Platinum Open Access Journal (ISSN: 2069-5837)

Improving the Inhibition of TMPRSS2 by Molecular Docking, to Decrease the Process Infection of SARS-CoV-2

José Luis Vique-Sánchez^{1,*}

¹ Medical School, Campus Mexicali, Autonomous University of Baja California, BC, México

* Correspondence: jvique@uabc.edu.mx (J.L.V.-S.);

Scopus Author ID 57195635710 Received: 23.07.2021; Revised: 15.09.2021; Accepted: 18.09.2021; Published: 16.10.2021

Abstract: COVID-19 pandemic continues with several works focused on the repositioning of drugs, vaccines, and antibodies against COVID-19, as well as new therapeutic targets on the cellular membrane (ACE2, NRP1, and TMPRSS2) that interacting with SARS-CoV-2 S-protein. This study proposes ten compounds (T1 - T10) selected by molecular docking using a library of nearly 500,000 compounds, these ten compounds have better interaction than Daclatasvir, Ombitasvir, Camostat, Edoxaban, NCGC00386477, Nafamostat, NCGC00386945, Otamixaban, Darexaban, Gabexate, Letaxaban, Argatroban, Sivelestat, NCGC00385043, and Bromhexine, and all of them have an inhibitory effect reported at TMPRSS2. The T1 - T10 compounds were selected by molecular docking in the catalytic site of TMPRSS2, which could hinder/block the interaction with the S-protein and ACE2. Therefore the initial/early stage of COVID-19 could be avoided or decreased by hindering the fusion between SARS-CoV-2 and the cell membrane and this way to develop a new adjuvant treatment against COVID-19.

Keywords: TMPRSS2 inhibitors; docking; ACE2; SARS-CoV-2.

© 2021 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

COVID-19 pandemic has caused about 198 million infections and 4 million deaths (July 30, 2021) [1]; COVID-19 causes a wide range of signs and symptoms, mainly respiratory and even deaths [2 - 5]. Different therapeutic targets have been proposed to develop new antivirals, as the polyproteins 3-chymotrypsin like protease (3CLpro) and papain-like protease (PLpro), RNA-Dependent RNA Polymerase (RdRp) [6 - 8], membrane fusion inhibitors heptad repeat 1 and 2 (HR1 and HR2) of Spike protein (S-protein) of SARS-CoV-2 [9 - 15], and receptors or proteins in the cell membrane as angiotensin-converting enzyme 2 (ACE2) [16 - 21], neuropilin-1 (NRP1) [7, 22, 23], or the trans-membrane protease serine 2 (TMPRSS2) [24], due to these proteins can help to virus to introduce its genetic material and contribute in the infectious process of SARS-CoV-2 [25, 26]. Moreover, several works repurposed treatments with potential effect against COVID-19 [27, 28], and performing docking for drug repositioning and/or with compound libraries to search inhibitors between the S-protein and its receptors [10, 29 - 32].

In this study, TMPRSS2 was the chosen therapeutic target, as it is an important protein for the metabolic process of SARS-CoV-2. It is on the cell surface, expressed mainly in aerodigestive tissue, and the functions of TMPRSS2 are not yet fully described. Moreover, an

increase in its expression has been identified in prostate cancer tumor cells (metastasis and spread) [33], with changes in its expression levels at different people [34, 35].

The TMPRSS2 has functions for that the SARS-CoV-2 can introduce its genetic material through membrane fusion [26, 33], and the main amino acids have been reported for the interaction with ACE2 [34, 35], as well as it is also proposed that the TMPRSS2 has an interaction with the S-protein (in the cleavage of the S-protein) [36, 37]; the S-protein can be cleaved, and the fusion process with the cell membrane can be favored, which allows the entry of the viral genome [38 - 42], this process has been related in tissues in which there is more expression of TMPRSS2 in the cell membrane (lung tissue) [36, 39].

On the other hand, the development of vaccines/antibodies has been developing [43 - 46]. However, there are reports of mutations at different proteins in the SARS-CoV-2 that could difficult their effectivity [46, 47], for example, in the S-protein of SARS-CoV-2 (December 2020) that could increase the infectious process and decrease the effect of vaccines [48 - 53].

This study uses reference compounds/drugs that have a therapeutic effect in other diseases, mainly cancer, but that has an inhibitory effect on TMPRSS2 and could generate a therapeutic effect on COVID-19 [38 - 42, 54, 55]. Therefore, it is possible to develop a drug with a therapeutic target in the catalytic site of TMPRSS2 that would have better therapeutic effects against COVID-19. For that, this study proposes to carry out a molecular docking (using almost 500,000 compounds) to select compounds capable of interacting in the catalytic site of TMPRSS2, to decrease the interaction between TMPRSS2 and S-protein, and generating a reduction in the entry of the virus into cells, to propose compounds to develop a new drug against SARS-CoV-2.

2. Materials and Methods

2.1. The homology model of TMPRSS2.

The homology model of TMPRSS2 was built using the SWISS-MODEL server [56]. The transmembrane trypsin-like serine protease hepsin (TMPRSS1, PDB 1Z8G [57]) was used as the template structure with 24.5 % of identity in the residues of TMPRSS2 (P05981 Heps_Human vs. O15393 TMPS2_Human [58]), and the catalytic sites are highly conserved. The three-dimensional modeled structure was validated by uploading on the RAMPAGE and SAVES 6.0 web servers [59].

2.2. Preparation of receptor protein and selection of the binding site.

Atomic coordinates of the model generated of TMPRSS2 was used (the PDB 1Z8G was used as the template structure), the catalytic site in the TMPRSS2 was used as the target for molecular docking using Molecular Operating Environment (MOE), following procedures previously reported [16, 23, 60, 61]. Thus, the potential site is between His296, Glu299, Asp435, Ser436, Cys437, Gln438, Ser441, Gly462, Ser463, and Gly464 amino acids, the catalytic site region in TMPRSS2 [38, 40, 55].

2.3. Compound library used, and drugs/compounds against TMPRSS2 reported for molecular docking.

The EXPRESS-pick Collection Stock screening library (Chembridge Corp. [62]) was used for molecular docking. This collection of compounds druggable contains 502530 that

fulfill Lipinski's rules [63, 64] and cover a broad area of chemical compound space, as well as the structure of ombitasvir, daclatasvir [42], otamixaban, argatroban, letaxaban, darexaban, edoxaban [39], NCGC00385043, NCGC00386945, NCGC00386477, bromhexine [38, 40, 41, 54], camostat, nafamostat, gabexate and sivelestat [55] to evaluate the interaction with TMPRSS2 [32].

2.4. Molecular docking.

For molecular docking, up to 100 conformers were generated from each compound to interact with the potential binding site (compound library and drugs/compounds against TMPRSS2), following procedures previously reported [16, 23]. High-throughput virtual molecular docking was carried out by the software MOE and the analysis of ligand interaction per residue at MOE, AutoDockTools [65], and Protein-Ligand Interaction Profiler [62, 66 - 68].

2.5. Selection of the best ten compounds.

To select the best ten compounds, the results of up to 30 conformers from each compound were used to select them. It was determining the binding free energy (Δ Gbinding) of each complex (Ligand-Protein), as previously reported [16, 23] using MOE [69, 70]. With these results, the best averages Δ Gbinding were determined between TMPRSS2 with each compound, as well as the standard deviation for each one, using the Excel software (Microsoft-365), the description of chemical properties by PhysChem - ACD/Labs [71], and the theoretical toxicity (carcinogenicity and mutagenicity) [72 - 74].

3. Results and Discussion

3.1. Selection of compounds by Molecular Docking.

It was used the Express-pick Collection library from Chembridge Corp. [62] with 502530 compounds, and up to 100 conformers from each compound interacting in the catalytic site in TMPRSS2 (the region between amino acids His296, Glu299, Asp435, Ser436, Cys437, Gln438, Ser441, Gly462, Ser463 and Gly464, Figure 1) for molecular docking, as is reported [16, 23], the selection criteria of the best ten compounds was based on the calculation of the average of Δ Gbinding of each compound, using the values of conformers (27 to 30 conformers), determining an average range from -7.94 to -8.19 kcal mol⁻¹ for the best ten compounds (Table 1, and details on the supplementary material Table S1). Ten compounds were selected, called here as T1 to T10, and the analysis of the interaction of each compound with TMPRSS2 was carried out with the interaction report (Table 2 and details in Table S1 -S11). Also, it was determined the average interaction for main drugs/compounds reported to interact with TMPRSS2 (ombitasvir, daclatasvir [42], otamixaban, argatroban, letaxaban, darexaban, edoxaban [39], NCGC00385043, NCGC00386945, NCGC00386477, bromhexine [38, 40, 41, 54], camostat, nafamostat, gabexate and sivelestat [55]), with an average of Δ Gbinding between -5.87 kcal mol⁻¹ and -3.99 kcal mol⁻¹ (interaction details in Table S1 and S12 – S26). All averages of Δ Gbinding calculated are related to the number of interactions generated by the conformers analyzed from the molecular docking results (Table 3). It is shown that the T1 - T10 compounds interact more frequently with the amino acids Val280, His296, Gly439, and Cys465.

In addition, the description of the theoretical toxicity (Table S27), ADME characteristics (Table S28), and chemical properties of each compound (T1 - T10, Table S29), are presented in the supplemental material.

Figure 1. TMPRSS2 (Green) shows amino acids His296, Glu299, Asp435, Ser436, Cys437, Gln438, Ser441, Gly462, Ser463, and Gly464 (Pink) as regions chosen for molecular docking.

 Table 1. PubChem CID, ID Chembridge Corp./Name and Structure of the best ten compounds, T1 to T10 and main compound/drugs reported against TMPRSS2.

Table 2. PubChem CID, Canonical SMILES, Interaction with residues in TMPRSS2, Number of conformers used, Δ Gbinding average (kcal mol⁻¹) with standard deviation (SD), Ames test and strain used (positive or

PubChem CID Canonical SMILES Interaction with residues in TMPRSS2 (Table S2 – S26), in bold it is of greater interaction. Number of conformers Average of Guidming and SD Pre-ADMET Amestet and LD ₂₀ T1 2848720 CCN(CC)C1=CC=C(C=C1)C =-NNC(=0)COCC(=0)NCC C2=CC=C(C=C2)N(CC)CC His296, Asn336, Ser436, Cys437, C1+2439, Gly462, Gly464, Cys465 29 -8.19 ± 0.83 Mutagen T2 2848720 CCN(CC)C1=CC=C(C=C1)C C2=CC=C(C=C2)N(CC)CC His296, Asn336, Ser436, Cys437, Gly462, Gly464, Cys465 29 -8.19 ± 0.83 Mutagen T2 5650548 CC1=C(C=CC)C=C1)CC= N=CC=C3C4=O)C Val280, His296, Sar436, Glu439, CC(=O)N=CC4=C0C5=CC= Sar436, Glu439, Sar436, Glu299, CC=C)CC1=C(N=CC)C(C=CC)C=C4 CU=C3C2=NN=C(N2CC= CU=C3C=NA=C(N2CC=C)C3 Sar436, Glu299, CC1=C0CC=C0C1=C(N=CC)C1 CU=C3C3=NA=C(N2CC=C)C2 Sar436, Glu299, CU=C3C3=NA=C(N2CC=C)C3 Sar436, Glu299, CU=C3C3=NA=CC=CCCC34 Sar436, Glu299, CU=C3C2=NA=C(N2CC=C)C2 Sar436, Glu439, CU=C3C2=NA=C(N2CC=C)C2 Sar436, Glu439, CU=C3C2=CN=C(S2NC(C)C0) CU=C3C2=NA=C(N2CC=C)C3 Sar436, Glu438, CU=Q10, C1=CC=CC(C=C1)[N=C)C Sar436, Sar436, Clu444, Cy4405 -7.09 ± 0.59 Mutagen T4 C1=CC=CCC=C1)[N=CC=C2C] Sar436, Sar436, Clu444, Cy4405 Sar436, Sar436, Clu444, Cy4405 -7.99 ± 0.59 Mutagen T4 C1=CC=CCC=C10[N Sar345, Sar436, Clu444, Cy4405 -7.99 ± 0.59 Mutagen T4 C1=CC=CCC=C1			negative) and LD50	[72,74].	i.	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	PubChem CID	Canonical SMILES	Interaction with residues in TMPRSS2 (Table S2 – S26), in bold it is of greater interaction.	Number of conformers	Average of $\Delta G_{binding}$ and SD	PreADMET Ames test and LD ₅₀ -TA100_10RL -TA100_NA -TA1535_10R -TA1535_NA Predicted LD ₅₀
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	T1 2848720	CCN(CC)C1-CC-C(C-C1)C	Uic206 Acr226	20	<u>8 10 ± 0.82</u>	mg/Kg Mutagan
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11 2040720	=NNC(=0)COCC(=0)NN=C C2=CC=C(C=C2)N(CC)CC	Ser436, Cys437, Gly439, Gly462, Gly464, Cys465	29	-0.19 ± 0.03	-Positive -Negative -Negative -Negative 5000 mg/kg
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	T2 5650548	CC1=C(C=C(C=C1)OCC2=	Val280, His296,	27	-8.10 ± 0.90	Mutagen
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		NN=C(N2C3=CC=CC=C3)S CC(=O)NN=CC4=COC5=CC =CC=C5C4=O)C	Cys297, Glu299, Ser436, Gln438, Gly439			-Positive -Negative -Negative -Negative 1500 mg/kg
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	T3 2941860	CCOC(=0)C1=C(N=C(S1)N C(=0)CSC2=NN=C(N2CC=	Val280, His296, Val298, Glu299,	27	-8.01 ± 0.68	Non mutagen
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		C)CSC3=NC4=CC=CC=C4S 3)C	Asn336, Ser436, Gly439, Gly462, Cys465			-Negative -Negative -Negative -Negative 1000 mg/kg
T5 1552161 C1=CC(=CC(=C1)[N+](=O)[O- Val280, His296, Cys297, Asn336, Ser436, Gln438, Gly439, Trp461, Gly462, Cys465 28 -7.99 \pm 0.56 Mutagen -Positive -Positive -Negative -Positive -Negative 500 mg/kg -Positive -Negative 500 mg/kg -Positive -Negative 500 mg/kg T6 2851138 CC1=CC=C(C=C1)S(=O)(=O) NC2=CC=C(C=C2)C3=CSC (=N3)N4C(CC(=N4)C5=CC= Val280, His296, Gly439, Gly464 27 -7.99 \pm 0.81 Non mutagen -Negative -Negative https://biointerfaceresearch.com/ Mutagen -Negative -Negative	T4 2194374	CN1C(=NN=C1SCC(=O)NC 2=NC(=CS2)C3=CC=CC=C3)CNC(=O)C4=CC(=CC=C4)[N+](=O)[O-]	Val280, His296, Glu299, Leu302, Asn336, Ser436, Cys437, Gly439, Gly462, Glu464, Cys465	30	-7.99 ± 0.59	Mutagen -Positive -Positive -Positive -Negative 1000 mg/kg
T6 2851138 CC1=CC=C(C=C1)S(=O)(=O) Val280, His296, 27 -7.99 \pm 0.81 Non mutagen NC2=CC=C(C=C2)C3=CSC Glu299, Ser436, Glu299, Ser436, -Negative https://biointerfaceresearch.com/ 4785	T5 1552161	C1=CC(=CC(=C1)[N+](=O)[O-])CC2=CN=C(S2)NC(=O)CN 3C(=O)C(=CC4=CC=C(C=C 4)Br)SC3=S	Val280, His296, Cys297, Asn336, Ser436, Gln438, Gly439, Trp461, Gly462, Cys465	28	-7.99 ± 0.56	Mutagen -Positive -Negative -Positive -Negative 500 mg/kg
https://biointerfaceresearch.com/	T6 2851138	CC1=CC=C(C=C1)S(=O)(=O)NC2=CC=C(C=C2)C3=CSC (=N3)N4C(CC(=N4)C5=CC=	Val280, His296 , Glu299, Ser436, Gly439, Gly464	27	-7.99 ± 0.81	Non mutagen -Negative
	https://	/biointerfaceresearch.com/				4785

