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Abstract: Salt stress is the most significant abiotic stress that can severely limit crop growth and 

productivity. This problem gets worse in the context of climate change. The Knowledge of genetic pool 

behavior under such environmental constraints is imperative for growing and research. Here, we tested 

salt stress tolerance in six barley varieties (‘Amira’, ‘Oussama’, ‘Tamellalet’, ‘Adrar’, ‘Taffa’, and 

‘Laanaceur’). To this end, a set of biochemical parameters (chlorophylls, proline, sodium, potassium 

levels and K+/Na+ ratio) were measured. Salt constraint significantly reduced chlorophyll content and 

K+/Na+ but resulted in high records of proline and Na+. Our outcomes show that treatment was the main 

variability since it explained more than 75% in data variability followed by variety effect. Wide 

variabilities were found among varieties for the measured parameters. Higher proline levels and K+/Na+ 

were found in ‘Adrar’, ‘Tamellalet’ and ‘Taffa’.  These two later varieties also displayed a higher record 

of K+. Lower Na+ values were recorded in ‘Laanaceur’, ‘Taffa’, and ‘Tamellalet’, indicating their 

relative resistance against salt stress. In contrast, ‘Oussama’ and ‘Amira’ were relatively salt-sensitive 

due to their higher Na+ and lowered K+/Na+ and proline content. Resistant varieties could represent a 

good background for breeding for barley salt tolerance. 
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1. Introduction 

As a staple food in diverse civilizations, barley (Hordeum vulgare L.) has been noted 

historically for health-promoting benefits [1]. This crop is among the most tolerant salt crops 

grown in very high salinity areas [2]. In Morocco, barley is the second important cereal after 

wheat in terms of production and consumption [3]. Unfortunately, according to these authors, 

the arable land is increasingly affected by salinity, and the saline area reached more than 

500,000 ha with damaged soil. Indeed, one of the main factors of soil degradation is 

salinization; about 19.5% of irrigated land and 2.1% of the arid land are threatened by salinity 

[4]. In semi-arid and arid regions, salinity is a major adverse factor, severely reducing plant 

growth and crop productivity [1,5–9]. 

Salt stress affects metabolic activities and nutrient absorption in plants [10]. It has been 

shown that the salt response depends on the species, variety, salt concentration, growing 

conditions, and stage of development [10,11]. Salt stress is widely reported to cause a series of 

unfavorable biochemical, physiological, and morphological changes that damage 
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photosynthesis and other biochemical processes combined with plant growth, development and 

productivity [12,13]. Indeed, salinity is likely to disrupt the mineral nutrition of plants in 

interfering with the removal of some essential elements like potassium and calcium. In 

addition, the increase in NaCl concentration in the surrounding root area has been shown to cut 

down the absorption of potassium and calcium, interferes with their physiological functions 

[14]. 

Under salt stress, plants have improved their mechanisms to cope with salt constraints 

and to adapt to osmotic and ionic stress caused by salinity [5,8,15]. In this context, there is an 

association between osmoregulation and some potent osmoprotectants such as proline, soluble 

sugars, and potassium [16]. The change of proline concentration is generally related to the 

adaptation or tolerance of salt stress [17,18]. The known role of proline is membrane 

stabilization and osmotic adjustment, and detoxification of harmful ions in plants grown in 

saline environments [16]. Chlorophyll content was reported to decrease drastically in salt-

sensitive plants compared to salinity-tolerant plants [1]. High salinity results in reduced growth, 

which may be due to reduced leaf area and hence a lower light interception [19], even with low 

salt concentrations, there was a decrease in chlorophyll [6,20,21]. 

A literature review shows that there is a scarcity of information on Moroccan barley 

varieties' behavior under salt stress conditions. Hence the originality of our work, which had 

as goals, (i) to screen some biochemical parameters in six Moroccan barley varieties submitted 

to severe salt stress and (ii) to compare these varieties in terms of different measured 

biochemical parameters in order to select the most resistant varieties. 

2. Materials and Methods 

2.1. Plant material and culture conditions. 

This work was carried out in a pot experiment in the growth chamber at the 

experimental station of the Polydisciplinary Faculty of Taza.  

