 

absorption 

Binding energy 

from Autodock 

(kcal/mol) 

Interacting 

Amino acids 

 

 

860371 

(TOSLab) 

 

 

-49.43 

 

 

100% 

 

 

   -7.16 

 

H-bonding 

Asp274 

Val213 

Pi-Pi 

Tyr212 

S. No Mol.Wt DonarHB AcceptHB Qplog 

Po/W 

%Humanoral 

Absorption 

Rule of 

three 

Rule of 

five 

860371 

(TOSLab) 

292.395 1 4.2 3.229 100% 0 0 

872480 

(TOSLab) 

359.430 3 5 3.685 95.58% 1 0 

858233 

(TOSLab) 

366.849 1 5 4.543 100% 1 0 

808781 

(TOSLab) 

409.754 0 3.5 4.555 100% 1 0 

23037 

(TOSLab) 

403.381 3 5.5 3.690 95.43% 1 0 

836986 

(TOSLab) 

345.48 1 5 3.818 100% 0 0 
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Compound 

ID 

 

Structure 

Protein-ligand 

binding free 

energy (dG) 

%of Human 

oral 

absorption 

Binding energy 

from Autodock 

(kcal/mol) 

Interacting 

Amino acids 

 

 

 

858233 

(TOSLab) 

  

 

 

-51.63 

 

 

 

100% 

 

 

 

-8.47 

H-bonding 

Val213 

Pi-Sigma 

Phe210 

 

 

 

 

808781 

(TOSLab) 

  

 

 

-60.23 

 

 

 

100% 

 

 

 

-8.75 

H-bonding 

His214 

Gln260 

Asp216 

 

 

836986 

(TOSLab) 

 

 

 

 

 

-48.87 

 

 

 

100% 

 

 

 

-7.10 

H-bonding 

Gln260 

Pi-sigma  

Phe210 

 
860371(TOSLab) 

 
858233(TOSLab) 

 
808781(TOSLab) 
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836986(TOSLab) 

 
Figure 11. The 3-Dimensional docked poses of best lead molecules 860371, 858233, 808781 and 836986 with 

active amino acid residues of CDK14 protein are visualized by Discovery studio 3.5 and lead molecules to show 

that dark green, active residues indicate that yellow, H-binding interaction represents that light green, Pi-sigma, 

Pi-Cation and Pi-Pi interaction shows that orange color. 2-dimensional interactions of lead molecules were taken 

from the Schrodinger suite. 

 
Figure 12. The Best docked molecules 860371(Red), 858233(Green), 808781(Yellow) and 836986(Blue) are 

superimposed at the active site region of CDK14 protein and active residues (Orange) as visualized using 

Discovery Studio3.5. 

4. Conclusions 

In this present study, novel lead molecules were identified against CDK14 protein as 

cancer therapeutics. The 3D structural details of CDK14 protein were evaluated using 

comparative modeling. NAMD-VMD simulations carry out the energy minimization. The 

binding sites were predicted by Sitemap and Ligplot analysis. The potential lead molecules 

were identified from the Toslab database by performing virtual screening at the binding site of 

CDK14 protein using Glide and AutoDock tools. The best-docked molecules 860371, 858233, 

808781 and 836986, were shortlisted as final potential lead inhibitors based on glide score, % 

Human oral absorption, binding energies (PrimeMMGBSA and AutoDock) and then drug-

likeness properties. The lead molecules 860371, 858233, 808781 and 836986 have 100% 

human oral absorption and also showing best binding energies (-49.43, -51.63, -60.23, -48.87 

kcal/mol from prime MMGBSA and -7.16, -8.47, -8.75, -7.10 kcal/mol from AutoDock) and 

obeying permissible ADME properties. Both docking studies evidencing that lead molecules 

860371, 858233, 808781 and 836986 are showing best binding interactions with Phe210, 