PubChem CID	Canonical SMILES	Interaction with residues in TMPRSS2	Number of conformers	Average of $\Delta G_{\text{binding}}$ and SD	PreADMET Ames test and LD ₅₀
		(Table S2 – S26), in bold it is of greater interaction.			-TA100_10RL -TA100_NA -TA1535_10R -TA1535_NA Predicted LD ₅₀ mg/kg
	C(C=C5)F)C6=CC=C(C=C6) C(C)C				-Negative -Negative -Negative 1000 mg/kg
T7 2193836	CC1=C(N=C(S1)NC(=O)CS C2=NN=C(N2C)CNC(=O)C3 =CC(=CC=C3)[N+](=O)[O-])C4=CC=CC=C4	Val280, His296 , Glu299, Asn336, Lys390, Gln438, Gly439 , Gly462	28	-7.97 ± 0.80	Mutagen -Positive -Positive -Negative -Negative 1000 mg/kg
T8 5722665	COC1=CC=CC=C1C=C2C(= O)N(C(=S)S2)CCC(=O)NCC NC(=O)CCN3C(=O)C(=CC4 =CC=CC=C4OC)SC3=S	Val280, His296 , Cys297, Glu299, Leu302, Lys390, Gly391, Cys437, Gln438, Gly439 , Trp461, Gly462, Cys465, Lys467	30	-7.96 ± 0.76	Mutagen -Negative -Negative -Negative -Negative 350 mg/kg
T9 1314888	CC1=C(N=C(S1)NC(=O)CS C2=NN=C(N2C)COC3=CC= C(C=C3)C(C)C)C4=CC=CC =C4	Val280, His296, Cys297, Glu299, Asn336, Cys437, Gly439, Gly464, Cys465	28	-7.95 ± 0.81	Mutagen -Negative -Negative -Positive -Negative 1000 mg/kg
T10 2193905	CCN1C(=NN=C1SCC(=O)N C2=NC(=C(S2)C)C3=CC=C C=C3)CNC(=O)C4=CC(=CC =C4)[N+](=O)[O-]	His279, Val280 , His296, Glu299, Asn336, Cys437, Gln438, Gly439	29	-7.94 ± 0.83	Mutagen -Positive -Positive -Negative -Negative 1000 mg/kg
Daclatasvir 25154714	CC(C)C(C(=0)N1CCCC1C2 =NC=C(N2)C3=CC=C(C=C3))C4=CC=C(C=C4)C5=CN=C (N5)C6CCCN6C(=0)C(C(C) C)NC(=0)OC)NC(=0)OC	His296, Glu299 , Gly391, Cys437, Gln438, Gly439, Cys465 , Lys467	25	-5.87 ± 0.39	
Ombitasvir 54767916	CC(C)C(C(=O)N1CCCC1C(=O)NC2=CC=C(C=C2)C3C CC(N3C4=CC=C(C=C4)C(C)(C)C)C5=CC=C(C=C5)NC(=O)C6CCCN6C(=O)C(C(C) C)NC(=O)OC)NC(=O)OC	His296, Glu299, Asn336, Gly303, Gln438, Ser463, Cys465, Lys467, Arg470	30	-5.61 ± 0.62	
Camostat 2536	CN(C)C(=0)COC(=0)CC1= CC=C(C=C1)OC(=0)C2=CC =C(C=C2)N=C(N)N	His296, Glu299 , Gly439, Ser447	24	-5.27 ± 0.54	
Edoxaban 10280735	CN1CCC2=C(C1)SC(=N2)C(=O)NC3CC(CCC3NC(=O)C(=O)NC4=NC=C(C=C4)C1)C(=O)N(C)C	Val280, His296 , Glu299 , Ser436, Gly439, Trp461, Gly462, Cys465	26	-5.24 ± 0.64	
NCGC0038647 7 10323598	CC1=C(C=CC(=C1)C2=NN= C(O2)C)C3=CC=C(C=C3)C(=O)NC4=CC(=C(C=C4)OC) N5CCN(CC5)C	Val280, His296, Glu299, Gly462, Ser463, Cys465, Lys467	25	-5.21 ± 0.52	
Nafamostat 4413	C1=CC(=CC=C1C(=O)OC2= CC3=C(C=C2)C=C(C=C3)C(=N)N)N=C(N)N	Val280, His296, Glu299, Ser436, Cys437, Gly439, Cys465	23	-5.09 ± 0.45	
NCGC0038694 5 9846928	CC1=C(C=CC(=C1)C(=N)N) C2=CC=C(C=C2)C(=O)NC3	His296, Glu299 , Ser436, Cys437,	26	-5.03 ± 0.50	

PubChem CID	Canonical SMILES	Interaction with residues in TMPRSS2 (Table S2 – S26), in bold it is of greater interaction.	Number of conformers	Average of $\Delta G_{\text{binding}}$ and SD	PreADMET Ames test and LD ₅₀ -TA100_10RL -TA100_NA -TA1535_10R -TA1535_NA Predicted LD ₅₀ mg/kg
	=CC(=C(C=C3)OC)N4CCN(Gly462, Ser463,			
Otamixaban 5496659	CC(C(CC1=CC(=CC=C1)C(=N)N)C(=0)OC)NC(=0)C2= CC=C(C=C2)C3=CC=[N+](C=C3)[O-]	Val280, His296 , Val298, Glu299 , Ser436, Cys437, Gln438, Gly439, Trp461, Gly462, Cys465	26	-5.01 ± 0.49	
Darexaban 9912771	CN1CCCN(CC1)C2=CC=C(C=C2)C(=O)NC3=C(C=CC= C3O)NC(=O)C4=CC=C(C=C 4)OC	Val280, His296 , Glu299 , Cys437, Gly439	26	-4.98 ± 0.46	
Gabexate 3447	CCOC(=0)C1=CC=C(C=C1) OC(=0)CCCCCN=C(N)N	Val280, His296, Glu299, Asn336, Ser436, Gly439	29	-4.94 ± 0.30	
Letaxaban 11641515	C1CNC(=0)N(C1)C2CCN(C C2)C(=0)C(CS(=0)(=0)C3= CC4=C(C=C3)C=C(C=C4)C1)O	Val280, His296, Glu299, Asn336, Ser436, Gln438, Gly439	26	-4.84 ± 0.50	
Argatroban 92722	CC1CCN(C(C1)C(=O)O)C(= O)C(CCCN=C(N)N)NS(=O)(=O)C2=CC=CC3=C2NCC(C 3)C	His279, Val280, His296, Glu299, Ser436, Gln438, Gly439	29	-4.75 ± 0.46	
Sivelestat 107706	CC(C)(C)C(=O)OC1=CC=C(C=C1)S(=O)(=O)NC2=CC= CC=C2C(=O)NCC(=O)O	His296, Lys390, Gly391, Cys437, Gln438, Gly439, Cys465, Lys467	26	-4.59 ± 0.46	
NCGC0038504 3 12004581	COC(=0)C1=COC(C2C1CC =C2CO)OC3C(C(C(C03)C 0)0)0)0	Val280, His296 , Ser436 , Cys437, Gly439 , Gly462	30	-4.21 ± 0.34	
Bromhexine 2442	CN(CC1=C(C(=CC(=C1)Br) Br)N)C2CCCCC2	Val280, Ser436, Cys437, Gly439	21	-3.99 ± 0.30	

Table 3. Number of interactions of each compound/drug in the residues of TMPRSS2 (Table S2 – S26), to hinder/block the Ser441 in TMPRSS2.

Compound/Drug	Val280	His296	Gly439	Cys465
T1	1	17	5	5
T2	5	21	7	0
Т3	9	12	6	2
T4	13	17	6	2
T5	9	21	8	2
T6	3	14	2	0
Τ7	4	15	9	0
T8	3	27	12	6
Т9	7	15	10	2
T10	6	18	7	0
Daclatasvir	0	5	2	10
Ombitasvir	0	10	1	2
Camostat	0	14	2	0
Edoxaban	1	18	6	2
NCGC00386477	2	5	0	2
Nafamostat	3	7	6	3
NCGC00386945	0	3	1	2
Otamixaban	3	13	3	2
Darexaban	3	7	4	1
Gabexate	3	6	5	1
Letaxaban	9	11	3	0
Argatroban	2	67	8	0
Sivelestat	0	49	8	7

Compound/Drug	Val280	His296	Gly439	Cys465
NCGC00385043	1	9	7	0
Bromhexine	3	2	4	0

3.2. Interaction of T1 - T10 compounds and other compounds/drugs previously reported against TMPRSS2.

To describe the interaction of each compound/drug in the potential site of TMPRSS2, it was analyzed up to 30 conformers from each compound interacting in the catalytic site (region between amino acids His296, Glu299, Asp435, Ser436, Cys437, Gln438, Ser441, Gly462, Ser463 and Gly464) (Figure 1). From molecular docking results, the main amino acids in TMPRSS2 are Val280, His296, Cys297, Glu299, Leu302, Lys390, Gly391, Cys437, Gln438, Gly439, Trp461, Gly462, Cys465, and Lys467 that are interacting with the T1 – T10 compounds (Table S2 - S26), and these ten compounds have a better interaction in the catalytic site, in particular, greater interaction with Val280, His296, Glu299, Gly439 and Cys465 (mainly hydrogen bonding interactions). Therefore, the probably inhibitory effect in this protease is due to the blocking of the Ser441, which is essential for the catalytic activity [38, 40, 55] (Figure 2). The molecular docking results for daclatasvir, ombitasvir, camostat, edoxaban, NCGC00386477, nafamostat, NCGC00386945, otamixaban, darexaban, gabexate, letaxaban, argatroban, sivelestat, NCGC00385043, and bromhexine showed less interaction in the catalytic site (Table 3), which could be related to a lesser effect to reduce the function of this protease. The details of the interaction between TMPRSS2 with conformers from each compound/drug are shown in the supplementary material (Figure S1 - S25).

Figure 2. Potential site with some amino acids, the Ser441, is essential for the catalytic site. A) Val280, His296, Gly439, and Ser441 (Pink) into the red circle, and B) Pocket is displayed in the catalytic site.

3.3. Discussion.

The development of specific drugs against different targets in COVID-19 continues today. This study proposes compounds with a better inhibitory effect in the TMPRSS2 protease, thus hindering the infectious process of SARS-CoV-2 by decreasing the ability to fuse with the cell membrane. The expression of TMPRSS2 has been determined in different diseases such as influenza and prostate cancer (its expression increases), but it has taken an important role in COVID-19 in identifying its functions and level of expression in different tissues, with greater presence in the cell membrane of the epithelial cells of the lung and more intensely in the cells of the bronchial epithelium. TMPRSS2 has been identified to contribute to the cell membrane fusion process in the pathogenesis of COVID-19 [37, 39], as well as the

factors that increase or decrease its expression in the cell membrane can be considered; in different populations [34, 35], according to gender (women or men by androgens [33]) or treatments that decrease its mRNA [36], and compounds/drugs that could inhibit the activity of this protease from preventing fusion with the cell membrane [24, 33, 36, 37], to be used against COVID-19.

This study proposes ten compounds with a better interaction in the catalytic site of TMPRSS2, using a homology model to establish a putative 3D structure of TMPRSS2 [55] and performing molecular docking using about 500,000 compounds. Ten compounds (T1 - T10) were determined with better average interaction value than ombitasvir, daclatasvir [42], otamixaban, argatroban, letaxaban, darexaban, edoxaban [39], bromhexine [38, 40, 41, 54], otamixaban NCGC00385043, NCGC00386945, NCGC00386477 [40], camostat, nafamostat, gabexate, and sivelestat [55] (Table 2). It is proposing that the inhibitory effect of T1 - T10 compounds could be, due to a better interaction with amino acids in the catalytic site (His296 and Ser441), with better affinity with Val280, Gly439, and Cys465 (Table 3), to generate more interactions with His296 and closely of Ser441, that are necessary for TMPRSS2 protease activity [38, 40, 55].

To justify this study, it is necessary to emphasize the Ser441 in TMRPSS2. The data in Table 3 clearly show that the conformers from the T1 - T10 compounds have greater interaction with Val280, His296, and Cys465. These amino acids are important for the formation of interactions (mainly hydrogen bridges), and that the T1 – T10 compounds interact in the region of the catalytic site with Gly439 and very close to Ser441 (Figure 2); therefore, these compounds might hinder/block the accessibility or exposition of Ser441. The best interaction of all conformers from the compounds with Val280, His296, Gly439, and Cys465, generate the better averages of Δ Gbinding for these ten compounds.

Figure 3. Three conformers (Yellow, Green, and Blue) from each compound interact in the potential site, Val280, His296, Gly439, Ser441, and Cys465 (Pink). A) T1, B) T2, C) T3, and D) T4.

To demonstrate the above, it is shown the interaction of T1 - T4 compounds with three conformations, each one interacting in the potential site proposed (Figure 3), the amino acids Val280 his296, Gly339, Ser441, and Cys465 are shown, where it is proposed that these amino acids are contributing to get a better Δ Gbinding with TMPRSS2. In addition, the interaction of Daclatasvir, Ombitasvir, Camostat, and Nafamostat with three conformations each one is shown (Figure 4), these compounds/drugs show fewer interactions with Val280, His296, Gly439, and Cys465, which is related to a weaker interaction in the catalytic site (Table 2 and 3). The interactions of all compounds/drugs studied (with their conformers) in the potential site are shown in Tables S2 – S26. These results can contribute to developing a drug against COVID-19, designed to avoid or decrease the fusion between SARS-CoV-2 and the cell membrane.

Figure 4. Three conformers (Yellow, Green, and Blue) from each compound interact in the potential site, Val280, His296, Gly439, Ser441, and Cys465 (Pink). **A**) Daclatasvir, **B**) Ombitasvir, **C**) Camostat, and **D**) Nafamostat.

On the other hand, the development of treatments with more advances is vaccines/antibodies [43 – 46]. However, there are reports of mutations at different proteins in the SARS-CoV-2 that could difficult their effectivity [46, 47], for example, in the S-protein of SARS-CoV-2 (December 2020) that could increase the infectious process and decrease the effect of vaccines [48 - 50], in which it is reported that the mutation E484K could generate resistance to several monoclonal antibodies, and the mutation N501Y could generate a greater interaction between RBD (S-protein) with ACE2, in which there are variants of the virus in the world that are related to more transmissibility and lethality of SARS-CoV-2 [52, 53]. In addition, vaccines have good opinions, but sometimes these have adverse reactions. The most common systemic adverse reaction was fatigue, fever, body pain, and a worse or lower immune response to vaccines in the elderly than in the younger population [75, 76], even some death [77]. Nevertheless, the development of vaccines continues with an acceptable safety and

efficacy profile against COVID-19, despite the adverse effects that could occur in patients and the mutations that could reduce their effectiveness.

The development of non-antiviral drugs against COVID-19 may be a way to attack this virus since it would prevent the interaction between SARS-CoV-2 with proteins at the cell membrane (as receptors for S-protein). The use of these drugs could be an adjuvant treatment that helps the immune system generate antibodies and resist this disease, which depends on factors and comorbidities in each person. These membrane receptors could be ACE2 [16, 35, 78], NRP1 [22, 23, 79, 80], and TMPRSS2 [24, 33, 37]. These three receptors could be the key to blocking the entry of SARS-CoV-2 (Figure 5). It could prevent/hinder the entry of the SARS-CoV-2 virus. With this approach, a combination of drugs could be developed as a new or complementary drug to use with conventional drugs and/or when using vaccines. But why would a combination of three drugs against COVID-19 be better? Each of these therapeutic targets (ACE2, NRP1, and TMPRSS2) are in the cell membrane that can generate advantages against antiviral drugs that have to cross the cell membrane. Some of these drugs/compounds already have toxicity results and/or have some reported use. This would facilitate experimental trials to try to make combinations between these three types of drugs, with different therapeutic targets, and that these interactions with their receptors, can generate summation or synergistic effects since there are currently reports of IC50 of some of them, with which estimates of their therapeutic effects could be made.

Figure 5. Blocking the interaction between S-protein of SARS-CoV-2 with its receptors (ACE2, NRP1, and TMPRSS2).

It would be necessary to evaluate the future effects of this proposal, a combination of potential compounds/drugs interacting with these three receptors on the cell membrane, could generate synergy with antiviral drugs, vaccines, or antibodies. In addition, these three receptors could have a better therapeutic effect than selective drugs, which is currently a disadvantage of the use of vaccines [48 - 50].

4. Conclusions

The development of an effective treatment against COVID-19 is still under development in the world. This study proposes ten compounds (T1 - T10) to develop a new drug to inhibit the activity protease of TMPRSS2, and it will be another way to attend COVID-19.

This therapeutic target has a significant role at COVID-19, as a cofactor for the infectious process, endosome formation, and internal management of viral material [24, 32]; therefore, the development of a selective drug for this therapeutic target would have the capacity to be an adjuvant or alternative treatment against COVID-19.

These ten compounds with a better interaction than previous compounds/drugs reported (Table 2 and 3) because T1 - T10 compounds have a better interaction with amino acids in the catalytic site (His296 and Ser441), due to the better affinity with Val280, Gly439 and Cys465 to generate more interactions with His296 and closely of Ser441, that are necessary for TMPRSS2 protease activity [38, 40, 55]. Moreover, the ten compounds have good results in theoretical toxicity servers.

Funding

This research received no external funding.

Acknowledgments

The author is very grateful for the financial support from PRODEP-SEP, SNI-CONACyT, FMM-UABC, and Dr. José Manuel Avendaño Reyes.

Conflicts of Interest

The author declares that he has no conflict of interest.

Supplementary Data

Supporting information includes figures and tables of interactions for compounds with TMPRSS2 and details of the interaction of each compound with TMPRSS2 per amino acid, theoretical toxicity results, ADME characteristics, and physical chemistry that support the information given in the results and discussion.

References

- 1. University, J.H. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU) Available online: https://coronavirus.jhu.edu/map.html.
- 2. Zhao, J.; Li, X.; Gao, Y.; Huang, W. Risk factors for the exacerbation of patients with 2019 Novel Coronavirus: A meta-analysis. International journal of medical sciences **2020**, *17*, 1744–1750, https://doi.org/10.7150/ijms.47052.
- 3. de Wit, E.; van Doremalen, N.; Falzarano, D.; Munster, V.J. SARS and MERS: recent insights into emerging coronaviruses. Nature reviews. Microbiology **2016**, *14*, 523–34, https://doi.org/10.1038/nrmicro.2016.81.
- Guan, W.; Ni, Z.; Hu, Y.; Liang, W.; Ou, C.; He, J.; Liu, L.; Shan, H.; Lei, C.; Hui, D.S.C.; Du, B.; Li, L.; Zeng, G.; Yuen, K.; Chen, R.; Tang, C.; Wang, T.;Chen, P.; Xiang, J.; Li, S.; Wang, J.; Liang, J.; Peng, Y.; Wei, L.; Liu, Y.; Hu, Y.; Peng, P.; Wang, J.; Liu, J.; Chen, Z.; Li, G.; Zheng, Z.; Qiu, S.; Luo, J.; Ye, C.; Zhu, S.; Zhong, N. Clinical Characteristics of Coronavirus Disease 2019 in China. New England Journal of Medicine 2020, 382, 1708-1720, https://doi.org/10.1056/NEJMoa2002032.
- Hu, Y.; Sun, J.; Dai, Z.; Deng, H.; Li, X.; Huang, Q.; Wu, Y.; Sun, L.; Xu, Y. Prevalence and severity of corona virus disease 2019 (COVID-19): A systematic review and meta-analysis. Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology 2020, *127*, 104371, https://doi.org/10.1016/j.jcv.2020.104371.
- Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research 2020, 30, 269–271, https://doi.org/10.1038/s41422-020-0282-0.
- Sheahan, T.P.; Sims, A.C.; Leist, S.R.; Schäfer, A.; Won, J.; Brown, A.J.; Montgomery, S.A.; Hogg, A.; Babusis, D.; Clarke, M.O.; Spahn, J.E.; Bauer, L.; Sellers, S.; Porter, D.; Feng, J.Y.; Cihlar, T.; Jordan, R.; Denison, M.R.; Baric, R.S. Comparative therapeutic efficacy of remdesivir and combination lopinavir,

ritonavir, and interferon beta against MERS-CoV. Nature Communications **2020**, *11*, 222, https://doi.org/10.1038/s41467-019-13940-6.