Six barley (Hordeum vulgare L.) varieties used in this experiment were selected from several 

cultivars tested for sensitivity to salt stress, widely grown in Morocco. Seeds were supplied by 

the National Institute for Agricultural Research (INRA) and included in the official catalog of 

varieties (Table 1). They were grouped into two periods, namely old (released between 1980 

and 1990) and intermediate (released between 1990 and 2000). Seeds were first disinfected 

with 5% (v/v) commercial bleach sodium hypochlorite solution (NaOCl) for 5 min and rinsed 

3 times with distilled water as described in Taibi et al. (2006) and Athar et al. (2015) [22,23]. 

Twenty seeds of each variety were sown in 10 L plastic pots containing a mixture of soil and 

peat (1:1) in a completely randomized block design with three replicates.  

Table 1. Description of the six varieties barley used in this study. 

Varieties Origin Year of release 
Old ‘Tamellalet’  INRA Morocco  1984 

Intermediates ‘Laanaceur’   INRA Morocco 1991 

‘Taffa’           INRA Morocco 1994 

‘Oussama’     INRA Morocco 1995 

‘Amira’          INRA Morocco 1996 

‘Adrar’          INRA Morocco 1998 

After germination, density was adjusted to three plants per pot, and the water content 

was adjusted at 80% f field capacity. Saline treatment was applied at the third-leaf stage. 

Treated plants were irrigated using saline solutions (up to 300 mM NaCl). Salinity was 
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monitored during the experiment period so that saline treatment was increased gradually to get 

an electrical conductivity in pots of 8 mS/cm. Control pots were irrigated using distilled water 

without salt. Plants were grown at 22 °C under artificial light with PAR of 300 µmol photons.m-

2.s-1. Fresh leaf samples used for analysis were harvested 75 days after the beginning of salt 

treatment. 

2.2. Determination of biochemical parameters. 

 Proline accumulation was assessed as described in Bates et al. (1973) [24]. Briefly, 0.5 

g of fresh leaf tissues (flag-leaf) from each treatment were added and homogenized in 10 mL 

of sulphosalicylic acid (3% w/v). The resulting homogenate was then filtrated. The extract was 

then treated with 2.5% ninhydrin solution and glacial acetic acid. The reaction mixture was 

kept at 100 °C for 60 min in a water bath. Toluene was added to separate chromophores. Optical 

density was recorded at 520 nm using a UV-VIS spectrophotometer (Jenway Model l6100, 

Dunmow, Essex, UK). The proline concentration was determined from a standard curve that 

was previously prepared using L-proline and expressed as mg of proline per g of fresh leaf 

weight (FW). 

The chlorophyll content in flag leaves was determined using the DMSO method as 

described by Burnison (1980) [25]. To this end, sliced 20 mg of leaf tissue (flag leaf) was 

placed in a vial containing 7 mL DMSO. Mixtures were incubated in a glass tube at 65 °C with 

regular shaking intervals for at least 60 minutes (tissues became colorless). Absorbance was 

read at two wavelengths 663 and 645 nm, using a UV-VIS spectrophotometer (Jenway Model 

6100, Dunmow, Essex, UK). The content of chlorophyll a (Chl a), chlorophyll b (Chl b), and 

total chlorophyll (Chl T) was calculated using the following equations [26]. The content of 

each phlorophyll fraction (Chl a, Chl b, and Chl T) was then expressed as mg per g of leaf fresh 

weight (FW). 

Chl a (mg/L) = (0.0127 × A663) - (0.00269 × A645) 

Chl b (mg/L) = (0.0229 × A645) - (0.00468 × A663) 

Chl T (mg/L) = (0.0202 × A645) + (0.00802 × A663) 

Where,  

A645: Absorbance at λ = 645, 

A663: Absorbance at λ = 663. 

Na+ and K+ contents were determined using the flame photometer method [27]. Dry 

samples of 50 mg of plant material (sampled from flag leaf) were treated with a mixture of 10 

mL acid nitric-perchloric (4 :1) at 120 °C for 120 min. The homogenate was diluted in distilled 

water 10% (v/v) and filtered through a Whatman filter paper. The extract was used to determine 

free inorganic ions K+ and Na+ contents by flame emission photometry (Jenway PFP7, Jenway, 

Australia) described by Miller (1998) and Turan et al. (2010) [28,29]. Na+ and K+ contents 

were expressed as mg per g of DW. The K+/Na+ ratio was computed as a good criterion to 

assess salt stress tolerance [30]. 

