
 

https://biointerfaceresearch.com/ 3332 

Review 

Volume 12, Issue 3, 2022, 3332 - 3347 

https://doi.org/10.33263/BRIAC123.33323347 

 

In vitro Methods to Study Antioxidant and Some 

Biological Activities of Essential Oils: a Review 

Nesrine Benkhaira 1 , Saad ibnsouda Koraichi 1 , Kawtar Fikri-Benbrahim 1,*  

1 Laboratory of Microbial Biotechnology and Bioactive Molecules, Sciences and Technologies Faculty, Sidi Mohamed Ben 

Abdellah University, B.P. 2202 Imouzzer Road, Fez, Morocco; nesrine.benkhaira@usmba.ac.ma (N.B.); 

saad.ibnsouda@usmba.ac.ma (S.I.K.); 

* Correspondence: kawtar.fikribenbrahim@usmba.ac.ma (K.F.B.);  

Scopus Author ID 55622411600 

Received: 8.06.2021; Revised: 20.07.2021; Accepted: 24.07.2021; Published: 8.08.2021 

Abstract: As essential oils (EOs) represent a new source of efficient and safe agents for health 

nowadays, the present review brings together the in vitro methods widely used to evaluate the 

antioxidant and some biological activities especially, antidiabetic, anticancer, antimicrobial, and anti-

inflammatory activities of EOs, in order to valorize these EOs and to highlight their potential benefits. 

Moreover, each method cited is along with its aim, principle, advantages and limitations, experimental 

protocols, and notes. Hence, this review will help researchers working on EOs, to save time while 

accessing this summary document on the one hand, and on the other hand, it will contribute to scientific 

approval of in vitro antioxidant and biological effects of EOs for future useful purposes. 
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1. Introduction 

Currently, therapeutic drug failure (DTF) becomes a major public health challenge. 

This is due to the inefficiency of synthetic drugs, especially synthetic antioxidants [1,2], 

antibiotics [3], chemotherapeutic agents [4], anti-inflammatory, and antidiabetic drugs, which 

also cause serious side effects [5] such as liver and kidney toxicity, hypoglycemia, heart 

problems, and gastrointestinal reaction [6]; thus, an urgent need to develop new, better, and 

safer natural agents to fight against DTF[7]. 

Indeed, natural products are nowadays considered as a potential source for discovering 

new and efficient agents without side effects, especially EOs, from aromatic and medicinal 

plants[8–10]since they are used in healing therapies, in particular, aromatherapy [11]; a natural 

way to heal a person’s body, mind, and soul through EOs [12,13].  

Besides, EOs have a complex and variable composition resulting in many 

pharmacological properties[11,14,15], which allows them to be involved in the management 

of various diseases, such as cancer, microbial infections[16–18], diabetes, and chronic 

inflammation [19]. They can also combat oxidative stress [19], eventually leading to the above-

mentioned diseases and affecting food quality [20].   

Therewith, it is necessary to target the right methods and techniques to evaluate the 

biological activities of EOs, whether in vitro or in vivo. Except that in vitro methods are simpler 

in their applications which makes them more feasible. They provide reliable results in a short 

time and avoid the use of animals [21].  
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In this context, this review aims to collect and describe in detail the most common in 

vitro techniques for evaluating antioxidant, antimicrobial, anti-inflammatory, antidiabetic, and 

anticancer properties of EOs. The present review could also serve as a guiding document for 

researchers working on EOs. This study reports for the first time the different in vitro 

techniques aimed at evaluating the biological activities of EOs. 

2. Evaluation of antioxidant activity 

2.1. 2,2-DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) assay. 

The DPPH test measures the ability of an antioxidant compound to act as a hydrogen 

donor or free radical scavenger. It is based on reducing the violet DPPH to stable pale yellow 

DPPH molecules in the presence of an antioxidant agent.  

The DPPH test is simple, rapid, and reliable; however, it is sensitive to some Lewis 

bases and requires organic solvents and non-physiological radicals [22–25]. The DPPH test 

protocol is schematized below (Figure 1), according to the method described by Shimamura et 

al. [26]. 