- 8. Li, G.; De Clercq, E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nature Reviews Drug Discovery **2020**, *19*, 149–150, https://doi.org/10.1038/d41573-020-00016-0.
- Iftikhar, H.; Ali, H.N.; Farooq, S.; Naveed, H.; Shahzad-ul-Hussan, S. Identification of potential inhibitors of three key enzymes of SARS-CoV2 using computational approach. Computers in Biology and Medicine 2020, *122*, 103848, https://doi.org/10.1016/j.compbiomed.2020.103848.
- 10. Wu, C.; Liu, Y.; Yang, Y.; Zhang, P.; Zhong, W.; Wang, Y.; Wang, Q.; Xu, Y.; Li, M.; Li, X.; Zheng, M.; Chen, L.; Li, H. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharmaceutica Sinica B 2020, 10, 766–788, https://doi.org/10.1016/j.apsb.2020.02.008.
- 11. Xia, S.; Yan, L.; Xu, W.; Agrawal, A.S.; Algaissi, A.; Tseng, C.-T.K.; Wang, Q.; Du, L.; Tan, W.; Wilson, I.A.; Jiang, S.; Yang, B.; Lu, L. A pan-coronavirus fusion inhibitor targeting the HR1 domain of human coronavirus spike. Science advances **2019**, *5*, eaav4580, https://doi.org/10.1126/sciadv.aav4580.
- 12. Xia, S.; Liu, M.; Wang, C.; Xu, W.; Lan, Q.; Feng, S.; Qi, F.; Bao, L.; Du, L.; Liu, S.; Qin, C.; Sun, F.; Shi, Z.; Zhu, Y.; Jiang, S.; Lu, L. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Research 2020, 30, 343–355, https://doi.org/10.1038/s41422-020-0305-x.
- 13. Calligari, P.; Bobone, S.; Ricci, G.; Bocedi, A. Molecular Investigation of SARS–CoV-2 Proteins and Their Interactions with Antiviral Drugs. Viruses **2020**, *12*, 445, https://doi.org/10.3390/v12040445.
- 14. Huang, J.; Song, W.; Huang, H.; Sun, Q. Pharmacological Therapeutics Targeting RNA-Dependent RNA Polymerase, Proteinase and Spike Protein: From Mechanistic Studies to Clinical Trials for COVID-19. Journal of Clinical Medicine **2020**, *9*, 1131, https://doi.org/10.3390/jcm9041131.
- 15. Vankadari, N. Arbidol: A potential antiviral drug for the treatment of SARS-CoV-2 by blocking trimerization of the spike glycoprotein. International Journal of Antimicrobial Agents 2020, 105998, https://doi.org/10.1016/j.ijantimicag.2020.105998.
- Benítez-Cardoza, C.G.; Vique-Sánchez, J.L. Potential inhibitors of the interaction between ACE2 and SARS-CoV-2 (RBD), to develop a drug. Life Sciences 2020, 256, 117970, https://doi.org/10.1016/j.lfs.2020.117970.
- 17. Khelfaoui, H.; Harkati, D.; Saleh, B.A. Molecular docking, molecular dynamics simulations and reactivity, studies on approved drugs library targeting ACE2 and SARS-CoV-2 binding with ACE2. Journal of Biomolecular Structure and Dynamics **2020**, 1–17, https://doi.org/10.1080/07391102.2020.1803967.
- 18. Grifoni, A.; Sidney, J.; Zhang, Y.; Scheuermann, R.H.; Peters, B.; Sette, A. A Sequence Homology and Bioinformatic Approach Can Predict Candidate Targets for Immune Responses to SARS-CoV-2. Cell Host & Microbe 2020, https://doi.org/10.1016/j.chom.2020.03.002.
- 19.Ton, A.-T.; Gentile, F.; Hsing, M.; Ban, F.; Cherkasov, A. Rapid Identification of Potential Inhibitors of SARS-CoV-2 Main Protease by Deep Docking of 1.3 Billion Compounds. Molecular Informatics 2020, 39, 2000028, https://doi.org/10.1002/minf.202000028.
- 20. Zhang, L.; Lin, D.; Sun, X.; Curth, U.; Drosten, C.; Sauerhering, L.; Becker, S.; Rox, K.; Hilgenfeld, R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science 2020, 368, 409-412, https://doi.org/10.1126/science.abb3405.
- 21. Benítez-Cardoza, C.G.; Vique-Sánchez, J.L. Identifying compounds that prevent the binding of the SARS-CoV-2 S-protein to ACE2. Computers in Biology and Medicine **2021**, *136*, 104719, https://doi.org/10.1016/j.compbiomed.2021.104719.
- 22. Perez-Miller, S.; Patek, M.; Moutal, A.; Cabel, C.R.; Thorne, C.A.; Campos, S.K.; Khanna, R. In silico identification and validation of inhibitors of the interaction between neuropilin receptor 1 and SARS-CoV-2 Spike protein. bioRxiv : the preprint server for biology 2020, https://doi.org/10.1101/2020.09.22.308783.
- 23. Vique-Sánchez, J.L. Potential inhibitors interacting in Neuropilin-1 to develop an adjuvant drug against COVID-19, by molecular docking. Bioorganic and Medicinal Chemistry **2021**, *33*, 116040, https://doi.org/10.1016/j.bmc.2021.116040.
- 24. Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.-H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S.: SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271-280, https://doi.org/10.1016/j.cell.2020.02.052.
- 25. Stopsack, K.H.; Mucci, L.A.; Antonarakis, E.S.; Nelson, P.S.; Kantoff, P.W. TMPRSS2 and COVID-19: Serendipity or Opportunity for Intervention? Cancer Discovery **2020**, *10*, 779–782, https://doi/10.1158/2159-8290.CD-20-0451.
- 26. Lau, S.-Y.; Wang, P.; Mok, B.W.-Y.; Zhang, A.J.; Chu, H.; Lee, A.C.-Y.; Deng, S.; Chen, P.; Chan, K.-H.; Song, W.; Chen, Z.; Kai-Wang To, K.; Chan, J.F-W.; Yuen, K-Y.; Chen, H. Attenuated SARS-CoV-2 variants with deletions at the S1/S2 junction. Emerging Microbes & Infections 2020, 9, 837–842, https://doi.org/10.1080/22221751.2020.1756700.
- 27. Abuo-Rahma, G.E.-D.A.; Mohamed, M.F.A.; Ibrahim, T.S.; Shoman, M.E.; Samir, E.; Abd El-Baky, R.M. Potential repurposed SARS-CoV-2 (COVID-19) infection drugs. RSC Advances **2020**, *10*, 26895–26916, https://doi.org/10.1039/D0RA05821A.

- 28. Vitiello, A.; La Porta, R.; Ferrara, F. Scientific hypothesis and rational pharmacological for the use of sacubitril/valsartan in cardiac damage caused by COVID-19. Medical Hypotheses **2021**, *147*, 110486, https://doi.org/10.1016/j.mehy.2021.110486.
- 29. Souza, P.F.N.; Lopes, F.E.S.; Amaral, J.L.; Freitas, C.D.T.; Oliveira, J.T.A. A molecular docking study revealed that synthetic peptides induced conformational changes in the structure of SARS-CoV-2 spike glycoprotein, disrupting the interaction with human ACE2 receptor. International Journal of Biological Macromolecules **2020**, *164*, 66–76, https://doi.org/10.1016/j.ijbiomac.2020.07.174.
- 30. BR, B.; Damle, H.; Ganju, S.; Damle, L. In silico screening of known small molecules to bind ACE2 specific RBD on Spike glycoprotein of SARS-CoV-2 for repurposing against COVID-19. F1000Research **2020**, *9*, 663, https://doi.org/10.12688/f1000research.24143.1.
- 31.Prajapat, M.; Shekhar, N.; Sarma, P.; Avti, P.; Singh, S.; Kaur, H.; Bhattacharyya, A.; Kumar, S.; Sharma, S.; Prakash, A.; Medhi, B. Virtual screening and molecular dynamics study of approved drugs as inhibitors of spike protein S1 domain and ACE2 interaction in SARS-CoV-2. Journal of Molecular Graphics and Modelling 2020, 101, 107716, https://doi.org/10.1016/j.jmgm.2020.107716.
- 32.Kielian, M. Enhancing host cell infection by SARS-CoV-2. Science **2020**, *370*, 765–766, https://doi.org/10.1126/science.abf0732.
- 33.Stopsack, K.H.; Mucci, L.A.; Antonarakis, E.S.; Nelson, P.S.; Kantoff, P.W. TMPRSS2 and COVID-19: Serendipity or Opportunity for Intervention? Cancer Discovery 2020, 10, 779–782, https://doi.org/10.1158/2159-8290.CD-20-0451.
- 34.Lanjanian, H.; Moazzam-Jazi, M.; Hedayati, M.; Akbarzadeh, M.; Guity, K.; Sedaghati-khayat, B.; Azizi, F.; Daneshpour, M.S. SARS-CoV-2 infection susceptibility influenced by ACE2 genetic polymorphisms: insights from Tehran Cardio-Metabolic Genetic Study. Scientific Reports 2021, 11, 1529, https://doi.org/10.1038/s41598-020-80325-x.
- 35. Yan, R.; Zhang, Y.; Li, Y.; Xia, L.; Guo, Y.; Zhou, Q. Structural basis for the recognition of the SARS-CoV-2 by full-length human ACE2. Science **2020**, *367*, 1444-1448, https://doi.org/10.1126/science.abb2762.
- 36.Ragia, G.; Manolopoulos, V.G. Inhibition of SARS-CoV-2 entry through the ACE2/TMPRSS2 pathway: a promising approach for uncovering early COVID-19 drug therapies. European Journal of Clinical Pharmacology 2020, 76, 1623–1630, https://doi.org/10.1007/s00228-020-02963-4.
- 37.Bittmann, S.; Luchter, E.; Weissenstein, A.; Villalon, G.; Moschüring-Alieva, E. TMPRSS2-Inhibitors Play a role in Cell Entry Mechanism of COVID-19: An Insight into Camostat and Nafamostat. Journal of Regenerative Biology and Medicine 2020, 2, 1-3, https://doi.org/10.37191/Mapsci-2582-385X-2(2)-022.
- 38.Singh, N.; Decroly, E.; Khatib, A.-M.; Villoutreix, B.O. Structure-based drug repositioning over the human TMPRSS2 protease domain: search for chemical probes able to repress SARS-CoV-2 Spike protein cleavages. European Journal of Pharmaceutical Sciences 2020, 153, 105495, https://doi.org/10.1016/j.ejps.2020.105495.
- 39.Faheem; Kumar, B.K.; Sekhar, K.V.G.C.; Kunjiappan, S.; Jamalis, J.; Balaña-Fouce, R.; Tekwani, B.L.; Sankaranarayanan, M. Druggable targets of SARS-CoV-2 and treatment opportunities for COVID-19. Bioorganic Chemistry 2020, 104, 104269, https://doi.org/10.1016/j.bioorg.2020.104269.
- 40.Hu, X.; Shrimp, J.H.; Guo, H.; Xu, M.; Chen, C.Z.; Zhu, W.; Zakharov, A.; Jain, S.; Shinn, P.; Simeonov, A.; Hall, M.D.; Shen, M. Discovery of TMPRSS2 inhibitors from virtual screening V2. bioRxiv: the preprint server for biology **2020**, https://doi.org/10.1101/2020.12.28.424413.
- 41.Al-Horani, R.A.; Kar, S.; Aliter, K.F. Potential Anti-COVID-19 Therapeutics that Block the Early Stage of the Viral Life Cycle: Structures, Mechanisms, and Clinical Trials. International Journal of Molecular Sciences 2020, 21, 5224, https://doi.org/10.3390/ijms21155224.
- 42.Choi, Y.; Shin, B.; Kang, K.; Park, S.; Beck, B.R. Target-Centered Drug Repurposing Predictions of Human Angiotensin-Converting Enzyme 2 (ACE2) and Transmembrane Protease Serine Subtype 2 (TMPRSS2) Interacting Approved Drugs for Coronavirus Disease 2019 (COVID-19) Treatment through a Drug-Target Interaction Deep Learning Model. Viruses 2020, 12, 1325, https://doi.org/10.3390/v12111325.
- 43.Liu, C.; Zhou, Q.; Li, Y.; Garner, L. V.; Watkins, S.P.; Carter, L.J.; Smoot, J.; Gregg, A.C.; Daniels, A.D.; Jervey, S.; Albaiu, D. Research and Development on Therapeutic Agents and Vaccines for COVID-19 and Related Human Coronavirus Diseases. ACS Central Science 2020, 6, 315–331, https://doi.org/10.1021/acscentsci.0c00272.
- 44.LOCHT, C. Vaccines against COVID-19. Anaesthesia Critical Care & Pain Medicine 2020, 39, 703–705, https://doi.org/10.1016/j.accpm.2020.10.006.
- 45.Kim, K.-D.; Hwang, I.; Ku, K.B.; Lee, S.; Kim, S.-J.; Kim, C. Progress and Challenges in the Development of COVID-19 Vaccines and Current Understanding of SARS-CoV-2- Specific Immune Responses. Journal of Microbiology and Biotechnology 2020, *30*, 1109–1115, https://doi.org/10.4014/jmb.2006.06006.
- 46.Weisblum, Y.; Schmidt, F.; Zhang, F.; DaSilva, J.; Poston, D.; Lorenzi, J.C.; Muecksch, F.; Rutkowska, M.; Hoffmann, H.-H.; Michailidis, E.; Gaebler, C.; Agudelo, M.; Cho, A.; Wang, Z.; Gazumyan, A.; Cipolla, M.; Luchsinger, L.; D Hillyer, C.; Caskey, M.; F Robbiani, D.; M Rice, C.; C Nussenzweig, M.; Hatziioannou, T.; D Bieniasz, P. Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. eLife **2020**, *9*, https://doi.org/10.7554/eLife.61312.
- 47.Li, Q.; Wu, J.; Nie, J.; Zhang, L.; Hao, H.; Liu, S.; Zhao, C.; Zhang, Q.; Liu, H.; Nie, L.; Qin, H.; Wang, M.; Lu, Q.; Li, X.; Sun, Q.; Liu, J.; Zhang, L.; Li, X.; Huang, W.; Wang, Y. The Impact of Mutations in SARS-

CoV-2 Spike on Viral Infectivity and Antigenicity. Cell **2020**, *182*, 1284-1294.e9, https://doi.org/10.1016/j.cell.2020.07.012.

48.Conti, P.; Caraffa, A.; Gallenga, C.E.; Kritas, S.K.; Frydas, I.; Younes, A.; Di Emidio, P.; Tetè, G.; Pregliasco, F.; Ronconi, G. The British variant of the new coronavirus-19 (Sars-Cov-2) should not create a vaccine problem. Journal of biological regulators and homeostatic agents 2021, 35, 1-4, https://www.researchgate.net/profile/Pio-

Conti/publication/348804233_The_British_variant_of_the_new_coronavirus-19_Sars-Cov-