Tyr212, Val213, His214, Asp216 and Gln260 amino acid residues of CDK14 protein by 

forming H-bonds, Pi-Pi, Pi-Sigma, which are crucial for inhibition of the overexpression of 

CDK14 protein. Therefore, the lead candidates 860371, 858233, 808781 and 836986can be 

considered as potential inhibitors against CDK14 protein for cancer treatment. 

https://doi.org/10.33263/BRIAC122.24732488
https://biointerfaceresearch.com/


https://doi.org/10.33263/BRIAC122.24732488   

https://biointerfaceresearch.com/ 2486 

Acknowledgments 

The authors also acknowledge the Principal and Head, Department of Chemistry, Nizam 

College, University College of Science, Osmania University, Hyderabad, for providing 

facilities to carry out this work.   

Conflict of Interest 

The authors declare no conflict of interest. 

Funding information 

The author Revanth Bathula thankful to the Council of Scientific and Industrial Research 

(CSIR) -INDIA, New Delhi, for providing financial support as SRF (file no: 09/132 

(0846)/2015-EMR-I). 

References 

1. Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. 

Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. 

Cancer 2019, 144, 1941-1953, https://doi.org/10.1002/ijc.31937. 

2. Wood, D.J.; Endicott, J.A. Structural insights into the functional diversity of the CDK–cyclin family. Open 

Biology 2018, 8, 180112, https://doi.org/10.1098/rsob.180112. 

3. Peyressatre, M.; Prével, C.; Pellerano, M.; Morris, M.C. Targeting Cyclin-Dependent Kinases in Human 

Cancers: From Small Molecules to Peptide Inhibitors. Cancers (Basel) 2015, 7, 

https://doi.org/10.3390/cancers7010179. 

4. Kaldis, P.; Pagano, M. Wnt signaling in mitosis. Dev. Cell 2009, 17, 749-750, 

https://doi.org/10.1016/j.devcel.2009.12.001.  

5. Shu, F.; Lv, S.; Qin, Y.; Ma, X.; Wang, X.; Peng, X.; Luo, Y.; Xu, B.-e.; Sun, X.; Wu, J. Functional 

characterization of human PFTK1 as a cyclin-dependent kinase. Proceedings of the National Academy of 

Sciences 2007, 104, 9248, https://doi.org/10.1073/pnas.0703327104. 

6. Davidson, G.; Shen, J.; Huang, Y.-L.; Su, Y.; Karaulanov, E.; Bartscherer, K.; Hassler, C.; Stannek, P.; 

Boutros, M.; Niehrs, C. Cell cycle control of wnt receptor activation. Dev. Cell 2009, 17, 788-799, 

https://doi.org/10.1016/j.devcel.2009.11.006.  

7. Baarsma, H.A.; Königshoff, M. ‘WNT-er is coming’: WNT signalling in chronic lung diseases. Thorax 2017, 

72, 746-759, https://doi.org/10.1136/thoraxjnl-2016-209753. 

8. Arce, L.; Yokoyama, N.N.; Waterman, M.L. Diversity of LEF/TCF action in development and disease. 

Oncogene 2006, 25, 7492-7504, https://doi.org/10.1038/sj.onc.1210056. 

9. Gu, X.; Wang, Y.; Wang, H.; Ni, Q.; Zhang, C.; Zhu, J.; Huang, W.; Xu, P.; Mao, G.; Yang, S. Upregulated 

PFTK1 promotes tumor cell proliferation, migration, and invasion in breast cancer. Med. Oncol. 2015, 32, 

195, https://doi.org/10.1007/s12032-015-0641-8. 

10. Boras-Granic, K.; Wysolmerski, J.J. Wnt signaling in breast organogenesis. Organogenesis 2008, 4, 116-122, 

https://doi.org/10.4161/org.4.2.5858. 