2.3. Statistical analysis.  

All determinations and calculations were made, at least, in triplicates. Combined 

analyses of variance (ANOVA) were performed over varieties and salt treatment. The least 
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significant difference’s test (LSD) was used to compare means for varieties and treatments at 

5% as a probability level [31]. Correlations matrix among studied parameters was established 

based on mean values. Principal component analyses (PCA) were carried out using mean 

values. The STATGRAPHICS package, version XVII (Stat point Technologies, Inc., Virginia, 

USA) was used for all statistical analyses. 

3. Results and Discussion 

3.1. Results. 

3.1.1. Analyses of variance (ANOVA). 

Table 2 shows mean squares of the combined analyses of variance for proline content, 

chlorophyll a, chlorophyll b, total chlorophyll, sodium (Na+), potassium (K+), and K+/Na+ ratio 

in leaves of six barley varieties grown under salt stress conditions. This table shows that both 

factors (treatment and variety) and their interaction significantly impacted most of the studied 

biochemical parameters. However, the main variability source was the treatment effect since it 

explained more than 77% of the total variance for K+ and about 93% of the total variability in 

the remaining parameters. The magnitude of genotypic effect (variety) was of a lesser extent 

and allowed explaining around 3% of the total variance for the investigated parameters except 

for K+ for which genotypic effect was about 17%. Treatment by variety interaction was lower 

since it explained around 2% of the total variance in almost studied parameters. 

Table 2. Mean squares of the combined analyses of variance for proline content (Proc), chlorophyll a (Chl a), 

Chlorophyll b (Chl b), Total Chlorophyll (Chl T), Sodium (Na+), Potassium (K+), and ratio (K+/Na+) in leaves of 

six barley varieties grown under salt stress conditions during the 2017-2018 crop season. Df = degree of 

freedom. *, **, and *** indicate significance at 0.05, 0.01, and 0.001 levels of probability, respectively. 

Source of variation Df ProC Chl a Chl b Chl T Na+ K+ K+/Na+ 

Treatment (Trt) 1 331.30*** 1.985*** 0.569*** 4.738*** 382.67*** 3.15*** 19.34*** 

Varieties (Var) 5 7.26*** 0.118*** 0.049** 0.213** 8.56*** 0.71*** 0.33 

Replicate (Trt) 4 0.04 0.006 0.004 0.015 0.21 0.01 0.15 

Trt × Var 5 10.08*** 0.056* 0.012 0.069 8.34*** 0.15** 0.45* 

Residual 20 0.31 0.015 0.008 0.035 0.06 0.037 0.15 

Total (corrected) 35        

3.1.2. Treatment effects.   

Mean values of both salt treatment and control are summarized in Table 3. As evidenced 

in this table, there were significant variations between the salt treatment and control. Salt 

treatment displayed the greatest values of proline content (8.22 mg/g FW) and sodium ion 

content (8.37 mg/g DW). However, the lowest values of was recorded in chlorophyll a (1.31 

mg/g FW), chlorophyll b (0.89 mg/g FW), total chlorophyll (2.30 mg/g FW), sodium ion 

content (1.85 mg/g DW), and K+/Na+ ratio.  

Table 3. Mean values of varieties and treatments for proline content (Proc), Chlorophyll a (Chl a), Chlorophyll 

b (Chl b), Total Chlorophyll (Chl T), Sodium (Na+), Potassium (K+), and ratio (K+/Na+) in leaves of six barley 

varieties grown under salt stress conditions during the 2017-2018 crop season. In each column, values followed 

by the same letter are not significantly different at 5% as a probability level. 