 $2_should_not_create_a_vaccine_problem/links/609e575a299bf1476996e590/The-British-variant-of-the-Definition of the state of the state$

new-coronavirus-19-Sars-Cov-2-should-not-create-a-vaccine-problem.pdf

- 49.Santos, J.C.; Passos, G.A. The high infectivity of SARS-CoV-2 B.1.1.7 is associated with increased interaction force between Spike-ACE2 caused by the viral N501Y mutation. bioRxiv **2021**, https://doi.org/10.1101/2020.12.29.424708.
- 50.Luan, B.; Wang, H.; Huynh, T. Molecular Mechanism of the N501Y Mutation for Enhanced Binding between SARS-CoV-2{\textquoteright}s Spike Protein and Human ACE2 Receptor. bioRxiv **2021**, https://doi.org/10.1101/2021.01.04.425316.
- 51.Leung, K.; Shum, M.H.; Leung, G.M.; Lam, T.T.; Wu, J.T. Early transmissibility assessment of the N501Y mutant strains of SARS-CoV-2 in the United Kingdom, October to November 2020. Eurosurveillance **2021**, *26*, https://doi.org/10.2807/1560-7917.ES.2020.26.1.2002106.
- 52.Challen, R.; Brooks-Pollock, E.; Read, J.M.; Dyson, L.; Tsaneva-Atanasova, K.; Danon, L. Risk of mortality in patients infected with SARS-CoV-2 variant of concern 202012/1: matched cohort study. BMJ **2021**, *372*, n579, https://doi.org/10.1136/bmj.n579.
- 53.Xie, X.; Liu, Y.; Liu, J.; Zhang, X.; Zou, J.; Fontes-Garfias, C.R.; Xia, H.; Swanson, K.A.; Cutler, M.; Cooper, D.; Menachery, V.D.; Weaver, S.C.; Dormitzer, P.R.; Shi, P-Y. Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K and N501Y variants by BNT162b2 vaccine-elicited sera. Nature Medicine 2021, 27, 620-621, https://doi.org/10.1038/s41591-021-01270-4.
- 54.Maggio, R.; Corsini, G.U. Repurposing the mucolytic cough suppressant and TMPRSS2 protease inhibitor bromhexine for the prevention and management of SARS-CoV-2 infection. Pharmacological Research 2020, 157, 104837, https://doi.org/10.1016/j.phrs.2020.104837.
- 55.Kishk, S.M.; Kishk, R.M.; Yassen, A.S.A.; Nafie, M.S.; Nemr, N.A.; ElMasry, G.; Al-Rejaie, S.; Simons, C. Molecular Insights into Human Transmembrane Protease Serine-2 (TMPS2) Inhibitors against SARS-CoV2: Homology Modelling, Molecular Dynamics, and Docking Studies. Molecules 2020, 25, 5007, https://doi.org/10.3390/molecules25215007.
- 56.Swissmodel Available online: https://swissmodel.expasy.org/.
- 57.PDB: 1Z8G Available online: https://www.rcsb.org/structure/1Z8G.
- 58.UniProt Available online: https://www.uniprot.org/.
- 59.RAMPAGE (RRID:SCR_017590) Available online: https://scicrunch.org/resolver/RRID:SCR_017590.
- 60.Brooks, B.R.; Brooks, C.L.; Mackerell, A.D.; Nilsson, L.; Petrella, R.J.; Roux, B.; Won, Y.; Archontis, G.; Bartels, C.; Boresch, S.; Caflisch, A.; Caves, L.; Cui, Q.; Dinner, A. R.; Feig, M.; Fischer, S.; Gao, J.; Hodoscek, M.; Im, W.; Kuczera, K.; Lazaridis, T.; Ma, J.; Ovchinnikov, V.; Paci, E.; Pastor, R. W.; Post, C. B.; Pu, J. Z.; Schaefer, M.; Tidor, B.; Venable, R. M.; Woodcock, H. L.; Wu, X.; Yang, W.; York, D. M.; Karpluset, M. CHARMM: The biomolecular simulation program. Journal of Computational Chemistry 2009, *30*, 1545–1614, https://doi.org/10.1002/jcc.21287.
- 61.Halgren, T.A. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. Journal of Computational Chemistry **1996**, *17*, 490–519, https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P.
- 62. Corporation, ChemBridge Available online: http://www.chembridge.com/screening_libraries/.
- 63.Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced drug delivery reviews **1997**, *23*, 3-25, https://doi.org/10.1016/S0169-409X(96)00423-1.
- 64. Thangapandian, S.; John, S.; Lee, Y.; Kim, S.; Lee, K.W. Dynamic Structure-Based Pharmacophore Model Development: A New and Effective Addition in the Histone Deacetylase 8 (HDAC8) Inhibitor Discovery. International Journal of Molecular Sciences **2011**, *12*, 9440–9462, https://doi.org/10.3390/ijms12129440.
- 65. Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry **2009**, 30, 2785–2791, https://doi:10.1002/jcc.21256.
- 66.Protein-Ligand Interaction Profiler Available online: https://plip-tool.biotec.tu-dresden.de/plip-web/plip/index.
- 67.Salentin, S.; Schreiber, S.; Haupt, V.J.; Adasme, M.F.; Schroeder, M. PLIP: fully automated protein–ligand interaction profiler. Nucleic Acids Research **2015**, *43*, W443–W447, https://doi.org/10.1093/nar/gkv315.
- 68.Soga, S.; Shirai, H.; Kobori, M.; Hirayama, N. Use of Amino Acid Composition to Predict Ligand-Binding Sites. Journal of Chemical Information and Modeling **2007**, *47*, 400–406, https://doi.org/10.1021/ci6002202.

69.Labute, P. The generalized Born/volume integral implicit solvent model: estimation of the free energy of hydration using London dispersion instead of atomic surface area. Journal of computational chemistry **2008**,

29, 1693–1698, https://doi.org/10.1002/jcc.20933.

- 70.Wadood, A.; Ghufran, M.; Hassan, S.F.; Khan, H.; Azam, S.S.; Rashid, U. In silico identification of promiscuous scaffolds as potential inhibitors of 1-deoxy- d -xylulose 5-phosphate reductoisomerase for treatment of Falciparum malaria. Pharmaceutical Biology 2017, 55, 19–32, https://doi.org/10.1080/13880209.2016.1225778.
- 71.PhysChem, ADME & Toxicity, version 2021.1.1, Advanced Chemistry Development, Inc., Toronto, ON, Canada, www.acdlabs.com, 2021.
- 72.ADMETlab Available online: http://admet.scbdd.com/calcpre/index_sys/.
- 73.PreADMET Available online: https://preadmet.bmdrc.kr/toxicity/.
- 74.ProTox-II Prediction of TOXicity Available online: http://tox.charite.de/protox_II/index.php?site=compound_input.
- 75.Xing, K.; Tu, X.-Y.; Liu, M.; Liang, Z.-W.; Chen, J.-N.; Li, J.-J.; Jiang, L.-G.; Xing, F.-Q.; Jiang, Y. Efficacy and safety of COVID-19 vaccines: a systematic review. Zhongguo dang dai er ke za zhi = Chinese journal of contemporary pediatrics **2021**, *23*, 221–228, https://doi.org/10.7499/j.issn.1008-8830.2101133.
- 76.Yuan, P.; Ai, P.; Liu, Y.; Ai, Z.; Wang, Y.; Cao, W.; Xia, X.; Zheng, J.C. Safety, Tolerability, and Immunogenicity of COVID-19 Vaccines: A Systematic Review and Meta-Analysis. medRxiv 2020, https://doi.org/10.1101/2020.11.03.20224998.
- 77.Voysey, M.; Clemens, S.A.C.; Madhi, S.A.; Weckx, L.Y.; Folegatti, P.M.; Aley, P.K.; Angus, B.; Baillie, V.L.; Barnabas, S.L.; Bhorat, Q.E.; et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. The Lancet **2020**, *397*, 99–111, https://doi.org/10.1016/S0140-6736(20)32661-1.
- 78.Han, D.P.; Penn-Nicholson, A.; Cho, M.W. Identification of critical determinants on ACE2 for SARS-CoV entry and development of a potent entry inhibitor. Virology **2006**, *350*, 15–25, https://doi.org/10.1016/j.virol.2006.01.029.
- 79.Cantuti-Castelvetri, L.; Ojha, R.; Pedro, L.D.; Djannatian, M.; Franz, J.; Kuivanen, S.; van der Meer, F.; Kallio, K.; Kaya, T.; Anastasina, M.; et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science 2020, 370, 856–860, https://doi.org/10.1126/science.abd2985.
- 80.Daly, J.L.; Simonetti, B.; Klein, K.; Chen, K.-E.; Williamson, M.K.; Antón-Plágaro, C.; Shoemark, D.K.; Simón-Gracia, L.; Bauer, M.; Hollandi, R.; et al. Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science 2020, 370, 861–865, https://doi.org/10.1126/science.abd3072.

Supplementary materials

Figure S1. TMPRSS2 (Green) shows amino acids His296, Glu299, Asp435, Ser436, Cys437, Gln438, Ser441, Gly462, Ser463, and Gly464 (Pink) as region chosen for docking with 29 conformers of compound T1 (Gray).

Figure S2. TMPRSS2 (Green) shows amino acids His296, Glu299, Asp435, Ser436, Cys437, Gln438, Ser441, Gly462, Ser463, and Gly464 (Pink) as region chosen for docking with 28 conformers of compound T2 (Gray).

Figure S3. TMPRSS2 (Green) shows amino acids His296, Glu299, Asp435, Ser436, Cys437, Gln438, Ser441, Gly462, Ser463, and Gly464 (Pink) as region chosen for docking with 24 conformers of compound T3 (Gray).

Figure S4. TMPRSS2 (Green) shows amino acids His296, Glu299, Asp435, Ser436, Cys437, Gln438, Ser441, Gly462, Ser463, and Gly464 (Pink) as region chosen for docking with 29 conformers of compound T4 (Gray).

Figure S5. TMPRSS2 (Green) shows amino acids His296, Glu299, Asp435, Ser436, Cys437, Gln438, Ser441, Gly462, Ser463, and Gly464 (Pink) as region chosen for docking with 26 conformers of compound T5 (Gray).

Figure S6. TMPRSS2 (Green) shows amino acids His296, Glu299, Asp435, Ser436, Cys437, Gln438, Ser441, Gly462, Ser463, and Gly464 (Pink) as region chosen for docking with 27 conformers of compound T6 (Gray).

Figure S7. TMPRSS2 (Green) shows amino acids His296, Glu299, Asp435, Ser436, Cys437, Gln438, Ser441, Gly462, Ser463, and Gly464 (Pink) as region chosen for docking with 24 conformers of compound T7 (Gray).

Figure S8. TMPRSS2 (Green) shows amino acids His296, Glu299, Asp435, Ser436, Cys437, Gln438, Ser441, Gly462, Ser463, and Gly464 (Pink) as region chosen for docking with 26 conformers of compound T8 (Gray).

Figure S9. TMPRSS2 (Green) shows amino acids His296, Glu299, Asp435, Ser436, Cys437, Gln438, Ser441, Gly462, Ser463, and Gly464 (Pink) as region chosen for docking with 27 conformers of compound T9 (Gray).

Figure S10. TMPRSS2 (Green) shows amino acids His296, Glu299, Asp435, Ser436, Cys437, Gln438, Ser441, Gly462, Ser463, and Gly464 (Pink) as region chosen for docking with 27 conformers of compound T10 (Gray).

Figure S11. TMPRSS2 (Green) shows amino acids His296, Glu299, Asp435, Ser436, Cys437, Gln438, Ser441, Gly462, Ser463, and Gly464 (Pink) as region chosen for docking with 25 conformers of Daclatasvir (Gray).

Figure S12. TMPRSS2 (Green) shows amino acids His296, Glu299, Asp435, Ser436, Cys437, Gln438, Ser441, Gly462, Ser463, and Gly464 (Pink) as region chosen for docking with 30 conformers of compound Ombitasvir (Gray).

Figure S13. TMPRSS2 (Green) shows amino acids His296, Glu299, Asp435, Ser436, Cys437, Gln438, Ser441, Gly462, Ser463, and Gly464 (Pink) as region chosen for docking with 24 conformers of Camostat (Gray).

Figure S14. TMPRSS2 (Green) shows amino acids His296, Glu299, Asp435, Ser436, Cys437, Gln438, Ser441, Gly462, Ser463, and Gly464 (Pink) as region chosen for docking with 26 conformers of Edoxaban (Gray).

Figure S15. TMPRSS2 (Green) shows amino acids His296, Glu299, Asp435, Ser436, Cys437, Gln438, Ser441, Gly462, Ser463, and Gly464 (Pink) as region chosen for docking with 25 conformers of compound NCGC00386477 (Gray).

Figure S16. TMPRSS2 (Green) shows amino acids His296, Glu299, Asp435, Ser436, Cys437, Gln438, Ser441, Gly462, Ser463, and Gly464 (Pink) as region chosen for docking with 23 conformers of Nafamostat (Gray).

Figure S17. TMPRSS2 (Green) shows amino acids His296, Glu299, Asp435, Ser436, Cys437, Gln438, Ser441, Gly462, Ser463, and Gly464 (Pink) as region chosen for docking with 26 conformers of compound NCGC00386945 (Gray).

Figure S18. TMPRSS2 (Green) shows amino acids His296, Glu299, Asp435, Ser436, Cys437, Gln438, Ser441, Gly462, Ser463, and Gly464 (Pink) as region chosen for docking with 26 conformers of Otamixaban (Gray).

Figure S19. TMPRSS2 (Green) shows amino acids His296, Glu299, Asp435, Ser436, Cys437, Gln438, Ser441, Gly462, Ser463, and Gly464 (Pink) as region chosen for docking with 26 conformers of Darexaban (Gray).

Figure S20. TMPRSS2 (Green) shows amino acids His296, Glu299, Asp435, Ser436, Cys437, Gln438, Ser441, Gly462, Ser463, and Gly464 (Pink) as region chosen for docking with 29 conformers of Gabexate (Gray).

Figure S21. TMPRSS2 (Green) shows amino acids His296, Glu299, Asp435, Ser436, Cys437, Gln438, Ser441, Gly462, Ser463, and Gly464 (Pink) as region chosen for docking with 26 conformers of Letaxaban (Gray).

Figure S22. TMPRSS2 (Green) shows amino acids His296, Glu299, Asp435, Ser436, Cys437, Gln438, Ser441, Gly462, Ser463, and Gly464 (Pink) as region chosen for docking with 29 conformers of Argatroban (Gray).

Figure S23. TMPRSS2 (Green) shows amino acids His296, Glu299, Asp435, Ser436, Cys437, Gln438, Ser441, Gly462, Ser463, and Gly464 (Pink) as region chosen for docking with 26 conformers of Sivelestat (Gray).

Figure S24. TMPRSS2 (Green) shows amino acids His296, Glu299, Asp435, Ser436, Cys437, Gln438, Ser441, Gly462, Ser463, and Gly464 (Pink) as region chosen for docking with 30 conformers of compound NCGC00385043 (Gray).

Figure S25. TMPRSS2 (Green) shows amino acids His296, Glu299, Asp435, Ser436, Cys437, Gln438, Ser441, Gly462, Ser463, and Gly464 (Pink) as region chosen for docking with 21 conformers of Bromhexine (Gray).

Compound	Conformer	ΔGbinding
T1	1	-10.003396
T1	2	-9.5028162
T1	3	-9.3816652
T1	4	-9.2959499
T1	5	-9.2790861
T1	6	-9.0783291
T1	7	-9.0753641
T1	8	-8.7984352
T1	9	-8.6334057
T1	10	-8.4404917
T1	11	-8.3888254
T1	12	-8.3585405
T1	13	-8.3155022
T1	14	-8.0704679
T1	15	-7.9481745
T1	16	-7.8926687
T1	17	-7.8705177
T1	18	-7.8615508
T1	19	-7.8328905
T1	20	-7.7946715
T1	21	-7.6466455
T1	22	-7.5944762
T1	23	-7.467999
T1	24	-7.4473333
T1	25	-7.3843675
T1	26	-7.3234034
T1	27	-7.2930708
T1	28	-7.1270895
T1	29	-6.5075951
	Average $\Delta G_{\text{binding}}$	-8.19361135
	SD	0.83814171
T2	1	-10.022358
T2	2	-9.6339903
T2	3	-9.5879698
T2	4	-9.0783129
T2	5	-8.8606043
T2	6	-8.7780361
T2	7	-8.7608776
T2	8	-8.6921701
T2	9	-8.5939379
T2	10	-8.5521517
T2	11	-8.3879843

Table S1. Δ Gbinding of 21 to 30 conformers from each compound, average Δ Gbinding and SD.

Compound	Conformer	ΔGbinding
T2	12	-8.245903
T2	13	-8.0666447
Τ2	14	-8.0059614
T2	15	-7.7485528
T2	16	-7.7424426
T2	17	-7.7311025
T2	18	-7.699697
T2	19	-7.5649576
T2	20	-7.5632124
<u> </u>	21	-7.5493693
12	22	-7.4882078
<u> </u>	23	-7.4084682
<u> </u>	24	-7.0118942
<u> </u>	25	-0.9034185
<u> </u>	20	6 3020582
14		-8 10171233
	SD	0.90894255
	50	0.90094233
T3	1	-9.0872488
Т3	2	-9.0801687
Т3	3	-9.0403929
Т3	4	-8.9255257
Т3	5	-8.9209614
Т3	6	-8.6274405
Т3	7	-8.6184263
T3	8	-8.5198822
Т3	9	-8.322113
<u>T3</u>	10	-8.315093
<u> </u>	11	-8.3098307
<u> </u>	12	-8.1/989/3
13 T2	13	-8.0936956
<u> </u>	14	-8.0490025
	15	7.744895
 	10	-7.744885
T3	18	-7 6184058
T3	19	-7 4833121
T3	20	-7.4545417
T3	21	-7.3769569
Т3	22	-7.3355923
Т3	23	-7.296454
Т3	24	-7.1494551
Т3	25	-7.1465697
Т3	26	-7.1312723
T3	27	-6.8732405
	Average $\Delta G_{\text{binding}}$	-8.01063624
	SD	0.68474912
	1	0.0100000
<u> </u>		-9.2188988
14	2	-8.6898699
14 	3	-8.5985505
14 	5	8 50505
14 	6	-8.30393
T4	7	-8 380353
T4	8	-8,3689556
	9	-8.3514271
T4	10	-8.3018761
T4	11	-8.2238884
T4	12	-8.2036352
T4	13	-8.1405926
T4	14	-8.0946236
T4	15	-8.089736
T4	16	-8.0655165
T4	17	-8.0641956

Compound	Conformer	ΔGbinding
T4	18	-8.0602865
T4	19	-7.9969692
T4	20	-7.9864345
T4	21	-7.8847065
<u>T4</u>	22	-7.8003235
T4	23	-7.7165313
T4	24	-7.6500716
<u> </u>	25	-7.5624533
14	26	-7.510438
14 	27	-7.34/9362
14 	28	-7.0788541
14 	29	6 2144074
		-7.9960089
	SD	0 59719471
	50	0.37717471
T5	1	-8.8463116
T5	2	-8.7761745
T5	3	-8.7601585
Т5	4	-8.7128248
T5	5	-8.6061783
Т5	6	-8.4604912
T5	7	-8.4060631
T5	8	-8.2876902
T5	9	-8.2334681
T5	10	-8.2237606
T5	11	-8.1152878
<u> </u>	12	-8.1035748
<u> </u>	13	-8.0933323
15 	14	-8.0835581
15 	15	-8.0039343
	10	8.0209052
 	17	-7.9286127
<u>T5</u>	19	-7.9155855
T5	20	-7.9118838
T5	21	-7.816483
T5	22	-7.6477575
Т5	23	-7.6306605
T5	24	-7.2972651
Т5	25	-7.2300811
T5	26	-7.2121
T5	27	-6.7440133
T5	28	-6.7035975
	Average $\Delta G_{\text{binding}}$	-7.99495452
	SD	0.56635107
ТС	1	0.2085200
<u> </u>	2	-9.3083299
	2	9.0219343
 		-8.9738040
T6	5	-8 7691965
T6	6	-8 6345243
T6	7	-8.4675426
T6	8	-8.4069319
T6	9	-8.3941784
T6	10	-8.3859043
T6	11	-8.2488203
T6	12	-8.2265368
T6	13	-8.1576548
T6	14	-8.1375952
T6	15	-8.1242628
<u> </u>	16	-8.0387306
<u> </u>	17	-8.0217066
16	18	-7.975193
16	19	-7.8419881