11. Liu, M.-h.; Shi, S.-m.; Li, K.; Chen, E.-q. Knockdown of PFTK1 Expression by RNAi Inhibits the 

Proliferation and Invasion of Human Non-Small Lung Adenocarcinoma Cells. Oncology Research Featuring 

Preclinical and Clinical Cancer Therapeutics 2016, 24, 181-187, 

https://doi.org/10.3727/096504016X14635761799038. 

12. Zheng, L.; Zhou, Z.; He, Z. Knockdown of PFTK1 inhibits tumor cell proliferation, invasion and epithelial-

to-mesenchymal transition in pancreatic cancer. Int. J. Clin. Exp. Pathol. 2015, 8, 14005-14012. 

13. Zhu, J.; Liu, C.; Liu, F.; Wang, Y.; Zhu, M. Knockdown of PFTAIRE Protein Kinase 1 (PFTK1) Inhibits 

Proliferation, Invasion, and EMT in Colon Cancer Cells. Oncology Research Featuring Preclinical and 

Clinical Cancer Therapeutics 2016, 24, 137-144, https://doi.org/10.3727/096504016X14611963142218. 

https://doi.org/10.33263/BRIAC122.24732488
https://biointerfaceresearch.com/
https://doi.org/10.1002/ijc.31937
https://doi.org/10.1098/rsob.180112
https://doi.org/10.3390/cancers7010179
https://doi.org/10.1016/j.devcel.2009.12.001
https://doi.org/10.1016/j.devcel.2009.11.006
https://doi.org/10.1038/sj.onc.1210056
https://doi.org/10.3727/096504016X14635761799038
https://doi.org/10.3727/096504016X14611963142218


https://doi.org/10.33263/BRIAC122.24732488   

https://biointerfaceresearch.com/ 2487 

14. Ou-Yang, J.; Huang, L.-H.; Sun, X.-X. Cyclin-dependent kinase 14 promotes cell proliferation, migration 

and invasion in ovarian cancer by inhibiting Wnt signaling pathway. Gynecol. Obstet. Invest. 2017, 82, 230-

239, https://doi.org/10.1159/000447632. 

15. Zhang, W.; Liu, R.; Tang, C.; Xi, Q.; Lu, S.; Chen, W.; Zhu, L.; Cheng, J.; Chen, Y.; Wang, W.; Zhong, J.; 

Deng, Y. PFTK1 regulates cell proliferation, migration and invasion in epithelial ovarian cancer. Int. J. Biol. 

Macromol. 2016, 85, 405-416, https://doi.org/10.1016/j.ijbiomac.2016.01.009. 

16. Yang, L.; Zhu, J.; Huang, H.; Yang, Q.; Cai, J.; Wang, Q.; Zhu, J.; Shao, M.; Xiao, J.; Cao, J.; Gu, X.; Zhang, 

S.; Wang, Y. PFTK1 Promotes Gastric Cancer Progression by Regulating Proliferation, Migration and 

Invasion. PLoS One 2015, 10, e0140451, https://doi.org/10.1371/journal.pone.0140451. 

17. Morgat, A.; Lombardot, T.; Coudert, E.; Axelsen, K.; Neto, T.B.; Gehant, S.; Bansal, P.; Bolleman, J.; 

Gasteiger, E.; de Castro, E.; Baratin, D.; Pozzato, M.; Xenarios, I.; Poux, S.; Redaschi, N.; Bridge, A.; The 

UniProt, C. Enzyme annotation in UniProtKB using Rhea. Bioinformatics 2020, 36, 1896-1901, 

https://doi.org/10.1093/bioinformatics/btz817.  

18. Hameduh, T.; Haddad, Y.; Adam, V.; Heger, Z. Homology modeling in the time of collective and artificial 

intelligence. Computational and Structural Biotechnology Journal 2020, 18, 3494-3506, 

https://doi.org/10.1016/j.csbj.2020.11.007.  