 
Figure 1. Experimental protocol of DPPH assay to assess the antioxidant activity of EOs. 
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Note: The DPPH radical scavenging activity of the test sample is expressed as the TEAC. The 

higher TEAC means the higher DPPH radical scavenging activity. Trolox is used as positive 

control; its IC50 is determined by DPPH assay. The assay is repeated three times [26,27].  

2.2. ABTS (2,2′-azinobis-(3-ethylbenzthiazolin-6-sulfonic acid)) assay. 

The ABTS or TEAC assay measures the ability of an antioxidant to stabilize the ABTS 

radical cation (ABTS ·+) by an electron transfer mechanism. The ABTS ·+ is a green-blue 

chromophore produced through a reaction between ABTS and potassium persulfate (K2S2O8). 

Indeed, the degree of discoloration is proportional to the ABTS ·+ inhibition [29]. 

The ABTS assay is rapid, easy, and useful for both hydrophilic and lipophilic 

compounds. It can also be studied over a wide range of pH values. However, it is limited by 

the use of non-physiological radicals and the careful monitoring of time intervals [13,29]. The 

ABTS test protocol (Figure 2) is shown below, according to the method described by Kokina 

et al. [29] and Zhou et al. [30]. 

 
Figure 2. Experimental protocol of ABTS assay to assess the antioxidant activity of EOs. 

Note: The ABTS ·+ chromophore has three absorption maxima at wavelengths of 645, 734, and 

815 nm. Trolox is used as standard, and results are expressed in mmol Trolox equivalents per 

liter of EO. All measurements are performed in triplicate [29–30].  
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2.3. FRAP (Ferric reducing antioxidant power) assay. 

The FRAP assay is based on the reduction of ferric tripyridyltriazine complex (Fe3+-

TPTZ) to blue-colored ferrous tripyridyltriazine complex (Fe2+-TPTZ) at low pH through 

electron-donating antioxidants [31].  

The FRAP assay is simple, inexpensive, fast, and reproducible. Despite that, this assay 

is carried at non-physiological pH and does not measure all groups containing antioxidants, 

such as the sulfhydryl group; thus, it cannot necessarily reflect the entire antioxidant activity 

of a test sample [25]. Below, the FRAP test protocol (Figure 3) described by Benzie & Strain 

[32] and modified by Pulido et al. [33]. 

 
Figure 3. Experimental protocol of FRAP assay to assess the antioxidant activity of EOs. 

Note: EC1 means the concentration of the antioxidant having a ferric reducing power 

equivalent to that of 1 mM of FeSO4-7H2O, determined by the corresponding regression 

equation. The results are expressed in µM equivalent to FeSO4-7H2O [34].  

3. Evaluation of anti-inflammatory activity 

3.1. Nitric oxide (NO) production assay. 

The measurement of NO production is a method to assess the anti-inflammatory 

properties of EOs through measurement of the NO· accumulation in a culture medium using 

the Griess reaction; thus, a low concentration of NO· reveals an anti-inflammatory activity of 

the sample tested [35].  

The NO production assay is greatly sensitive and reproducible with rapid analysis time. 

However, it is not suitable for monitoring NO in real-time. Moreover, careful control 

experiments must be performed to distinguish basal Nitrite (NO2
−) levels from those that arise 

from actual changes in NO concentration [36]. The assay protocol, according to Borges et 

al.[35], is described below (Figure 4). 
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Figure 4. Experimental protocol of NO production assay to assess the anti-inflammatory activity of EOs. 

Note: The cell lines widely used are Macrophages J774A1 and RAW 264.7 cells [35]. The 

DMEM represents the suitable culture medium containing the necessary nutrients and growth 

factors for cell lines. Griess reagent is prepared by mixing equal volumes of stock solutions of 

chloride-1-ethylenediamine (C12H16Cl2Na2) dissolved at 0.1% in phosphoric acid (H3PO4) 5% 

and sulfanilamide (C6H8N2O2S) dissolved at 1% in H3PO4 (5%). All experiments are performed 

in triplicate [37,38]. 