Compound	Conformer	ΔGbinding
T6	20	-7.8149767
T6	21	-7.5745993
T6	22	-7.4310431
T6	23	-6.9749837
T6	24	-6.6369896
T6	25	-6.6182857
T6	26	-6.4696603
T6	27	-6.2355638
	Average $\Delta G_{\text{binding}}$	-7.99436884
	SD	0.81604143
<u> </u>	1	-9.2756252
17	2	-8.9142857
17	3	-8.9017849
17	4	-8.7062016
17	5	-8.6486025
17	6	-8.64/892
17	/	-8.5693331
<u> </u>	8	-8.55/5619
1/	9	-8.3380095
<u> </u>	10	-8.5009775
<u> </u>	12	-8.4380033
1 / 7	12	-0.4243889 8 2802540
1 / 	13	-8.3803349
<u> </u>	14	<u>-8.247942</u> 8.1754227
17 	15	8.0870533
17 	10	8 0501207
17 	17	-7 7034016
T7	10	-7.6054735
T7	20	-7 5258908
	20	-7.4642801
T7	21	-7 3333788
T7	23	-7 2554908
T7	24	-7.2306013
Τ7	25	-7.0912528
T7	26	-6.6262579
T7	27	-6.3153048
T7	28	-6.1678081
	Average $\Delta G_{\text{binding}}$	-7.97832034
	SD	0.80859149
T8	1	-9.6677294
T8	2	-9.0873976
T8	3	-9.0046053
T8	4	-8.8117313
T8	5	-8.7953749
T8	6	-8.7727785
T8	7	-8.5950193
T8	8	-8.4820747
<u> </u>	9	-8.4754086
<u> </u>	10	-8.3118105
<u> </u>	11	-8.2353954
<u> </u>	12	-8.2215805
18	13	-8.1239853
<u> </u>	14	-8.0981016
<u> </u>	15	-8.0912466
18	10	-8.0639839
1ð T0	1/	-/.80//05
10 T0	10	-1./013023
<u>1д</u> то	19	-1.1402102
10 TQ	20	-/./20024
<u> </u>	21	
 	22	-7.2866140
T8	23	-7,2247896
10	· · · ·	

Compound	Conformer	∆Gbinding
Т8	25	-7.2101569
T8	26	-7.2000165
T8	27	-7.19806
T8	28	-7.0837798
T8	29	-6.805882
T8	30	-6.2772179
	Average $\Delta G_{\text{binding}}$	-7.96999651
	SD	0.76511658
Т9	1	-8.9598265
Т9	2	-8.9550142
Т9	3	-8.921051
Т9	4	-8.7088957
Т9	5	-8.6447392
Т9	6	-8.5934811
Т9	7	-8.5755234
Т9	8	-8.5448742
Т9	9	-8.5338984
Т9	10	-8.4177952
Т9	11	-8.2045507
Т9	12	-8.1820631
Т9	13	-8.1658182
Т9	14	-8.1623573
Т9	15	-8.1459322
Т9	16	-8.135849
Т9	17	-8.0513248
Т9	18	-8.0358849
Т9	19	-7.972672
Т9	20	-7.9299703
Т9	21	-7.9112868
Т9	22	-7.684484
Т9	23	-6.969893
Т9	24	-6.8369207
Т9	25	-6.5765576
Т9	26	-6.5230303
<u> </u>	27	-6.3880262
T9	28	-6.1047964
	Average $\Delta G_{\text{binding}}$	-7.95844701
	SD	0.81850837
<u>T10</u>	1	-9.3553381
<u> </u>	2	-9.3253126
T10	3	-9.2208309
T10	4	-9.0547555
	5	-8.9080944
T10	7	-0.031/331
T10	/	-8.3030939
T10	0	-8.4800785
T10	9	-8.4800004
T10	10	8 2351208
T10	11	-8.2531208 8.107200
T10	12	7.0825507
T10	13	7.0576250
T10	14	7.95/0539
T10	15	7 8807/38
T10	17	-7 7604818
 T10	18	_7 753/285
T10	10	-7 5839596
T10	20	
T10	20	-7 5752831
T10	21	_7 5171504
T10	22	_7 3344977
T10	23	-7.2096562
T10	25	-7 1749067
T10	26	-6 9748254
110	20	0.7770237

Compound	Conformer	ΔGbinding
T10	27	-6.5297976
T10	28	-6.4548984
T10	29	-6.2984314
	Average $\Delta G_{binding}$	-7.94630387
	SD	0.83996604
Daclatasvir	1	-6.743875
Daclatasvir	2	-6.5059676
Daclatasvir	3	-6.4129391
Daclatasvir	4	-6.2823424
Daclatasvir	5	-6.1425152
Daciatasvir Daciatasvir	0	-6.1386223
Daciatasvir	/ •	6.0614023
Daclatasvir	9	-6.014023
Daclatasvir	10	-6.0145824
Daclatasvir	10	-5 9795341
Daclatasvir	12	-5.9727292
Daclatasvir	13	-5.9404788
Daclatasvir	14	-5.8896332
Daclatasvir	15	-5.8242784
Daclatasvir	16	-5.7552052
Daclatasvir	17	-5.6175394
Daclatasvir	18	-5.5847816
Daclatasvir	19	-5.5605044
Daclatasvir	20	-5.51682
Daclatasvir	21	-5.4841599
Daclatasvir	22	-5.4488587
Daclatasvir	23	-5.4191465
Daclatasvir Da elete suir	24	-5.2322726
Daciatasvir		-5.1832057
		0.3038001
	50	0.5750771
Ombitasvir	1	-7.1596756
Ombitasvir	2	-6.8764935
Ombitasvir	3	-6.6037531
Ombitasvir	4	-6.2976608
Ombitasvir	5	-6.2173386
Ombitasvir	6	-6.1336923
Ombitasvir	7	-6.0335317
Ombitasvir	8	-5.9339681
Ombitasvir	9	-5.9162989
Ombitasvir	10	-5.8851943
Ombitasvir	11	-5.746839
Ombitasvir	12	-5./32/538
Ombitasvir	13	-5.0039748
Ombitasvir	14	5 6110668
Ombitasvir	15	-5.5996351
Ombitasvir	10	-5 4511547
Ombitasvir	18	-5.4373531
Ombitasvir	19	-5.4199243
Ombitasvir	20	-5.4113636
Ombitasvir	21	-5.3175464
Ombitasvir	22	-5.2385569
Ombitasvir	23	-5.1057653
Ombitasvir	24	-5.0913448
Ombitasvir	25	-4.9753966
Ombitasvir	26	-4.9052405
Ombitasvir	27	-4.8408008
Ombitasvir	28	-4.7974653
Ombitasvir	29	-4.776053
Ombitasvir	30	-4.5804648
	Average $\Delta G_{binding}$	-3.01341553
	5D	0.02000319

Compound	Conformer	ΔGbinding
Camostat	1	-6.04285
Camostat	2	-5.9478555
Camostat	3	-5.9108286
Camostat	4	-5.880108
Camostat	5	5 7200077
Camostat	7	-5 7062001
Camostat	8	-5 5547781
Camostat	9	-5.5303459
Camostat	10	-5.4542723
Camostat	11	-5.4306221
Camostat	12	-5.3901696
Camostat	13	-5.3401365
Camostat	14	-5.2483029
Camostat	15	-5.1767559
Camostat	16	-5.1755605
Camostat	17	-5.001894
Camostat	18	-4.9898071
Camostat	19	-4.9430857
Camostat	20	-4.876555
Camostat	21	-4.7852411
Camostat	22	-4.7760358
Camostat	23	-4.2693329
Camostat	24	-3.7587805
	Average $\Delta G_{\text{binding}}$	-5.27922742
	SD	0.54872159
Edonohon	1	(992(25)
Edovaban	2	-0.8820530
Edovaban	2	6.0505261
Edovaban	1	-5.7649422
Edoxaban	5	-5 7016277
Edoxaban	6	-5 5783224
Edoxaban	7	-5.3962746
Edoxaban	8	-5.3227305
Edoxaban	9	-5.3205738
Edoxaban	10	-5.2506576
Edoxaban	11	-5.2484884
Edoxaban	12	-5.2288833
Edoxaban	13	-5.2250133
Edoxaban	14	-5.2120714
Edoxaban	15	-5.1705141
Edoxaban	16	-5.1128635
Edoxaban	17	-5.0910463
Edoxaban	18	-5.0524874
Edoxaban	19	-5.0045424
Edoxaban	20	-4.9296017
Edoxaban	21	-4.0/52391
Edovaban	22	4.6075740
Edovaban	23	4 3654494
Edoxaban	24	-4 3570585
Edoxaban	25	-4 3081818
Luoxubun	Average AGbinding	-5.24259742
	SD	0.64259121
NCGC00386477	1	-6.4412675
NCGC00386477	2	-5.9841232
NCGC00386477	3	-5.855576
NCGC00386477	4	-5.7207823
NCGC00386477	5	-5.6741104
NCGC00386477	6	-5.6506562
NCGC00386477	7	-5.6110411
NCGC00386477	8	-5.4478011
NCGC00386477	9	-5.4461803

Compound	Conformer	ΔGbinding
NCGC00386477	10	-5.3958054
NCGC00386477	11	-5.3548045
NCGC00386477	12	-5.2550526
NCGC00386477	13	-5.2438397
NCGC00386477	14	-5.1881876
NCGC00386477	15	-5.120954
NCGC00386477	16	-5.0300/46
NCGC003864//	1/	-5.0039954
NCCC00386477	10	-4.8018800
NCCC00386477	20	4.7332400
NCGC00386477	20	-4 636313
NCGC00386477	21	-4 5279136
NCGC00386477	23	-4.5238347
NCGC00386477	24	-4.4817915
NCGC00386477	25	-4.4324522
	Average $\Delta G_{\text{binding}}$	-5.21140482
	SD	0.52631492
Nafamostat	1	-5.783052
Nafamostat	2	-5.5672727
Nafamostat	3	-5.5662684
Nafamostat	4	-5.4643989
Nafamostat	5	-5.4622388
Nafamostat	6	-5.4363241
Nafamostat	7	-5.4281802
Nafamostat	8	-5.4156542
Nafamostat	9	5 3318658
Nafamostat	10	-5 3077483
Nafamostat	12	-5 1793442
Nafamostat	13	-5.0623446
Nafamostat	14	-5.0086064
Nafamostat	15	-4.9340682
Nafamostat	16	-4.8842969
Nafamostat	17	-4.8719869
Nafamostat	18	-4.8711605
Nafamostat	19	-4.7926264
Nafamostat	20	-4.6345181
Nafamostat	21	-4.6133256
Nafamostat	22	-4.0774097
Nafamostat	23	-4.0382085
	Average $\Delta G_{binding}$	-5.0931603
	SD	0.45705614
NCGC00386945	1	-6 2677202
NCGC00386945	2	-5.8147974
NCGC00386945	3	-5.6708345
NCGC00386945	4	-5.6003752
NCGC00386945	5	-5.4398623
NCGC00386945	6	-5.3755302
NCGC00386945	7	-5.273097
NCGC00386945	8	-5.2591763
NCGC00386945	9	-5.2120218
NCGC00386945	10	-5.1153016
NCGC00386945	11	-5.1112304
NCCC00286945	12	-5.09/4422
NCCC00386945	15	-3.0382089
NCCC00386045	14	-4.303322
NCGC00386945	15	-4.8760819
NCGC00386945	17	-4 8132668
NCGC00386945	18	-4.797482
NCGC00386945	19	-4.7948637
NCGC00386945	20	-4.7915201
NCGC00386945	21	-4.7686195

Compound	Conformer	ΔGbinding
NCGC00386945	22	-4.6853576
NCGC00386945	23	-4.6217885
NCGC00386945	24	-4.4223056
NCGC00386945	25	-4.0571074
NCGC00386945	26	-4.0020714
	Average $\Delta G_{binding}$	-5.03064647
	SD	0.50287184
Otamixaban	1	-6.0175567
Otamixaban	2	-5.7299685
Otamixaban	3	-5.6322932
Otamixaban	4	-5.56001
Otamixaban	5	-5.4496741
Otamixaban	6	-5.3958731
Otamixaban	7	-5.2923293
Otamixaban	8	-5.1934028
Otamixaban	9	-5.1780539
Otamixaban	10	-5.1540279
Otamixaban	11	-5.1525192
Otamixaban	12	-5.104033
Otamixaban	13	-5.0980663
Otamixaban	14	-5.0828133
Otamixaban	15	-5.0513377
Otamixaban	16	-5.0475435
Otamixaban	17	-4.9834208
Otamixaban	18	-4.7533231
Otamixaban	19	-4.73839
Otamixaban	20	-4.7017422
Otamixaban	21	-4.6069565
Otamixaban	22	-4.6006813
Otamixaban	23	-4.4703946
Otamixaban	24	-4.2730875
Otamixaban	25	-4.076292
Otamixaban	26	-3.9181862
	Average $\Delta G_{\text{binding}}$	-5.01007603
	SD	0.49946414
Darexaban	1	-5.824955
Darexaban	2	-5.7299123
Darexaban	3	-5.563283
Darexaban	4	-5.4950666
Darexaban	5	-5.4491625
Darexaban	6	-5.35/5301
Darexaban	1	-5.3437848
Darexaban	8	-5.3057985
Darexaban	9	-5.2480159
Darexaban	10	-5.1242040
Darexaban	11	-5.086547
Darexaban	12	-5.0795984
Darexaban	13	-5.0507598
Darevahan	14	-4.9240492
Darexaban	15	-4.82/1/4/
Darevahan	10	4.3004422
Darevahan	17	4.7591606
Darevahan	10	-4.7301000
Darevahan	20	-4.7084003
Darovahan	20	
Darevahan	21	-4.0203700
Darcyahan	22	-4.6402278
Darcyahan	23	
Darovahan	24	-4.0010529
Darevahan	25	-4.0717320
Daltxayall	Δverage AGeom	_4 08230118
	SD	0.46754746
	50	0.70707770

Compound	Conformer	ΔGbinding
Gabexate	1	-5.3681436
Gabexate	2	-5.3153243
Gabexate	3	-5.3048029
Gabexate	4	-5.2681551
Gabexate	5	-5.2648449
Gabexate	6	-5.2557278
Gabexate	7	-5.2517371
Gabexate	8	-5.251121
Gabexate	9	-5.2271938
Gabexate	10	-5.2255993
Gabexate	11	-5.0875754
Gabexate	12	-5.0553536
Gabexate	13	-4.9865375
Gabexate	14	-4.9838514
Gabexate	15	-4.9834967
Gabexate	16	-4.9718957
Gabexate	17	-4.9123788
Gabexate	18	-4.9057102
Gabexate	19	-4.8976898
Gabexate	20	-4.7917051
Gabexate	21	-4.7875376
Gabexate	22	-4.6820951
Gabexate	23	-4.6785526
Gabexate	24	-4.5578337
Gabexate	25	-4.5536962
Gabexate	26	-4.5354271
Gabexate	27	-4.5288396
Gabexate	28	-4.5122361
Gabexate	29	-4.3295536
	Average $\Delta G_{binding}$	-4.94/40054
	SD	0.30095941
Latarahan	1	5.0555702
Letaxaban	1	5 4700511
Letaxaban	2	5 4402868
Letaxaban	3	5 2970622
Letaxaban	5	5 3400348
Letaxaban	5	5 3032170
Letaxaban	7	-5.3032179
Letavaban	8	-5.2313880
Letavaban	9	-5.1020436
Letavaban	10	-5.020450
Letaxaban	11	-4 9803667
Letaxaban	12	-4 9308438
Letaxaban	13	-4.8757157
Letaxaban	14	-4.8737264
Letaxaban	15	-4.7332249
Letaxaban	16	-4.6809821
Letaxaban	17	-4.649158
Letaxaban	18	-4.6135006
Letaxaban	19	-4.5755901
Letaxaban	20	-4.5001082
Letaxaban	21	-4.4170842
Letaxaban	22	-4.3670373
Letaxaban	23	-4.3472133
Letaxaban	24	-4.0853858
Letaxaban	25	-3.9305549
Letaxaban	26	-3.8967683
	Average $\Delta G_{\text{binding}}$	-4.84392881
	SD	0.50794032
Argatroban	1	-5.9366364
Argatroban	2	-5.7820024
Argatroban	3	-5.5289149
Argatroban	4	-5.1951489
Argatroban	5	-5.10601

Compound	Conformer	ΔGbinding
Argatroban	6	-5.0797424
Argatroban	7	-5.0044961
Argatroban	8	-4.9989691
Argatroban	9	-4.9438901
Argatroban	10	-4.9209909
Argatroban	11	-4.8325586
Argatroban	12	-4.8318486
Argatroban	13	-4.7511015
Argatroban	14	-4.746994
Argatroban	15	-4.7196827
Argatroban	16	-4.6884422
Argatroban	17	-4.6304469
Argatroban	18	-4.5986891
Argatroban	19	-4.5/40185
Argatroban	20	-4.5497618
Argatroban	21	-4.5403342
Argatroban	22	-4.479043
Argatroban	23	-4.429338
Argatroban	24	-4.3240738
Argatropan	25	-4.2990855
Argatroban	20	-4.200000
Argatroban	21	-4.1399/40
Argatropan	20	-4.1448520
Argatroban	29	-5.911805
	Average Dobinding	-4.75745139
	50	0.400023473
Sivelestat	1	-5 7663693
Sivelestat	2	-5 6685505
Sivelestat	3	-5.2513843
Sivelestat	4	-5.1074672
Sivelestat	5	-5.0676432
Sivelestat	6	-4.8846173
Sivelestat	7	-4.7638769
Sivelestat	8	-4.667614
Sivelestat	9	-4.6333213
Sivelestat	10	-4.6255341
Sivelestat	11	-4.5483212
Sivelestat	12	-4.5314074
Sivelestat	13	-4.4784012
Sivelestat	14	-4.4594836
Sivelestat	15	-4.4470592
Sivelestat	16	-4.4107747
Sivelestat	17	-4.4071817
Sivelestat	18	-4.3835483
Sivelestat	19	-4.3009076
Sivelestat	20	-4.2904139
Sivelestat	21	-4.2799411
Sivelestat	22	-4.2648997
Sivelestat	23	-4.2099204
Sivelestat	24	-4.04/9288
Sivelestat	25	-3.980907
Sivelestat	26	-3.9492056
	Average $\Delta G_{binding}$	-4.59333383
	50	0.40323007
NCCC003850/3	1	-4.8091416
NCGC00305045	2	-4 800818/
NCGC00385043	3	-4 7585044
NCGC00385043	4	-4.6344757
NCGC00385043	5	-4.6077566
NCGC00385043	6	-4.5341458
NCGC00385043	7	-4.5100379
NCGC00385043	8	-4.4895115
NCGC00385043	9	-4.4750743
NCGC00385043	10	-4.4554081