19. Basak, N.; Krishnan, V.; Pandey, V.; Punjabi, M.; Hada, A.; Marathe, A.; Jolly, M.; Palaka, B.K.; Ampasala, 

D.R.; Sachdev, A. Expression profiling and in silico homology modeling of Inositol pentakisphosphate 2-

kinase, a potential candidate gene for low phytate trait in soybean. 3 Biotech 2020, 10, 268, 

https://doi.org/10.1007/s13205-020-02260-y.  

20. Webb, B.; Sali, A. Protein Structure Modeling with MODELLER. Structural Genomics:Methods Mol. Biol. 

2021, 2199, 239-255, https://doi.org/10.1007/978-1-0716-0892-0_14. 

21. Chandler, P.G.; Broendum, S.S.; Riley, B.T.; Spence, M.A.; Jackson, C.J.; McGowan, S.; Buckle, A.M. 

Strategies for Increasing Protein Stability. Methods Mol. Biol. 2020, 2073, 163-181, 

https://doi.org/10.1007/978-1-4939-9869-2_10. 

22. Phillips, J.C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Kalé, L.; 

Schulten, K. Scalable molecular dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781-

1802,https://doi.org/10.1002/jcc.20289. 

23. Salsbury, F.R. Molecular dynamics simulations of protein dynamics and their relevance to drug discovery. 

Curr. Opin. Pharm. 2010, 10, 738-744, https://doi.org/10.1016/j.coph.2010.09.016.  

24. Wiederstein, M.; Sippl, M.J. ProSA-web: interactive web service for the recognition of errors in three-

dimensional structures of proteins. Nucleic Acids Res. 2007, 35, W407-W410, 

https://doi.org/10.1093/nar/gkm290. 

25. Rose, G.D. Ramachandran maps for side chains in globular proteins. Proteins: Structure, Function, and 

Bioinformatics 2019, 87, 357-364, https://doi.org/10.1002/prot.25656. 

26. Protein preparation wizard, Version 3.3. New York (NY): Schrodinger, LLC; 2016. 

27. Madhavi Sastry, G.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: 

parameters, protocols, and influence on virtual screening enrichments. J. Comput.-Aided Mol. Des. 2013, 27, 

221-234,https://doi.org/10.1007/s10822-013-9644-8. 

28. LigPrep, version 3.3. New York, NY: Schrodinger, LLC; 2016. 

29. Anderson, A.C. The process of structure-based drug design. Chem. Biol. 2003, 10, 787-797, 

https://doi.org/10.1016/j.chembiol.2003.09.002. 

30. Lanka, G.; Bathula, R.; Dasari, M.; Nakkala, S.; Bhargavi, M.; Somadi, G.; Potlapally, S.R. Structure-based 

identification of potential novel inhibitors targeting FAM3B (PANDER) causing type 2 diabetes mellitus 

through virtual screening. J. Recept. Signal Transduct. 2019, 39, 253-263, 

https://doi.org/10.1080/10799893.2019.1660897.  

31. Glide, version 6.1. New York, NY: Schrodinger, LLC; 2016. 

32. Alogheli, H.; Olanders, G.; Schaal, W.; Brandt, P.; Karlén, A. Docking of Macrocycles: Comparing Rigid 

and Flexible Docking in Glide. J. Chem. Inf. Model. 2017, 57, 190-202, 

https://doi.org/10.1021/acs.jcim.6b00443.  

33. Greenfield, D.A.; Schmidt, H.R.; Skiba, M.A.; Mandler, M.D.; Anderson, J.R.; Sliz, P.; Kruse, A.C. Virtual 

Screening for Ligand Discovery at the σ1 Receptor. ACS Med. Chem. Lett. 2020, 11, 1555-1561, 

https://doi.org/10.1021/acsmedchemlett.9b00314. 