3.2. Cyclooxygenase (COX) inhibition assay. 

There are two isoforms of COX in mammals; a constitutive form (COX-1) and an 

inducible form (COX-2), which is responsible for the dramatic increase of prostaglandins (PGs) 

in pathological conditions [40-43]. Therefore, the inhibition of COX activity will prevent the 

conversion of AA to Prostaglandin H2 (PGH2), hence the inflammation prevention [44]. 

The prostaglandin E2 enzyme-linked immune-sorbent assay (PGE2 ELISA) is the most 

used test to detect COX inhibition as long as it is very sensitive, suitable for automation, and 
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ideal for the rapid screening of wide chemical agents [43]. The only drawback is that the assay 

does not discriminate between the activities of different COX isoforms [45]. 

This assay is based on the competition between PGs and a PG-acetyl cholinesterase 

conjugate for a limited amount of PG antiserum [44]. Figure 5 summarizes the protocol 

described by Walker and Gierse [41] and Chandrakanthan et al. [45]. 

 
Figure 5. Experimental protocol of COX inhibition assay to assess the anti-inflammatory activity of EOs. 

Note: The amount of PGE2 produced is expressed as a percentage relative to the positive and 

negative controls. The positive control contains DMSO without sample, and the negative 

control contains DMSO without AA [43]. 

3.3. Lipoxygenase (LOX) inhibition assay. 

The LOX enzyme converts arachidonic acid or linoleic acid into various fatty acid 

metabolites involved in inflammation [47]. Therefore, the inhibition of LOX activity is 

important to prevent inflammatory diseases [48].  

The spectrophotometric method is the most used to identify new LOX inhibitors since 

it is sensitive and rapid. Nevertheless, the reagents could rapidly oxidize, leading to an 

increasingly dark background. Also, the spectrophotometric readings must be precisely timed 

to quantify activity [47-49]. 

This assay is based on the enzymatic conversion of linoleic acid to conjugated dienes 

resulting in an increase in absorbance at 234 nm. The test protocol used by Njenga and Viljoen 

[47] is summarized in the diagram below (Figure 6). 
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Figure 6. Experimental protocol of LOX inhibition assay to assess the anti-inflammatory activity of EOs. 

Note: Nordihydroguaiaretic acid (NDGA) can be used as a positive control, while the DMSO 

can serve as a negative control (no enzyme inhibition). The test is performed in triplicate 

[47,48]. 

4. Evaluation of anticancer activity 

4.1. MTT(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. 

The MTT assay is used to assess the in vitro cytotoxic and antiproliferative activity of 

EOs. It is a colorimetric assay that measures the formazan product (dark purple) formed 

through the reduction of MTT (yellow dye) by active cells [50]. A high absorbance rate 

indicates an increase in cell proliferation and vice versa [51]. 

Although the MTT assay is rapid and economical, it has some limitations, such as the 

evaporation of volatile solvents and the instability of the formazan’s signal. The MTT assay 

protocol described by Russo et al. [51] is presented below (Figure 7). 

 
Figure 7. Experimental protocol of MTT assay for assessing EOs anticancer activity. 
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Note: The cytotoxicity is expressed as IC50. Doxorubicin can be used as a positive control. The 

cell lines used in this protocol are from melanoma cancer: A375, M14, and A2085. Their 

respective suitable mediums are: DMEM supplemented with 10% fetal calf serum (FCS), 2.0 

mM L-glutamine, 100 U/mL of penicillin, 100 µg/mL of streptomycin, and 25 µg/mL of 

fungizone; The Roswell Park Memorial Institute (RPMI) medium supplemented with 10% 

FCS, 100 U/mL penicillin, 100 µg/mL streptomycin, 25 µg/mL fungizone, and DMEM 

supplemented with 10% FCS, 2.0 mM L-glutamine, 100 U/mL penicillin, 100 µg/mL 

streptomycin, and 2 mM of nonessential amino acids. The experiment is conducted in triplicate 

[52]. 