Compound	Conformer	∆Gbinding
NCGC00385043	11	-4.3122907
NCGC00385043	12	-4.2755661
NCGC00385043	13	-4.26647
NCGC00385043	14	-4.2525153
NCGC00385043	15	-4.2013316
NCGC00385043	16	-4.1468425
NCGC00385043	17	-4.1188512
NCGC00385043	18	-4.1005011
NCGC00385043	19	-4.0778847
NCGC00385043	20	-4.0708661
NCGC00385043	21	-4.048614
NCGC00385043	22	-4.0453215
NCGC00385043	23	-4.0339699
NCGC00385043	24	-4.0254369
NCGC00385043	25	-3.9995716
NCGC00385043	26	-3.9956882
NCGC00385043	27	-3.8087223
NCGC00385043	28	-3.6315114
NCGC00385043	29	-3.5687988
NCGC00385043	30	-3.500308
	Average $\Delta G_{binding}$	-4.21853121
	SD	0.34484591
Bromhexine	1	-4.53442
Bromhexine	2	-4.4252768
Bromhexine	3	-4.3771749
Bromhexine	4	-4.2960958
Bromhexine	5	-4.2618198
Bromhexine	6	-4.2172284
Bromhexine	7	-4.2078066
Bromhexine	8	-4.1676679
Bromhexine	9	-4.0720615
Bromhexine	10	-4.0715098
Bromhexine	11	-4.0458279
Bromhexine	12	-4.0063806
Bromhexine	13	-3.9147584
Bromhexine	14	-3.8586266
Bromhexine	15	-3.7951355
Bromhexine	16	-3.7394795
Bromhexine	17	-3.7024744
Bromhexine	18	-3.5915985
Bromhexine	19	-3.5772321
Bromhexine	20	-3.5499673
Bromhexine	21	-3.5254657
	Average $\Delta G_{\text{binding}}$	-3.997048
	SD	0.3077/818

Equivalence of the number of amino acids, between the generated model of TMPRSS2 and the Uniprot sequence O15393 TMPS2_Human, for the analysis of the interactions shown below.

O15393 TMPS2_Human	TMPRSS2 Model for molecular docking
Val280	Val187
His296	His203
Glu299	Glu206
Asp435	Asp347
Ser436	Ser348
Cys437	Cys349
Gln438	Gln350
Ser441	Ser353
Gly462	Gly378
Ser463	Ser379
Gly464	Gly380
Cys465	Cys381
Lys467	Lys383