 ProC 

(mg/gFW) 
Chl a 

(mg/gFW) 
Chl b 

(mg/gFW) 
Chl T 

(mg/gFW) 
Na+ 

(mg/gDW) 
K+ 

(mg/gDW) 
K+/Na+ 

 

Varieties               

‘Amira’ 3.48 e 0.92 cd 0.70 cd 1.72 b 5.19 b 2.89 ab 0.94 ab 

‘Laanaceur’ 4.64 d 1.26 a 0.82 ab 2.18 a 3.60 d 2.73 b 1.23 a 

‘Oussama’ 4.88 cd 1.14 ab 0.64 d 1.88 b 6.50 a 2.75 b 0.69 b 
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 ProC 

(mg/gFW) 
Chl a 

(mg/gFW) 
Chl b 

(mg/gFW) 
Chl T 

(mg/gFW) 
Na+ 

(mg/gDW) 
K+ 

(mg/gDW) 
K+/Na+ 

 

‘Adrar’ 5.53 bc 1.07 bc 0.74 bcd 1.90 b 6.53 a 2.04 c 1.35 a 
‘Taffa’ 6.09 ab 0.91 d 0.78 abc 1.79 b 4.47 c 3.04 a 0.95 ab 

‘Tamellalet’ 6.53 a 1.18 ab 0.89 a 2.14 a 4.37 c 2.67 b 1.12 ab 

Treatment        

Control 2.16 b 1.31 a 0.89 a 2.30 a 1.85 b 2.98 a 1.78 a 

NaCl 8.22 a 0.84 b 0.64 b 1.57 b 8.37 a 2.39 b 0.31 b 

3.1.3. Genotypic effects.  

Table 3 presents the mean values of varieties of the investigated biochemical 

parameters. From these outcomes, there were significant variations among most of the six 

studied barley varieties. ‘Tamallelet’ was found to have the highest scores of proline (6.53 

mg/g FW) and chlorophyll b (0.89 mg/g FW) contents. ‘Taffa’ displayed the smallest 

chlorophyll content (0.91 mg/g FW) but the greatest value of K+ (3.04 mg/g DW). ‘Adrar’ was 

found to have the greatest values of Na+ (6.53 mg/g DW), K+ (2.04 mg/g DW) and K+/Na+ ratio 

(1.35). The lowest values of chlorophyll b (0.64 mg/g DW), and K+/Na+ ratio (0.69 mg/g DW) 

contents were recorded in ‘Oussama’, while ‘Amira’ was characterized by the lowest level of 

proline content (3.48 mg/g FW) and total chlorophyll (2.18 mg/g FW). ‘Laanaceur’ presented 

the greatest scores of chlorophyll a (1.26 mg/g FW), total chlorophyll (2.18 mg/g FW), this 

variety showed the lowest value of sodium ion content (3.6 mg/g DW). 

3.1.4. Correlations among the studied parameters. 

The correlations matrix among the studied parameters are shown in Table 4. According 

to our results, important positive and negative correlations were highlighted among the 

investigated biochemical parameters. In this regard, proline content was positively linked to 

sodium ion content and negatively associated with chlorophyll a, chlorophyll b, and total 

chlorophyll, potassium ion content, and the K+/Na+ ratio. Moreover, chlorophyll a, b, and total 

chlorophyll values were positively and significantly associated with each other and with 

potassium ion content, but they were negatively associated with sodium ion content (Table 4). 

Potassium ion content was negatively linked to sodium ion content and positively associated 

with the K+/Na+ ratio. 

Table 4. Correlation coefficients among the studied parameters. Matrix correlation was carried out on mean 

values for each parameter. *, **, and *** indicate significance at 0.05, 0.01, and 0.001 levels of probability, 

respectively. 

 ProC      Chl a      Chl b        Chl T       Na+       K+ K+/Na+ 
ProC −0.641*** −0.544** −0.6278** 0.671*** −0.800*** −0.684*** 

Chl a   0.762*** 0.941*** −0.734*** 0.479** 0.730*** 

Chl b    0.911*** −0.832*** 0.569** 0.826*** 

Chl T     −0.812*** 0.518* 0.797*** 

Na+      −0.618** −0.986*** 

K+       0.689*** 

K+/Na+        

3.1.5. Principal Component Analysis. 

PCA was used as a multivariate statistical approach to discriminate between treatments 

and varieties. The two first PCs were retained since they allowed explaining over 89% of the 

total variability in our results. PC1 and PC2 accounted for 79% and 10%, respectively. Points 

plotted on the surface delimited by axis 1 and 2 (Figure 1) are related to treatments, which seem 

to be distributed along PC1. Towards the positive direction of this component, NaCl treatment 
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interacted with higher values of proline and sodium ion contents. Control interacted, on the 

positive side of PC1, with higher scores of chlorophyll a, b, and total chlorophyll, potassium 

ion content, and the K+/Na+ ratio. 