4.2. Caspase-3 activity assay. 

 Caspase-3 is an intracellular cysteine protease. Its activation is known to trigger 

apoptosis [53]. As caspase-3activity prevents tumorigenesis [54], it is necessary to test the in 

vitro effect of natural products on caspase-3of cancer cells. This assay is based on p-nitroaniline 

(pNa) monitoring, which is released during the cleavage of a caspase-specific peptide by the 

caspase-3. pNA can be quantified at 405 nm [53,58]. This assay is a valuable, reliable, and 

time-saving technique for apoptotic studies. However, it is not quantitative; so, the resulting 

lysate cannot be used for downstream assays. Moreover, determining the appropriate timing to 

assay caspase activity can take some effort [55]. The diagram below (Figure 8) represents the 

protocol of caspase-3 activity assay described by Jamali et al. [57] and Szkoda [58].  

 
Figure 8. Experimental protocol of Caspase-3 activity assay to assess the anticancer activity of EOs. 
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Note: The color reaction is directly proportional to the level of caspase enzymatic activity. 

Thymol and doxorubicin can be used as a positive control. The dithiothreitol (DTT), or EDTA 

can be used as assay buffers as well as cell lysis buffers. Among cancer cell lines used in this 

essay are M624 melanoma cells and human mammary carcinoma cell lines; MDA-MB-231, 

MCF-7. Their suitable media are respectively : DMEM supplemented with 10% FBS and 1% 

penicillin/streptomycin, and RPMI supplemented with 10% FBS and 1% antibiotics (100 U/mL 

penicillin and 100 µg/mL streptomycin) [56-58].   

5. Evaluation of antidiabetic activity 

5.1. α-amylase and α-glucosidase inhibition assays. 

α-amylase is a pancreatic enzyme that catalyzes the oligo and/or disaccharides into 

monosaccharides in the digestive system, while α-glucosidase is an intestinal enzyme that 

hydrolyzes complex carbohydrates as starch to mere glucose molecules, which cause an 

increase in postprandial blood glucose levels [59,60]. Hence, the α-amylase and α-glucosidase 

inhibition present a significant way to reduce blood glucose levels in the case of diabetes 

[61,62].  

These assays are simple, reliable, and rapid; however, they require careful reagents 

preparation given their high sensitivity. Also, the turbidity resulting from enzymes' starch 

digestion may be a limitation of these tests [63]. Below, the test protocols of α-

amylase inhibition assay (Figure 9) and α-glucosidase inhibition assay (Figure 10)  described 

respectively by Bernfeld  [64] and Oboh et al.[65]. 

 
Figure 9. Experimental protocol of α-amylase inhibition assay to assess the antidiabetic activity of EOs. 

Note: α-amylase inhibition is expressed as a decrease in units of reducing sugar (maltose 

equivalent) in (µg/mL). DNS is prepared by mixing 12 g of sodium potassium 

tartrate tetrahydrate in 8 mL of 2 M sodium hydroxide (NaOH), and 96 mM DNS solution. 

The assay buffer is prepared by mixing 20 mM Sodium phosphate buffer with 6.7 mM Sodium 

chloride (NaCl), (pH=6.9). Negative control contains DMSO and assay buffer instead of EO. 

The positive one contains acarbose instead of EO. The assay is carried out in triplicate 

[64,66,67]. 
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Figure 10. Experimental protocol of α-glucosidase inhibition assay to assess the antidiabetic activity of EOs. 

Note: The absorbance of the resulting p-NP is directly proportional to the enzyme activity and 

the test was performed in triplicate [68]. Negative control contains DMSO, substrate, and 

enzyme. While positive control contains acarbose instead of EO [65,66]. 

6. Evaluation of antimicrobial activity 

6.1. Broth dilution method (BDM). 

The BDM is the most suitable in vitro test to determine antimicrobial agents' minimal 

inhibitory concentration (MIC). The MIC is the lowest concentration of an antimicrobial agent 

to inhibit the growth of a microorganism [69,70]. This method includes broth macro and micro 

dilutions [71].  