1 N SER 348 H-donor 3.47 O HIS 203 H-acceptor 3.05 6-ring CYS 381 pi-H 4.17 2 N CYS 381 pi-H 4.16 3 N CYS 381 pi-H 4.16 3 N CYS 381 pi-H 4.16 3 N CYS 384 H-donor 3.2 O HIS 203 H-acceptor 2.98 5 N CYS 349 H-donor 3.08 6-ring CYS 349 H-donor 3.08 6-ring CYS 381 pi-H 4.19 7 O HIS 203 H-acceptor 3.14 6-ring GLY 380 pi-H 3.87 8 N GLY 380 pi-H 3.98 10 O HIS 203 H-acceptor	Conformer	Ligand	Residues in	TMPRSS2	Interaction	Distance
O HIS 203 H-acceptor 3.05 6-ring CYS 381 pi-H 4.17 2 N CYS 381 pi-H 4.17 3.08 6-ring CYS 381 pi-H 4.16 3 N GLY 378 H-donor 3.2 O HIS 203 H-acceptor 2.97 4 N CYS 349 H-donor 3.35 O HIS 203 H-acceptor 2.98 5 N CYS 349 H-donor 2.98 6-ring CYS 381 pi-H 4.15 6 N CYS 381 pi-H 4.15 6 N CYS 381 pi-H 4.15 7 O HIS 203 H-acceptor 3.14 6-ring GLY 380 pi-H 3.90 0 9 O HIS 20	1	N	SER	348	H-donor	3.47
6-ring CYS 381 pi-H 4.17 2 N CYS 349 H-donor 3.08 6-ring CYS 381 pi-H 4.16 3 N GLY 378 H-donor 3.2 0 HIS 203 H-acceptor 2.97 4 N CYS 349 H-donor 3.35 0 HIS 203 H-acceptor 2.98 5 N CYS 349 H-donor 3.08 6-ring CYS 381 pi-H 4.19 7 O HIS 203 H-acceptor 3.14 6-ring GLY 380 pi-H 3.87 8 N GLY 378 H-donor 3.22 0 HIS 203 H-acceptor 3.14 6-ring GLY 380 pi-H 3.58 10 O HIS 203 H-acceptor 3		0	HIS	203	H-acceptor	3.05
2 N CYS 349 H-donor 3.08 6-ring CYS 381 pi-H 4.16 3 N GLY 378 H-donor 3.2 0 HIS 203 H-acceptor 2.97 4 N CYS 349 H-donor 3.35 0 HIS 203 H-acceptor 2.98 5 N CYS 349 H-donor 2.98 6-ring CYS 381 pi-H 4.15 6 N CYS 381 pi-H 4.19 7 O HIS 203 H-acceptor 3.14 6-ring GLY 380 pi-H 3.87 7 O HIS 203 H-acceptor 3.18 9 O HIS 203 H-acceptor 3.22 6 6-ring GYS 381 pi-H 4.45 10 O HIS		6-ring	CYS	381	pi-H	4.17
6-ring CYS 381 pi-H 4.16 3 N GLY 378 H-donor 3.2 0 HIS 203 H-acceptor 2.97 4 N CYS 349 H-donor 3.35 0 HIS 203 H-acceptor 2.98 5 N CYS 349 H-donor 2.98 6 -ring CYS 381 pi-H 4.15 6 N CYS 349 H-donor 3.08 6-ring CYS 381 pi-H 4.19 7 O HIS 203 H-acceptor 3.14 6-ring GLY 380 pi-H 3.87 8 N GLY 380 pi-H 3.90 10 O HIS 203 H-acceptor 3.18 9 O HIS 203 H-acceptor 3.52 11 O HIS	2	N	CYS	349	H-donor	3.08
3 N GLY 378 H-donor 3.2 0 HIS 203 H-acceptor 2.97 4 N CYS 349 H-donor 3.35 0 HIS 203 H-acceptor 2.98 5 N CYS 349 H-donor 2.98 6-ring CYS 381 pi-H 4.15 6 N CYS 381 pi-H 4.15 6 N CYS 381 pi-H 4.19 7 O HIS 203 H-acceptor 3.14 6-ring GLY 378 H-donor 3.22 0 HIS 203 H-acceptor 3.14 6-ring GLY 380 pi-H 3.98 10 O HIS 203 H-acceptor 3.05 11 O HIS 203 H-acceptor 3.25 0 HIS 203 H-acceptor		6-ring	CYS	381	pi-H	4.16
O HIS 203 H-acceptor 2.97 4 N CYS 349 H-acceptor 2.98 0 HIS 203 H-acceptor 2.98 5 N CYS 349 H-donor 2.98 6-ring CYS 381 pi-H 4.15 6 N CYS 349 H-donor 3.08 6-ring CYS 381 pi-H 4.19 7 O HIS 203 H-acceptor 3.14 6-ring GLY 380 pi-H 3.87 8 N GLY 378 H-donor 3.22 0 HIS 203 H-acceptor 3.14 6-ring GLY 380 pi-H 3.94 10 O HIS 203 H-acceptor 3.04 6-ring CYS 381 pi-H 4.45 11 O HIS 203 H-acceptor	3	N	GLY	378	H-donor	3.2
4 N CYS 349 H-donor 3.35 0 HIS 203 H-acceptor 2.98 5 N CYS 349 H-donor 2.98 6-ring CYS 381 pi-H 4.15 6 N CYS 349 H-donor 3.08 6-ring CYS 381 pi-H 4.19 7 O HIS 203 H-acceptor 3.14 6-ring GLY 380 pi-H 3.87 8 N GLY 378 H-donor 3.22 0 HIS 203 H-acceptor 3.18 9 O HIS 203 H-acceptor 3.22 6-ring CYS 381 pi-H 4.45 11 O HIS 203 H-acceptor 3.29 0 HIS 203 H-acceptor 3.29 3.29 0 HIS 203 H-		0	HIS	203	H-acceptor	2.97
O HIS 203 H-acceptor 2.98 5 N CYS 349 H-donor 2.98 6-ring CYS 381 pi-H 4.15 6 N CYS 381 pi-H 4.15 6 N CYS 381 pi-H 4.19 7 O HIS 203 H-acceptor 3.14 6-ring GLY 378 H-donor 3.22 0 HIS 203 H-acceptor 3.18 9 O HIS 203 H-acceptor 3.14 6-ring GLY 380 pi-H 3.98 10 O HIS 203 H-acceptor 3.52 6-ring CYS 381 pi-H 4.45 11 O HIS 203 H-acceptor 3.29 0 HIS 203 H-acceptor 3.29 0 HIS 203 H-acceptor	4	N	CYS	349	H-donor	3.35
5 N CYS 349 H-donor 2.98 6-ring CYS 381 pi-H 4.15 6 N CYS 349 H-donor 3.08 6-ring CYS 381 pi-H 4.19 7 O HIS 203 H-acceptor 3.14 6-ring GLY 380 pi-H 3.87 8 N GLY 378 H-donor 3.22 0 HIS 203 H-acceptor 3.18 9 O HIS 203 H-acceptor 3.04 6-ring GLY 380 pi-H 3.98 3.04 10 O HIS 203 H-acceptor 3.52 6-ring CYS 381 pi-H 4.45 11 O HIS 203 H-acceptor 3.29 0 HIS 203 H-acceptor 3.48 14 N VAL		0	HIS	203	H-acceptor	2.98
6-ring CYS 381 pi-H 4.15 6 N CYS 349 H-donor 3.08 6-ring CYS 381 pi-H 4.19 7 O HIS 203 H-acceptor 3.14 6-ring GLY 380 pi-H 3.87 8 N GLY 378 H-donor 3.22 0 HIS 203 H-acceptor 3.18 9 O HIS 203 H-acceptor 3.04 6-ring GLY 380 pi-H 3.98 10 O HIS 203 H-acceptor 3.52 6-ring CYS 381 pi-H 4.45 11 O HIS 203 H-acceptor 3.05 12 N SER 348 H-donor 3.4 N LYS 383 H-acceptor 3.29 O HIS 203 H-acceptor	5	N	CYS	349	H-donor	2.98
6 N CYS 349 H-donor 3.08 6-ring CYS 381 pi-H 4.19 7 O HIS 203 H-acceptor 3.14 6-ring GLY 380 pi-H 3.87 8 N GLY 378 H-donor 3.22 0 HIS 203 H-acceptor 3.18 9 O HIS 203 H-acceptor 3.04 6-ring GLY 380 pi-H 3.98 10 O HIS 203 H-acceptor 3.52 6-ring CYS 381 pi-H 4.45 11 O HIS 203 H-acceptor 3.29 12 N SER 348 H-donor 3.4 13 N SER 379 H-donor 3.4 14 N VAL 187 H-donor 3.4 15 N ASN		6-ring	CYS	381	pi-H	4.15
6-ring CYS 381 pi-H 4.19 7 O HIS 203 H-acceptor 3.14 6-ring GLY 380 pi-H 3.87 8 N GLY 378 H-donor 3.22 0 HIS 203 H-acceptor 3.18 9 O HIS 203 H-acceptor 3.04 6-ring GLY 380 pi-H 3.98 10 O HIS 203 H-acceptor 3.04 6-ring CYS 381 pi-H 4.45 11 O HIS 203 H-acceptor 3.05 12 N SER 348 H-donor 3.35 N LYS 383 H-acceptor 3.4 N SER 379 H-donor 3.4 N MIS 203 H-acceptor 3.31 13 N SER 379 H-donor	6	Ν	CYS	349	H-donor	3.08
7 0 HIS 203 H-acceptor 3.14 6-ring GLY 380 pi-H 3.87 8 N GLY 378 H-donor 3.22 0 HIS 203 H-acceptor 3.14 9 0 HIS 203 H-acceptor 3.04 6-ring GLY 380 pi-H 3.98 10 0 HIS 203 H-acceptor 3.52 6-ring CYS 381 pi-H 4.45 11 0 HIS 203 H-acceptor 3.05 12 N SER 348 H-donor 3.35 N LYS 383 H-acceptor 3.05 13 N SER 379 H-donor 3.4 14 N VAL 187 H-donor 4.04 15 N ASN 249 H-acceptor 3.31 6-ring GLY <		6-ring	CYS	381	pi-H	4.19
6-ring GLY 380 pi-H 3.87 8 N GLY 378 H-donor 3.22 0 HIS 203 H-acceptor 3.18 9 O HIS 203 H-acceptor 3.04 6-ring GLY 380 pi-H 3.98 10 O HIS 203 H-acceptor 3.52 6-ring CYS 381 pi-H 4.45 11 O HIS 203 H-acceptor 3.05 12 N SER 348 H-donor 3.35 12 N SER 348 H-donor 3.43 13 N SER 379 H-donor 3.48 14 N VAL 187 H-donor 4.04 15 N ASN 249 H-acceptor 3.31 6-ring HIS 203 H-acceptor 3.26 6-ring GLY	7	0	HIS	203	H-acceptor	3.14
8 N GLY 378 H-donor 3.22 0 HIS 203 H-acceptor 3.18 9 0 HIS 203 H-acceptor 3.04 6-ring GLY 380 pi-H 3.98 10 0 HIS 203 H-acceptor 3.52 6-ring CYS 381 pi-H 4.45 11 0 HIS 203 H-acceptor 3.52 6-ring CYS 381 pi-H 4.45 11 0 HIS 203 H-acceptor 3.05 12 N SER 348 H-donor 3.4 N LYS 338 H-acceptor 3.29 0 HIS 203 H-acceptor 3.48 14 N VAL 187 H-donor 4.44 14 N VAL 187 H-donor 3.48 14 N ASN 2		6-ring	GLY	380	pi-H	3.87
O HIS 203 H-acceptor 3.18 9 O HIS 203 H-acceptor 3.04 6-ring GLY 380 pi-H 3.98 10 O HIS 203 H-acceptor 3.52 6-ring CYS 381 pi-H 4.45 11 O HIS 203 H-acceptor 3.05 12 N SER 348 H-donor 3.35 N LYS 383 H-acceptor 3.29 O HIS 203 H-acceptor 3.29 I O HIS 203 H-acceptor 3.4 N LYS 383 H-acceptor 3.4 I4 N VAL 187 H-donor 4.04 15 N ASN 249 H-acceptor 3.31 6-ring GLY 378 pi-H 4.26 17 N ASN 249	8	Ν	GLY	378	H-donor	3.22
9 0 HIS 203 H-acceptor 3.04 6-ring GLY 380 pi-H 3.98 10 0 HIS 203 H-acceptor 3.52 6-ring CYS 381 pi-H 4.45 11 0 HIS 203 H-acceptor 3.05 12 N SER 348 H-donor 3.35 N LYS 383 H-acceptor 3.29 O HIS 203 H-acceptor 3.4 13 N SER 379 H-donor 3.4 N HIS 203 H-acceptor 3.4 14 N VAL 187 H-donor 4.04 15 N ASN 249 H-acceptor 3.31 6-ring GLY 378 pi-H 4.26 16 N HIS 203 H-acceptor 3.34 6-ring GLY 371		0	HIS	203	H-acceptor	3.18
6-ring GLY 380 pi-H 3.98 10 O HIS 203 H-acceptor 3.52 6-ring CYS 381 pi-H 4.45 11 O HIS 203 H-acceptor 3.05 12 N SER 348 H-donor 3.29 O HIS 203 H-acceptor 3 O HIS 203 H-acceptor 3 I3 N SER 379 H-donor 3.4 N HIS 203 H-acceptor 3.4 N HIS 203 H-acceptor 3.4 H N VAL 187 H-donor 4.45 14 N VAL 187 H-donor 4.45 15 N ASN 249 H-acceptor 3.26 6-ring GLY 378 pi-H 4.26 17 N ASN 249 H-accep	9	0	HIS	203	H-acceptor	3.04
10 0 HIS 203 H-acceptor 3.52 6-ring CYS 381 pi-H 4.45 11 0 HIS 203 H-acceptor 3.05 12 N SER 348 H-donor 3.35 N LYS 383 H-acceptor 3.29 O HIS 203 H-acceptor 3.4 N LYS 383 H-acceptor 3.4 O HIS 203 H-acceptor 3.4 N SER 379 H-donor 3.4 N HIS 203 H-acceptor 3.31 14 N VAL 187 H-donor 4.04 15 N ASN 249 H-acceptor 3.31 6-ring GLY 378 pi-H 4.26 17 N ASN 249 H-acceptor 3.04 6-ring GLY 351 H-acceptor 3.02		6-ring	GLY	380	pi-H	3.98
6-ring CYS 381 pi-H 4.45 11 O HIS 203 H-acceptor 3.05 12 N SER 348 H-donor 3.35 N LYS 383 H-acceptor 3.29 O HIS 203 H-acceptor 3 13 N SER 379 H-donor 3.4 14 N SER 379 H-donor 4.04 15 N ASN 249 H-acceptor 3.31 6-ring HIS 203 pi-cation 4.45 16 N HIS 203 pi-cation 4.45 16 N HIS 203 pi-tation 4.45 16 N HIS 203 H-acceptor 3.34 6-ring GLY 378 pi-H 4.26 17 N ASN 249 H-acceptor 3.02 16 O <	10	0	HIS	203	H-acceptor	3.52
11 O HIS 203 H-acceptor 3.05 12 N SER 348 H-donor 3.35 N LYS 383 H-acceptor 3.29 O HIS 203 H-acceptor 3 13 N SER 379 H-donor 3.4 N HIS 203 H-acceptor 3.4 N SER 379 H-donor 3.4 N HIS 203 H-acceptor 3.48 14 N VAL 187 H-donor 4.04 15 N ASN 249 H-acceptor 3.31 6-ring GLY 378 pi-H 4.26 17 N ASN 249 H-acceptor 3.34 6-ring GLY 378 pi-H 3.26 17 N ASN 249 H-acceptor 3.02 18 O GLY 351 H-		6-ring	CYS	381	pi-H	4.45
12 N SER 348 H-donor 3.35 N LYS 383 H-acceptor 3.29 O HIS 203 H-acceptor 3 13 N SER 379 H-donor 3.4 N HIS 203 H-acceptor 3.48 14 N VAL 187 H-donor 4.04 15 N ASN 249 H-acceptor 3.31 6-ring HIS 203 pi-cation 4.45 16 N HIS 203 H-acceptor 3.26 6-ring GLY 378 pi-H 4.26 17 N ASN 249 H-acceptor 3.34 6-ring GLY 380 pi-H 3.81 18 O GLY 351 H-acceptor 3.02 20 O HIS 203 H-acceptor 3.23 21 O HIS	11	0	HIS	203	H-acceptor	3.05
N LYS 383 H-acceptor 3.29 O HIS 203 H-acceptor 3 13 N SER 379 H-donor 3.4 N HIS 203 H-acceptor 3.4 N HIS 203 H-acceptor 3.48 14 N VAL 187 H-donor 4.04 15 N ASN 249 H-acceptor 3.31 6-ring HIS 203 pi-cation 4.45 16 N HIS 203 H-acceptor 3.26 6-ring GLY 378 pi-H 4.26 17 N ASN 249 H-acceptor 3.34 6-ring GLY 380 pi-H 3.81 18 O GLY 351 H-acceptor 3.02 20 O HIS 203 H-acceptor 3.23 21 O HIS 203	12	N	SER	348	H-donor	3.35
O HIS 203 H-acceptor 3 13 N SER 379 H-donor 3.4 N HIS 203 H-acceptor 3.48 14 N VAL 187 H-donor 4.04 15 N ASN 249 H-acceptor 3.31 6-ring HIS 203 pi-cation 4.45 16 N HIS 203 H-acceptor 3.26 6-ring GLY 378 pi-H 4.26 17 N ASN 249 H-acceptor 3.34 6-ring GLY 378 pi-H 4.26 17 N ASN 249 H-acceptor 3.08 18 O GLY 351 H-acceptor 3.02 20 O HIS 203 H-acceptor 3.02 21 O HIS 203 H-acceptor 3.23 22 N		N	LYS	383	H-acceptor	3.29
13 N SER 379 H-donor 3.4 N HIS 203 H-acceptor 3.48 14 N VAL 187 H-donor 4.04 15 N ASN 249 H-acceptor 3.31 6-ring HIS 203 pi-cation 4.45 16 N HIS 203 H-acceptor 3.26 6-ring GLY 378 pi-H 4.26 17 N ASN 249 H-acceptor 3.34 6-ring GLY 378 pi-H 4.26 17 N ASN 249 H-acceptor 3.34 6-ring GLY 380 pi-H 3.81 18 O GLY 351 H-acceptor 3.02 20 O HIS 203 H-acceptor 3.23 21 O HIS 203 H-acceptor 3.23 22 N		0	HIS	203	H-acceptor	3
N HIS 203 H-acceptor 3.48 14 N VAL 187 H-donor 4.04 15 N ASN 249 H-acceptor 3.31 6-ring HIS 203 pi-cation 4.45 16 N HIS 203 H-acceptor 3.26 6-ring GLY 378 pi-H 4.26 17 N ASN 249 H-acceptor 3.34 6-ring GLY 378 pi-H 4.26 17 N ASN 249 H-acceptor 3.34 6-ring GLY 380 pi-H 3.81 18 O GLY 351 H-acceptor 3.02 20 O HIS 203 H-acceptor 3.23 21 O HIS 203 H-acceptor 3.23 22 N GLY 351 H-acceptor 3.24 23 O <th>13</th> <th>N</th> <th>SER</th> <th>379</th> <th>H-donor</th> <th>3.4</th>	13	N	SER	379	H-donor	3.4
14 N VAL 187 H-donor 4.04 15 N ASN 249 H-acceptor 3.31 6-ring HIS 203 pi-cation 4.45 16 N HIS 203 H-acceptor 3.26 6-ring GLY 378 pi-H 4.26 17 N ASN 249 H-acceptor 3.34 6-ring GLY 378 pi-H 3.81 18 O GLY 380 pi-H 3.81 18 O GLY 351 H-acceptor 3.02 20 O HIS 203 H-acceptor 3.02 20 O HIS 203 H-acceptor 3.23 21 O HIS 203 H-acceptor 3.23 22 N GLY 351 H-acceptor 3.23 22 N GLY 351 H-acceptor 3.24		N	HIS	203	H-acceptor	3.48
15 N ASN 249 H-acceptor 3.31 6-ring HIS 203 pi-cation 4.45 16 N HIS 203 H-acceptor 3.26 6-ring GLY 378 pi-th 4.26 17 N ASN 249 H-acceptor 3.34 6-ring GLY 380 pi-H 3.81 18 O GLY 351 H-acceptor 3.02 20 O GLY 351 H-acceptor 3.02 20 O HIS 203 H-acceptor 3.02 20 O HIS 203 H-acceptor 3.02 20 O HIS 203 H-acceptor 3.23 21 O HIS 203 H-acceptor 3.23 22 N GLY 351 H-acceptor 3.23 22 N GLY 351 H-acceptor 3.24	14	N	VAL	187	H-donor	4.04
6-ring HIS 203 pi-cation 4.45 16 N HIS 203 H-acceptor 3.26 6-ring GLY 378 pi-H 4.26 17 N ASN 249 H-acceptor 3.34 6-ring GLY 380 pi-H 3.81 18 O GLY 351 H-acceptor 3.02 20 O GLY 351 H-acceptor 3.02 20 O HIS 203 H-acceptor 3.02 21 O HIS 203 H-acceptor 3.23 22 N GLY 380 pi-H 3.76 21 O HIS 203 H-acceptor 3.23 22 N GLY 351 H-acceptor 3.23 22 N GLY 351 H-acceptor 3.24 23 O HIS 203 H-acceptor 3.21	15	N	ASN	249	H-acceptor	3.31
16 N HIS 203 H-acceptor 3.26 6-ring GLY 378 pi-H 4.26 17 N ASN 249 H-acceptor 3.34 6-ring GLY 380 pi-H 3.81 18 O GLY 351 H-acceptor 3.08 19 O GLY 351 H-acceptor 3.02 20 O HIS 203 H-acceptor 3.02 20 O HIS 203 H-acceptor 3.02 20 O HIS 203 H-acceptor 3.76 21 O HIS 203 H-acceptor 3.23 22 N GLY 351 H-acceptor 3.23 22 N GLY 351 H-acceptor 3.23 23 O HIS 203 H-acceptor 3.24 23 O HIS 203 H-acceptor 3.21 </th <th></th> <th>6-ring</th> <th>HIS</th> <th>203</th> <th>pi-cation</th> <th>4.45</th>		6-ring	HIS	203	pi-cation	4.45
6-ring GLY 378 pi-H 4.26 17 N ASN 249 H-acceptor 3.34 6-ring GLY 380 pi-H 3.81 18 O GLY 351 H-acceptor 3.08 19 O GLY 351 H-acceptor 3.02 20 O HIS 203 H-acceptor 3.37 6-ring GLY 380 pi-H 3.76 21 O HIS 203 H-acceptor 3.23 22 N GLY 351 H-acceptor 3.23 22 N GLY 351 H-acceptor 3.23 23 O HIS 203 H-acceptor 3.24 23 O HIS 203 H-acceptor 3.25 24 N GLU 206 H-donor 3.25 25 O HIS 203 H-acceptor 3.12	16	N	HIS	203	H-acceptor	3.26
17 N ASN 249 H-acceptor 3.34 6-ring GLY 380 pi-H 3.81 18 O GLY 351 H-acceptor 3.08 19 O GLY 351 H-acceptor 3.02 20 O HIS 203 H-acceptor 3.37 6-ring GLY 380 pi-H 3.76 21 O HIS 203 H-acceptor 3.23 22 N GLY 351 H-acceptor 3.23 22 N GLY 351 H-acceptor 3.23 23 O HIS 203 H-acceptor 3.24 23 O HIS 203 H-acceptor 3.21 24 N GLU 206 H-donor 3.25 25 O HIS 203 H-acceptor 3.12 6-ring GLY 380 pi-H 3.93		6-ring	GLY	378	р1-Н	4.26
b-ring GLY 380 pi-H 3.81 18 O GLY 351 H-acceptor 3.08 19 O GLY 351 H-acceptor 3.02 20 O HIS 203 H-acceptor 3.37 6-ring GLY 380 pi-H 3.76 21 O HIS 203 H-acceptor 3.23 22 N GLY 351 H-acceptor 3.23 22 N GLY 351 H-acceptor 3.23 23 O HIS 203 H-acceptor 3.24 23 O HIS 203 H-acceptor 3.21 24 N GLU 206 H-donor 3.25 25 O HIS 203 H-acceptor 3.12 6-ring GLY 380 pi-H 3.93 26 N GLY 351 H-acceptor 3.22	17	N	ASN	249	H-acceptor	3.34
18 O GLY 351 H-acceptor 3.08 19 O GLY 351 H-acceptor 3.02 20 O HIS 203 H-acceptor 3.37 6-ring GLY 380 pi-H 3.76 21 O HIS 203 H-acceptor 3.23 22 N GLY 351 H-acceptor 3.23 22 N GLY 351 H-acceptor 3.23 23 O HIS 203 H-acceptor 3.24 23 O HIS 203 H-acceptor 3.25 24 N GLU 206 H-donor 3.25 25 O HIS 203 H-acceptor 3.12 6-ring GLY 380 pi-H 3.93 26 N GLY 351 H-acceptor 3.22 27 N GLY 380 H-acceptor 3.35	10	6-ring	GLY	380	pi-H	3.81
19 0 GLY 351 H-acceptor 3.02 20 0 HIS 203 H-acceptor 3.37 6-ring GLY 380 pi-H 3.76 21 0 HIS 203 H-acceptor 3.23 22 N GLY 351 H-acceptor 3.23 22 N GLY 351 H-acceptor 3.23 23 O HIS 203 H-acceptor 3.24 23 O HIS 203 H-acceptor 3.21 24 N GLU 206 H-donor 3.25 25 O HIS 203 H-acceptor 3.12 6-ring GLY 380 pi-H 3.93 26 N GLY 351 H-acceptor 3.22 27 N GLY 380 H-acceptor 3.35 N GLY 380 H-acceptor 3.22	18	0	GLY	351	H-acceptor	3.08
20 0 HIS 203 H-acceptor 3.37 6-ring GLY 380 pi-H 3.76 21 O HIS 203 H-acceptor 3.23 22 N GLY 351 H-acceptor 3.23 22 N GLY 351 H-acceptor 3.23 0 HIS 203 H-acceptor 3.24 23 O HIS 203 H-acceptor 3.21 24 N GLU 206 H-donor 3.25 25 O HIS 203 H-acceptor 3.12 6-ring GLY 380 pi-H 3.93 26 N GLY 351 H-acceptor 3.22 27 N GLY 380 H-acceptor 3.35 N GLY 380 H-acceptor 3.35	19	0	GLY	351	H-acceptor	3.02
o-ring GL Y 380 pl-H 5.76 21 O HIS 203 H-acceptor 3.23 22 N GLY 351 H-acceptor 3.59 O HIS 203 H-acceptor 3.24 23 O HIS 203 H-acceptor 3.21 24 N GLU 206 H-donor 3.25 25 O HIS 203 H-acceptor 3.12 6-ring GLY 380 pi-H 3.93 26 N GLY 351 H-acceptor 3.22 27 N GLY 351 H-acceptor 3.35 N GLY 380 H-acceptor 3.35	20			203	n-acceptor	3.37
21 0 HIS 205 H-acceptor 3.25 22 N GLY 351 H-acceptor 3.59 0 HIS 203 H-acceptor 3.24 23 O HIS 203 H-acceptor 3.21 24 N GLU 206 H-donor 3.25 25 O HIS 203 H-acceptor 3.12 6-ring GLY 380 pi-H 3.93 26 N GLY 351 H-acceptor 3.22 27 N GLY 351 H-acceptor 3.35 N GLY 380 H-acceptor 3.61		0-mig		380	рі-п Цараатtar	3.70
Zz N GL 1 551 H-acceptor 5.59 O HIS 203 H-acceptor 3.24 Z3 O HIS 203 H-acceptor 3.21 Z4 N GLU 206 H-donor 3.25 Z5 O HIS 203 H-acceptor 3.12 6-ring GLY 380 pi-H 3.93 Z6 N GLY 351 H-acceptor 3.22 Z7 N GLY 380 H-acceptor 3.35 N GLY 380 H-acceptor 3.35	21	N		205		3.23
O HIS 205 H-acceptor 3.24 23 O HIS 203 H-acceptor 3.21 24 N GLU 206 H-donor 3.25 25 O HIS 203 H-acceptor 3.12 6-ring GLY 380 pi-H 3.93 26 N GLY 351 H-acceptor 3.22 27 N GLY 380 H-acceptor 3.35 N GLY 380 H-acceptor 3.35		IN O		202	H acceptor	3.39
23 0 113 203 H-acceptor 3.21 24 N GLU 206 H-donor 3.25 25 O HIS 203 H-acceptor 3.12 6-ring GLY 380 pi-H 3.93 26 N GLY 351 H-acceptor 3.22 27 N GLY 351 H-acceptor 3.35 N GLY 380 H-acceptor 3.61	22	0		203	H-acceptor	3.24
27 N GLC 200 H-dolloi 3.23 25 O HIS 203 H-acceptor 3.12 6-ring GLY 380 pi-H 3.93 26 N GLY 351 H-acceptor 3.22 27 N GLY 351 H-acceptor 3.35 N GLY 380 H-acceptor 3.35	23	N	GUU	203	H-donor	3.21
25 0 1113 203 11-acceptor 3.12 6-ring GLY 380 pi-H 3.93 26 N GLY 351 H-acceptor 3.22 27 N GLY 351 H-acceptor 3.35 N GLY 380 H-acceptor 3.61	25	0	HIS	200	H_acceptor	3.23
26 N GLY 351 H-acceptor 3.22 27 N GLY 351 H-acceptor 3.35 N GLY 380 H-acceptor 3.35	23	6-ring	GLV	380	ni-H	3.03
20 N GLY 351 H-acceptor 3.22 27 N GLY 351 H-acceptor 3.35 N GLY 380 H-acceptor 3.61	26	N	GLY	351	H-acceptor	3.23
N GLY 380 H-acceptor 3.61	20	N	GLY	351	H-acceptor	3 35
		N	GLY	380	H-acceptor	3.61

Table S2. Interaction report of each conformer of compound T1. Number of conformer, Atom of compound, Amino acid in TMPRSS2, Type of interaction and Distance in angstroms.

Table S3. Interaction report of each conformer of compound T2. Number of conformer, Atom of compound, Amino acid in TMPRSS2, Type of interaction and Distance in angstroms.