34. Prime. New York, NY: Schrodinger, LLC; 2016. 

https://doi.org/10.33263/BRIAC122.24732488
https://biointerfaceresearch.com/
https://doi.org/10.1159/000447632
https://doi.org/10.1016/j.ijbiomac.2016.01.009
https://doi.org/10.1093/bioinformatics/btz817
https://doi.org/10.1016/j.csbj.2020.11.007
https://doi.org/10.1007/s13205-020-02260-y
https://doi.org/10.1002/jcc.20289
https://doi.org/10.1016/j.coph.2010.09.016
https://doi.org/10.1093/nar/gkm290
https://doi.org/10.1002/prot.25656
https://doi.org/10.1007/s10822-013-9644-8
https://doi.org/10.1016/j.chembiol.2003.09.002
https://doi.org/10.1080/10799893.2019.1660897
https://doi.org/10.1021/acs.jcim.6b00443
https://doi.org/10.1021/acsmedchemlett.9b00314


https://doi.org/10.33263/BRIAC122.24732488   

https://biointerfaceresearch.com/ 2488 

35. Cosconati, S.; Forli, S.; Perryman, A.L.; Harris, R.; Goodsell, D.S.; Olson, A.J. Virtual screening with 

AutoDock: theory and practice. Expert Opinion on Drug Discovery 2010, 5, 597-607, 

https://doi.org/10.1517/17460441.2010.484460. 

36. Bitencourt-Ferreira, G.; Pintro, V.O.; de Azevedo, W.F. Docking with AutoDock4. Methods Mol. Biol. 2019, 

2053,125-148, https://doi.org/10.1007/978-1-4939-9752-7_9. 

37. QikProp. New York, NY: Schrodinger, LLC; 2016. 

38. Guo, W.; Li, Z.; Yuan, M.; Chen, G.; Li, Q.; Xu, H.; Yang, X. Molecular Insight into Stereoselective ADME 

Characteristics of C20-24 Epimeric Epoxides of Protopanaxadiol by Docking Analysis. Biomolecules 2020, 

10, https://doi.org/10.3390/biom10010112. 

39. Haddad, Y.; Adam, V.; Heger, Z. Ten quick tips for homology modeling of high-resolution protein 3D 

structures. PLoS Comp. Biol. 2020, 16, e1007449, https://doi.org/10.1371/journal.pcbi.1007449. 

40. Isa, M.A. Homology modeling and molecular dynamic simulation of UDP-N-acetylmuramoyl-l-alanine-d-

glutamate ligase (MurD) from Mycobacterium tuberculosis H37Rv using in silico approach. Comput. Biol. 

Chem. 2019, 78, 116-126, https://doi.org/10.1016/j.compbiolchem.2018.11.002. 

41. Bathula, R.; Lanka, G.; Muddagoni, N.; Dasari, M.; Nakkala, S.; Bhargavi, M.; Somadi, G.; Sivan, S.K.; 

Rajender Potlapally, S. Identification of potential Aurora kinase-C protein inhibitors: an amalgamation of 

energy minimization, virtual screening, prime MMGBSA and AutoDock. J. Biomol. Struct. Dyn. 2020, 38, 

2314-2325, https://doi.org/10.1080/07391102.2019.1630318. 

42. Paxman, J.J.; Heras, B. Bioinformatics Tools and Resources for Analyzing Protein Structures. Methods Mol. 

Biol. 2017, 1549, 209-220,  https://doi.org/10.1007/978-1-4939-6740-7_16.  

43. Schiffrin, B.; Radford, S.E.; Brockwell, D.J.; Calabrese, A.N. PyXlinkViewer: A flexible tool for 

visualization of protein chemical crosslinking data within the PyMOL molecular graphics system. Protein 

Sci. 2020, 29, 1851-1857, https://doi.org/10.1002/pro.3902. 

44. Martin, D.R.; Dinpajooh, M.; Matyushov, D.V. Polarizability of the Active Site in Enzymatic Catalysis: 

Cytochrome c. The Journal of Physical Chemistry B 2019, 123, 10691-10699, 

https://doi.org/10.1021/acs.jpcb.9b09236. 