 

Figure 1. Principal component analysis (PCA) projections on PC1 and PC2. The eigenvalues are symbolized as 

blue segments representing traits that most affect each principal component. The 12 points are the treatment 

mean values of each studied parameter of six barley varieties grown under NaCl treatment during the 2017-2018 

crop season. Proc: proline content, Chl a: Chlorophyll a, Chl b: Chlorophyll b, Chl T: Total Chlorophyll, Na+: 

Sodium, K+: Potassium, and K+/Na+: ratio of K+ out of Na+. 

Similar to Figure 1, points plotted on the surface delimited by axis 1 and 2 (Figure 2) 

are related to varieties. PC2 appears to discriminate between both ‘Tamellalet’ and ‘Adrar’ 

towards the negative side of PC2 with higher proline content, sodium ion, chlorophyll a, b, and 

total chlorophyll contents, and K+/Na+ ratio. However, varieties ‘Taffa’, ‘Amira’, and 

‘Oussama’ were distributed on the positive side of PC2 with higher scores of potassium ion 

content. Points related to ‘Oussama’ were close to 0 with lower scores of most studied 

parameters. PCA outcomes confirmed the results obtained in mean comparisons highlighted in 

Table 3. 

 

Figure 2. Principal component analysis (PCA) projections on PC1 and PC2. The eigenvalues are symbolized as 

blue segments representing traits that most affect each principal component. The 12 points are the mean 

accession values of each studied parameter of six barley varieties grown under NaCl treatment during the 2017-

2018 crop season. Proc: proline content, Chl a: Chlorophyll a, Chl b: Chlorophyll b, Chl T: Total Chlorophyll, 

Na+: Sodium, K+: Potassium, and K+/Na+: ratio of K+ out of Na+. 
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3.2. Discussion. 

It is well known that salinity is a major abiotic stress that can severely reduce plant 

growth and crop productivity [32]. In this context, a pressing need is faced with overcoming 

such environmental constraints through technological means. Improving salinity tolerance 

requires a good knowledge of the physiological mechanisms linked to plant response to salt 

stress. In this work, we reported some biochemical responses of six Moroccan barley varieties 

under salt stress conditions. As highlighted in the results section, different biochemical 

parameters were mainly under treatment effects, while genotypic effects were lesser. Such 

results were in agreement with other previously reported works in barley and other crops 

[1,10,12,33]. It has been demonstrated that salt stress tolerance is highly inherited in barley 

[34–38]. It is controlled by the action of several genes that are highly influenced by the 

environment and genotype-by-environment interaction. Under salt constraint, [36] found 

higher values of heritability of leaf chlorophyll content (0.86) and Na+ and K+ contents (0.80). 

Mean comparison between treatments (salt treatment and control) showed that applying 

salt stress reduced chlorophyll contents (a, b, and the total), potassium ion content (K+), and 

K+/Na+ ratio on the one hand and increased the proline and sodium ion contents on the other 

hand. Our findings were in line with previously published works [1,10,12,39–41]. Under salt 

treatment, our varieties experienced a reduction exceeding 66% in the case of chlorophyll a 

and the K+/Na+ ratio, about 30% in total chlorophyll, and less than 20% in chlorophyll b and 

potassium ion content compared to their respective controls. A differential reduction in 

different chlorophyll fractions has been reported by Athar et al. (2015) [23].  This chlorophyll 

content decline could be attributed to the chlorophyll synthesis inhibition, along with the 

activation of its enzymatic degradation via the chlorophyllase enzyme [21,42]. 