The broth microdilution method is the most used since it is simple, economical, 

effective, and reproducible. Nevertheless, the method procedure must be carefully controlled 

to obtain reproducible results [72].  

Figure 11 explains the experimental protocol of the broth microdilution method 

described by Balouiri et al. [73] and Nascente et al. [70] according to the clinical and laboratory 

standards institute (CLSI). 

 
Figure 11. Experimental protocol of broth microdilution method to assess the antimicrobial activity of EOs. 

https://doi.org/10.33263/BRIAC123.33323347
https://biointerfaceresearch.com/


https://doi.org/10.33263/BRIAC123.33323347  

https://biointerfaceresearch.com/ 3342 

Note: This test requires Mueller Hinton broth (MHB) as a culture medium for bacteria and 

Yeast Extract Peptone Glycerol (YPG) for yeasts. The final inoculum sizes required for 

bacteria and yeasts are 5.105 CFU/mL and (0.5–2.5) ×103 CFU/mL, respectively. Column 12 

is reserved as a positive control of growth. The MIC is expressed in µg/mL or mg/L. The BDM 

can also determine the minimum lethal concentration (MLC), defined as the lowest 

concentration killing 99.9% of the final microbial inoculum. The MLC is determined by sub-

culturing the sample concentration (that does not show any microbial growth in wells) on the 

agar plate surface. Then, the number of surviving cells (CFU / mL) is counted after incubation 

for 24h [71-73]. 

6.2. Disc diffusion method (DDM).  

DDM or Kirby-Bauer method tests the sensitivity of certain pathogenic bacteria and 

yeasts to the tested antimicrobial agents [81]. In this method, the antimicrobial agent diffuses 

from the filter paper disk to the agar surface, which contains the test microorganism. If there is 

an antimicrobial activity, an inhibition zone (IZ) will be developed around the disk after 

incubation [74,75].  

The DDM is a simple, inexpensive, and standardized technique that tests enormous 

numbers of microorganisms and antimicrobial agents, with easy interpretation of the results 

provided. However, this method does not determine the MIC and cannot distinguish 

bactericidal and bacteriostatic effects. The recommended experimental protocol for the DDM 

(Figure 12), according to Singh et al. [76] is presented below. 

 
Figure 12. Experimental protocol of Disc Diffusion method to assess the antimicrobial activity of EOs. 
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Note: Some antibiotics can be used as reference controls for the bacteria tested, such as 

ampicillin, chloramphenicol, and streptomycin at the desired concentration per disk. The 

culture medium used for the yeasts is MHA supplemented with 2% of glucose and 0.5 mg/mL 

of methylene blue. Regarding the incubation conditions, the temperature used for bacteria and 

yeast is 35 °C, and the incubation time required for bacteria is 16-18h and for yeast is 20-24 h. 

The final inoculum size is adjusted to 0.5 McFarland, corresponding to (1–2) 108 CFU / mL 

for bacteria and (1–5)106 CFU / mL for yeasts [76-78]. 

7. Conclusions 

The present review gathers the suitable in vitro methods to test antioxidant and some 

biological properties of EOs, particularly antidiabetic, antimicrobial, anticancer, and anti-

inflammatory activities to highlight their therapeutic potential and create a guiding document 

for researchers working on EOs. Indeed, the in vitro methods indicated are simple, fast, 

reproducible, sensitive, inexpensive, and avoid animals use. However, they have some 

common limitations, particularly the demand of high concentrations to avoid errors, the 

monitoring of time interval, volatility ad solubility of the used solvents, the risk of 

contamination, and repeat experiments. Ultimately, studies showed that EOs are excellent 

sources of bioactive natural compounds with many pharmacological and biological properties 

beneficial for health and the environment. Therefore, studying the EOs bioactivities, action 

modes, and bioactive molecules is necessary to detect new therapeutic properties and new 

efficient agents for application in the medical and pharmaceutical field. Besides, EOs could 

represent a source of biopesticides and biodetergents, contributing to protecting the 

environment; hence the interest in the scientific evaluation of their biological properties via in 

vitro and in vivo methods. 
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