45. Halgren, T.A. Identifying and Characterizing Binding Sites and Assessing Druggability. J. Chem. Inf. Model. 

2009, 49, 377-389, https://doi.org/10.1021/ci800324m. 

46. Bhargavi, M.; Vhora, N.; Lanka, G.; Somadi, G.; Kanth, S.S.; Jain, A.; Potlapally, S.R. Homology modelling 

and virtual screening to explore potent inhibitors for MAP2K3 protein. Struct. Chem. 2021, 32, 1039-1051, 

https://doi.org/10.1007/s11224-020-01667-w. 

47. Rastelli, G.; Pinzi, L. Refinement and Rescoring of Virtual Screening Results. 2019, 7, 

https://doi.org/10.3389/fchem.2019.00498. 

48. Rajagopal, K.; Arumugasamy, P.; Byran, G. In-silico Drug Design, ADMET Screening, MM-GBSA Binding 

Free Energy of Some Chalcone Substituted 9-Anilinoacridines as HER2 Inhibitors for Breast Cancer. 

International Journal of Computational and Theoretical Chemistry 2019, 7, 6, 

https://doi.org/10.2174/2589977511666190912154817. 

49. Wang, Z.; Wang, X.; Li, Y.; Lei, T.; Wang, E.; Li, D.; Kang, Y.; Zhu, F.; Hou, T. farPPI: a webserver for 

accurate prediction of protein-ligand binding structures for small-molecule PPI inhibitors by MM/PB(GB)SA 

methods. Bioinformatics 2019, 35, 1777-1779, https://doi.org/10.1093/bioinformatics/bty879. 

50. Bhargavi, M.; Sivan, S.K.; Potlapally, S.R. Identification of novel anti cancer agents by applying insilico 

methods for inhibition of TSPO protein. Comput. Biol. Chem. 2017, 68, 43-55, 

https://doi.org/10.1016/j.compbiolchem.2016.12.016. 

51. Adinehbeigi, K.; Shaddel, M.; Khalili, S.; Zakeri, A. Suramin could block the activity of Arabinono-1, 4-

lactone oxidase enzyme from Leishmania donovani: structure-based screening and molecular dynamics 

analyses. Trans. R. Soc. Trop. Med. Hyg. 2020, 114, 162-172, https://doi.org/10.1093/trstmh/trz091. 

52. Wang, E.; Sun, H.; Wang, J.; Wang, Z.; Liu, H.; Zhang, J.Z.H.; Hou, T. End-Point Binding Free Energy 

Calculation with MM/PBSA and MM/GBSA: Strategies and Applications in Drug Design. Chem. Rev. 2019, 

119, 9478-9508, https://doi.org/10.1021/acs.chemrev. 

53. Liu, S.; Zhou, L.-H.; Wang, H.-Q.; Yao, Z.-B. Superimposing the 27 crystal protein/inhibitor complexes of 

β-secretase to calculate the binding affinities by the linear interaction energy method. Bioorg. Med. Chem. 

Lett. 2010, 20, 6533-6537, https://doi.org/10.1016/j.bmcl.2010.09.050. 

 

 

https://doi.org/10.33263/BRIAC122.24732488
https://biointerfaceresearch.com/
https://doi.org/10.1517/17460441.2010.484460
https://doi.org/10.3390/biom10010112
https://doi.org/10.1016/j.compbiolchem.2018.11.002
https://doi.org/10.1080/07391102.2019.1630318
https://doi.org/10.1002/pro.3902
https://doi.org/10.1021/acs.jpcb.9b09236
https://doi.org/10.3389/fchem.2019.00498
https://doi.org/10.2174/2589977511666190912154817
https://doi.org/10.1093/bioinformatics/bty879
https://doi.org/10.1016/j.compbiolchem.2016.12.016
https://doi.org/10.1093/trstmh/trz091
https://doi.org/10.1021/acs.chemrev