With regard to ions leakage, under salt stress, there was a significant increase in Na+, 

while K+ and K+/Na+ increased. These results were in agreement with published literature 

[1,38,43,44]. Under salt stress conditions, ions content and transport are altered as reviewed by 

Arzani and Ashraf (2006) [34]. Different strategies are used by plants to cope with the toxicity 

caused by Na+. In this context, some plants transport Na+ to leaves and accumulate it in 

vacuoles, while others accumulate this ion at the roots level [45]. Increasing K+ uptake is also 

a known strategy to counteract the entry of Na+ [46]. Such decline in K+ content at higher 

salinity levels could be ascribed to decreased competitive absorption with Na+ [46]. This 

suggests that a strong ability of K+ retention is thought to be one of the mechanisms behind 

their higher salt tolerance, as explained by Sun et al. (2015) [48]. Along with ionic leakage, the 

synthesis and accumulation of compatible solutes (like proline) are required to balance the 

osmotic potential of the vacuolar Na+ [43]. Our results found a strong increase in proline levels 

under salt treatment compared to the control. This confirmed previously published works 

[12,23,40,43]. Proline synthesis, under salt conditions, is deemed to be one of the osmolytes 

widely reported to accumulate in plants under salt stress conditions. In fact, proline protects 

plants against salinity stress mostly via maintaining osmotic adjustment, ROS scavenging, and 

regulating antioxidant metabolites, but also modulating major enzymatic components involved 

in antioxidant defense system as reviewed in [49]. 

Vast differences were highlighted between all varieties studied here in terms of 

different biochemical parameters. These outcomes were in accordance with several studies that 

examined barley's biochemical and physiological behavior under salt stress conditions 

[1,12,23,38,43]. As outlined by other authors, such genotypic variations were assigned to a 
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differentiated expression of genes that encode for these traits [12,48,51]. Moreover, several 

authors reported a positive correlation between free proline content, K+ content, the K+/Na+ 

ratio on the one hand, and salt tolerance, on the other hand, suggesting the use of these 

parameters as indices to screen salt tolerance potentials among genotypes [1,43,52–54]. In our 

results, ‘Tamellalet’ and ‘Taffa’ were characterized by relatively higher proline, K+, and ratio 

K+/Na+ but lower values of Na+. This suggests their salt stress resistance as compared to the 

remaining varieties. In contrast, ‘Oussama’ and ‘Amira’ were relatively salt-sensitive because 

of lower levels of proline, Na+, and K+/Na+ ratio but a higher Na+ content. Suppose we consider 

the K+/Na+ ratio as a criterion to assess salt stress tolerance, as suggested by Widodo et al. 

(2009), Somasundaram et al. (2019), and Vasilakoglou et al.(2021) [38,43,55]. Both 

‘Laanacer’ and ‘Adrar’ could be considered the most resistant varieties because of their 

relatively higher recorded values in the K+/Na+ ratio. Correlations among different ions (Na+, 

K+, and K+/Na+ ratio) and among these ions and other induced salt stress metabolites like amino 

acids (including proline) were investigated previously. Such associations could be ascribed to 

genes linkage or pleiotropic effects between genes that encode these traits [36,50,56–58]. 

PCA was proved to be an efficient discriminative tool [59–65]. It was used as a 

multivariate statistical approach to discriminate among treatments and varieties. Several 

authors have used this tool for the same purpose in barley and other crops [11,38,42,66–81]. 

Our data variability was explained mainly by the two first components, as we indicated in the 

results’ section. The first component was environmental, allowing a better separation of 

treatments (salt stress and control). In contrast, the second component is separated among 

varieties (genotypic component). 

4. Conclusions 

We evaluated biochemical responses of six Moroccan barley varieties grown under salt 

stress conditions. Data variability was mainly associated with the treatment effects, while 

genotypic effects were significant for different measured biochemical parameters. Salt 

treatment-induced proline accumulation and significant Na+ content increase, while there were 

significant declines in terms of different chlorophyll fractions, K+, and K+/Na+ ratio. Wide 

genotypic variations were revealed among all studied varieties. From these results, ‘Tamellalet’ 

and ‘Taffa’ had relatively higher proline, K+ contents, and higher K+/Na+ ratio, but these 

varieties showed lower Na+ values, which could be linked to their salt stress resistance. In 

contrast, ‘Oussama’ and ‘Amira’ were relatively salt-sensitive because of lower proline levels, 

Na+ contents, and K+/Na+ ratio, coupled with higher Na+ content. Considering the K+/Na+ ratio 

as a criterion to assess salt stress tolerance, both ‘Laanaceur’ and ‘Adrar’ could be considered 

the most resistant varieties because of their relatively higher K+/Na+. Further investigations are 

needed to investigate the effects of salt constraint on phenology, yield, and grain quality in 

these varieties. 
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