Conformer	Ligand	Residues in	TMPRSS2	Interaction	Distance
1	S	VAL	187	H-donor	3.32
	С	GLU	206	H-donor	3.55
	Ν	HIS	203	H-acceptor	3.4
	0	HIS	203	H-acceptor	3.43
2	S	VAL	187	H-donor	3.21
	С	GLU	206	H-donor	3.49
	Ν	HIS	203	H-acceptor	3.45
	0	HIS	203	H-acceptor	3.1
3	0	HIS	203	H-acceptor	3.25
	6-ring	LEU	209	pi-H	3.74
4	Ν	VAL	187	H-donor	3.09

Conformer	Ligand	Residues in	TMPRSS2	Interaction	Distance
	5-ring	GLY	351	pi-H	3.98
5	Ν	VAL	187	H-donor	2.98
	6-ring	HIS	203	pi-cation	3.59
6	Ν	HIS	203	H-acceptor	3.59
	0	HIS	203	H-acceptor	3.1
	0	HIS	203	H-acceptor	3.29
7	Ν	GLU	206	H-donor	2.93
8	Ν	VAL	187	H-donor	3.15
	Ν	HIS	203	H-acceptor	3.82
	0	HIS	203	H-acceptor	3
9	6-ring	GLY	351	pi-H	3.57
11	6-ring	TYR	250	pi-H	4.49
	6-ring	GLN	350	pi-H	4.52
	6-ring	GLY	351	pi-H	4.34
12	S	SER	348	H-donor	3.26
	0	HIS	203	H-acceptor	3.1
	6-ring	CYS	204	pi-H	4.2
13	0	HIS	203	H-acceptor	2.96
14	0	HIS	203	H-acceptor	3.29
15	N	GLY	351	H-acceptor	3.11
16	S	GLU	206	H-donor	3.35
	6-ring	HIS	203	pi-cation	3.92
	6-ring	GLY	351	pi-H	4.07
17	S	SER	348	H-donor	3.3
	5-ring	GLN	350	pi-H	4.18
18	0	HIS	203	H-acceptor	3.09
	6-ring	GLY	351	pi-H	3.45
19	0	HIS	203	H-acceptor	2.91
	6-ring	CYS	204	pi-H	3.9
20	0	HIS	203	H-acceptor	2.99
	5-ring	GLY	351	pi-H	3.72
21	6-ring	HIS	203	pi-H	3.71
	6-ring	HIS	203	pi-cation	3.71
22	0	GLY	351	H-acceptor	3.23
	6-ring	CYS	204	pi-H	4.32
23	N	GLY	378	H-donor	3.06
24	5-ring	HIS	203	pi-cation	3.38

Table S4	. Interaction report of each	conformer of con	mpound T3. Number	of conformer,	Atom of compound,
	Amino acid in TM	PRSS2 Type of	interaction and Dista	nce in anostror	ns

Conformer	Ligand	Residues in	TMPRSS2	Interaction	Distance
1	С	GLY	378	H-donor	3.44
	0	HIS	203	H-acceptor	3.33
2	S	SER	376	H-donor	3.88
	5-ring	HIS	203	pi-cation	3.33
	6-ring	TRP	377	pi-H	4.72
3	5-ring	VAL	187	pi-H	4.1
4	S	SER	348	H-donor	3.83
	S	CYS	381	H-donor	3.67
	S	VAL	187	H-donor	4.03
	Ν	HIS	203	H-acceptor	3.35
5	S	SER	348	H-donor	3.53
	S	CYS	381	H-donor	4.25
6	Ν	VAL	187	H-donor	2.92
7	Ν	GLY	351	H-acceptor	3.34
8	6-ring	GLY	378	pi-H	3.99
9	Ν	GLY	351	H-acceptor	3.37
10	S	VAL	205	H-donor	3.55
	S	GLU	206	H-donor	3.73
	5-ring	VAL	187	pi-H	3.65
	5-ring	VAL	187	pi-H	4.03
11	Ν	HIS	203	H-acceptor	3.41
	Ν	HIS	203	H-acceptor	3.05
	0	GLY	351	H-acceptor	3.24
12	0	HIS	203	H-acceptor	3.04
13	S	HIS	203	H-donor	3.87

Conformer	Ligand	Residues in	TMPRSS2	Interaction	Distance
	S	ASN	249	H-donor	3.28
	S	SER	353	H-donor	3.95
	S	GLY	378	H-donor	3.9
14	S	VAL	187	H-donor	3.34
	S	GLY	351	H-donor	3.24
15	Ν	GLU	206	H-donor	2.95
	S	VAL	205	H-donor	3.88
	S	GLU	206	H-donor	3.58
16	5-ring	VAL	187	pi-H	4.97
17	0	HIS	203	H-acceptor	2.87
	5-ring	GLY	378	pi-H	4.62
18	5-ring	GLN	350	pi-H	4.3
19	S	GLY	351	H-donor	3.67
	6-ring	HIS	203	pi-cation	3.46
20	S	GLU	206	H-donor	3.16
	Ν	HIS	203	H-acceptor	3.31
	Ν	HIS	203	H-acceptor	3.34
	Ν	HIS	203	H-acceptor	3
21	0	GLY	351	H-acceptor	2.86
	5-ring	VAL	187	pi-H	4.63
	5-ring	GLY	380	pi-H	4.12
22	5-ring	VAL	187	pi-H	3.76
23	S	GLY	378	H-donor	3.72
24	S	ASN	249	H-donor	3.45
	0	TYR	250	H-acceptor	3
	0	ASN	249	H-acceptor	3

Table S5. Interaction report of each conformer of compound T4. Number of conformer, Atom of compound, Amino acid in TMPRSS2, Type of interaction and Distance in angstroms.

		, , , , , , , , , , , , , , , , , , , ,		. 8	-
Conformer	Ligand	Residues in	TMPRSS2	Interaction	Distance
1	N	GLY	378	H-donor	3
	Ν	HIS	203	H-acceptor	3.41
2	Ν	CYS	349	H-donor	3.06
3	S	HIS	203	H-donor	4.27
	Ν	CYS	349	H-donor	3
	6-ring	GLY	380	pi-H	3.77
4	Ν	GLY	378	H-donor	3.05
	Ν	HIS	203	H-acceptor	3.22
	0	GLY	351	H-acceptor	2.95
	6-ring	VAL	187	pi-H	4.17
5	Ν	GLU	206	H-donor	2.86
	Ν	VAL	187	H-donor	3.03
	6-ring	LEU	209	pi-H	3.93
6	S	GLY	351	H-donor	3.49
	S	SER	348	H-donor	4.03
	0	THR	254	H-acceptor	3.15
	5-ring	HIS	203	pi-H	3.67
	6-ring	CYS	204	pi-H	3.82
7	S	SER	348	H-donor	3.63
	С	ASN	249	H-donor	3.42
	0	TYR	250	H-acceptor	3.15
	0	ASN	249	H-acceptor	3.11
8	Ν	HIS	203	H-acceptor	3.15
9	С	ASN	249	H-donor	3.42
	0	TYR	250	H-acceptor	3.16
	0	ASN	249	H-acceptor	3.12
10	Ν	VAL	187	H-donor	3.17
	6-ring	GLY	380	pi-H	4.28
11	Ν	HIS	203	H-acceptor	3.18
	6-ring	VAL	187	pi-H	3.98
12	S	HIS	203	H-donor	3.93
	Ν	CYS	349	H-donor	3.36
	С	VAL	187	H-donor	3.34
	5-ring	GLY	351	pi-H	4.11
13	S	HIS	203	H-donor	4.16
	0	CYS	381	H-donor	3.95

Conformer	Ligand	Residues in	TMPRSS2	Interaction	Distance
	0	CYS	381	H-acceptor	3.39
14	6-ring	ASN	249	pi-H	3.61
15	N	GLU	206	H-donor	2.9
	N	VAL	187	H-donor	2.99
16	Ν	VAL	187	H-donor	2.97
	6-ring	LYS	302	pi-H	4.58
	6-ring	GLY	303	pi-H	3.73
17	5-ring	VAL	187	pi-H	3.84
18	N	GLU	206	H-donor	3.12
	С	GLU	206	H-donor	3.63
	С	VAL	187	H-donor	3.38
	0	HIS	203	H-acceptor	3.65
19	N	HIS	203	H-acceptor	3.45
	0	GLY	351	H-acceptor	3.23
	6-ring	GLY	378	pi-H	4.11
20	S	CYS	188	H-donor	4.15
	5-ring	HIS	203	pi-H	3.61
21	6-ring	HIS	203	pi-cation	3.86
22	0	HIS	203	H-acceptor	3.01
23	0	GLY	351	H-acceptor	3.42
	0	HIS	203	H-acceptor	3.01
	5-ring	GLU	206	pi-H	4.27
	5-ring	TRP	213	pi-H	3.78
24	S	VAL	187	H-donor	3.4
	S	GLY	351	H-donor	3.95
	0	HIS	203	H-acceptor	3.13
25	Ν	GLU	206	H-donor	2.8
	6-ring	LEU	209	pi-H	4.26
26	Ν	VAL	187	H-donor	2.98
	6-ring	GLN	350	pi-H	4.08
27	S	VAL	187	H-donor	3.37
	Ν	HIS	203	H-acceptor	3.53
	Ν	HIS	203	H-acceptor	3.37
	6-ring	ASN	249	pi-H	3.61
28	Ν	VAL	187	H-donor	3.09
29	S	HIS	186	H-donor	3.9

Table S6. Interaction report of each conformer of compound T5. Number of conformer, Atom of compoun	d,
Amino acid in TMPRSS2, Type of interaction and Distance in angstroms.	

Conformer	Ligand	Residues in	TMPRSS2	Interaction	Distance
1	S	HIS	203	H-acceptor	4.02
	S	GLY	378	H-acceptor	3.4
	0	ASN	249	H-acceptor	3.13
	0	HIS	203	H-acceptor	3.03
	5-ring	HIS	203	pi-H	3.81
2	0	HIS	203	H-acceptor	3.04
3	Ν	VAL	187	H-donor	3.08
	S	GLY	351	H-acceptor	3.34
	5-ring	CYS	204	pi-H	3.8
4	Ν	VAL	187	H-donor	3.2
	S	HIS	203	H-acceptor	3.8
	S	TRP	377	H-acceptor	3.85
5	S	HIS	203	H-acceptor	3.73
	S	GLY	378	H-acceptor	3.34
	0	HIS	203	H-acceptor	2.99
6	S	GLY	351	H-acceptor	3.4
7	Ν	VAL	187	H-donor	3.09
	S	GLY	351	H-acceptor	3.34
	5-ring	CYS	204	pi-H	3.83
8	S	GLY	351	H-acceptor	3.39
9	6-ring	GLN	350	pi-H	3.96
10	5-ring	HIS	203	pi-H	3.73
11	5-ring	CYS	204	pi-H	4.15
12	Ν	VAL	187	H-donor	3.11
	5-ring	CYS	204	pi-H	3.83
13	S	CYS	204	H-acceptor	3.6

Conformer	Ligand	Residues in TMPRSS2		Interaction	Distance
	6-ring	GLN	350	pi-H	4.25
14	S	GLY	351	H-acceptor	3.76
	6-ring	HIS	203	pi-H	3.66
15	S	HIS	203	H-acceptor	3.68
	S	TRP	377	H-acceptor	3.75
	6-ring	VAL	187	pi-H	3.86
16	Ν	VAL	187	H-donor	3.27
	S	HIS	203	H-acceptor	4.05
	S	CYS	204	H-acceptor	3.94
	5-ring	VAL	187	pi-H	4.75
17	S	GLY	351	H-acceptor	3.39
18	Ν	SER	348	H-donor	3.33
	С	SER	348	H-donor	3.31
	S	HIS	203	H-acceptor	3.62
	S	GLY	378	H-acceptor	3.55
	0	LYS	302	H-acceptor	3.13
	6-ring	HIS	203	pi-H	4.67
19	0	THR	254	H-acceptor	3.28
	5-ring	GLY	378	pi-H	4.5
20	S	HIS	203	H-donor	3.79
	0	HIS	203	H-acceptor	3.02
	6-ring	ASN	249	pi-H	3.36
21	0	THR	305	H-acceptor	3.14
	6-ring	VAL	187	pi-H	4.63
22	С	VAL	187	H-donor	3.23
	S	HIS	203	H-acceptor	4.05
	6-ring	HIS	203	pi-cation	4.57
23	S	HIS	203	H-acceptor	3.82
	S	GLY	378	H-acceptor	3.35
24	S	HIS	203	H-acceptor	3.73
	S	TRP	377	H-acceptor	4.36
	0	GLY	351	H-acceptor	3
25	5-ring	GLN	350	pi-H	4.31
	5-ring	GLY	351	pi-H	3.47
26	С	SER	348	H-donor	3.37
	S	HIS	203	H-acceptor	3.2
	S	GLY	378	H-acceptor	4.44
	6-ring	HIS	203	pi-H	3.86
27	0	CYS	381	H-donor	4.11
	0	LYS	383	H-acceptor	3.09
	0	CYS	381	H-acceptor	3.28

 Table S7. Interaction report of each conformer of compound T6. Number of conformer, Atom of compound, Amino acid in TMPRSS2, Type of interaction and Distance in angstroms.

Conformer	Ligand	Residues in '	TMPRSS2	Interaction	Distance
1	N	HIS	186	H-donor	3.16
	6-ring	HIS	203	pi-H	3.56
2	Ν	SER	348	H-donor	3
	6-ring	VAL	187	pi-H	4.58
	6-ring	GLY	380	pi-H	3.86
3	S	GLU	206	H-donor	4.14
4	6-ring	HIS	203	pi-H	3.64
5	6-ring	HIS	203	pi-H	3.64
6	Ν	SER	348	H-donor	2.92
	0	HIS	203	H-acceptor	3.16
	6-ring	GLY	380	pi-H	4.44
7	Ν	GLY	351	H-donor	3.08
	0	HIS	203	H-acceptor	3.22
	6-ring	GLY	380	pi-H	4.46
8	6-ring	LEU	209	pi-H	3.74
9	0	HIS	203	H-acceptor	2.93
10	S	GLY	378	H-donor	3.55
	N	VAL	187	H-donor	3.26
11	S	VAL	187	H-donor	3.22
	6-ring	HIS	203	pi-cation	3.95
12	6-ring	HIS	203	pi-cation	4.19

Conformer	Ligand	Residues in	Residues in TMPRSS2		Distance
13	Ν	GLU	206	H-donor	2.93
14	6-ring	HIS	203	pi-cation	4.69
15	Ν	GLY	351	H-donor	3.08
16	6-ring	HIS	203	pi-cation	3.96
17	6-ring	HIS	203	pi-cation	4.11
18	С	GLU	206	H-donor	3.48
	0	HIS	203	H-acceptor	3.03
	6-ring	ASN	249	pi-H	3.61
19	0	HIS	203	H-acceptor	2.95
	0	HIS	203	H-acceptor	3.19

 Table S8. Interaction report of each conformer of compound T7. Number of conformer, Atom of compound, Amino acid in TMPRSS2, Type of interaction and Distance in angstroms.

Conformer	Ligand	Residues in 7	TMPRSS2	Interaction	Distance
1	N	HIS	203	H-acceptor	3.37
2	С	ASN	249	H-donor	3.43
	0	ASN	249	H-acceptor	3.2
3	S	HIS	203	H-donor	3.55
	5-ring	VAL	187	pi-H	4.34
4	С	ASN	249	H-donor	3.41
5	N	VAL	187	H-donor	3.08
	N	GLY	351	H-acceptor	3.07
6	N	VAL	187	H-donor	3.21
7	S	HIS	203	H-donor	3.6
	0	HIS	203	H-acceptor	2.92
8	Ν	VAL	187	H-donor	3.07
	Ν	GLY	351	H-acceptor	3.1
9	S	HIS	203	H-donor	3.42
	0	GLY	351	H-acceptor	3.15
10	S	HIS	203	H-donor	3.67
	0	HIS	203	H-acceptor	3.01
	0	GLY	351	H-acceptor	3.33
	0	HIS	203	H-acceptor	2.91
11	Ν	GLY	351	H-acceptor	3.22
	0	HIS	203	H-acceptor	3.13
	С	HIS	186	H-pi	4.13
	5-ring	GLY	378	pi-H	4.06
12	0	HIS	203	H-acceptor	3.11
13	Ν	GLU	206	H-donor	2.86
	0	GLN	350	H-acceptor	3.13
	6-ring	GLN	350	pi-H	4.14
14	С	GLU	206	H-donor	3.32
	0	HIS	203	H-acceptor	3.12
15	S	SER	376	H-donor	3.86
	0	TYR	250	H-acceptor	3.04
16	0	HIS	203	H-acceptor	2.86
17	0	HIS	203	H-acceptor	2.97
18	0	GLY	351	H-acceptor	3.33
	0	GLY	378	H-acceptor	3.43
	5-ring	HIS	203	pi-H	3.71
19	0	GLY	351	H-acceptor	3.08
-	С	TRP	377	Н-рі	3.66
-	5-ring	HIS	203	pi-H	3.63
20	S	GLY	351	H-donor	3.79
	0	GLN	350	H-acceptor	3.33
	6-ring	ASN	249	pi-H	4.04
21	0	LYS	302	H-acceptor	3.16
22	S	GLY	351	H-donor	3.61
	0	LYS	302	H-acceptor	2.93
23	0	LYS	302	H-acceptor	3.11
24	N	GLU	206	H-donor	3.33
	N	GLU	206	H-donor	3.15

 Table S9. Interaction report of each conformer of compound T8. Number of conformer, Atom of compound, Amino acid in TMPRSS2, Type of interaction and Distance in angstroms

Conformer	Ligand	Residues in	TMPRSS2	Interaction	Distance
1	S	GLU	301	H-donor	3.64
	С	CYS	381	H-donor	3.8
	0	LYS	383	H-acceptor	3.58
	0	CYS	381	H-acceptor	3.05
	5-ring	HIS	203	pi-cation	3.51
	5-ring	GLY	303	pi-H	4.14
2	S	LYS	302	H-acceptor	4.01
	S	GLY	303	H-acceptor	3.85
	0	CYS	381	H-acceptor	3.44
	0	LYS	383	H-acceptor	3.18
3	S	HIS	203	H-donor	3.09
	S	VAL	205	H-donor	3.86
	S	ASN	249	H-donor	3.47
	S	CYS	204	H-acceptor	3.82
	S	TRP	377	H-acceptor	4 26
	0	HIS	203	H-acceptor	3.28
4	S	GLY	351	H-acceptor	3.45
	0	GLN	350	H acceptor	3.45
	5 ring	CVS	281	ni H	1.10
5	S-Ing		202	рі-п U sasantan	4.34
3	2		203		4
	5	GLY	380	H-acceptor	3.91
	0	HIS	203	H-acceptor	3.08
	0	HIS	203	H-acceptor	3.12
6	0	GLY	351	H-acceptor	3.11
	6-ring	LEU	209	pi-H	3.77
7	S	GLY	378	H-donor	3.76
	0	HIS	203	H-acceptor	3.02
	6-ring	LEU	209	pi-H	3.88
8	S	GLU	206	H-donor	3.45
	0	HIS	203	H-acceptor	3.24
	5-ring	VAL	187	pi-H	4.57
	5-ring	CYS	204	pi-H	4.43
9	S	HIS	203	H-donor	3.25
	S	CYS	204	H-acceptor	3.73
	S	TRP	377	H-acceptor	4.27
10	5-ring	GLY	351	pi-H	4.04
11	N	GLY	378	H-donor	3.01
	S	CYS	204	H-acceptor	3.95
	0	HIS	203	H-acceptor	3.29
12	N	SER	379	H-donor	3.27
	0	HIS	203	H-acceptor	3.23
	6-ring	VAL	187	pi-H	4.14
13	N	CYS	349	H-donor	2.99
	0	LYS	383	H-acceptor	3
14	N	CYS	349	H-donor	2.98
14	S	LYS	302	H-acceptor	3 51
	S	GLY	303	H-acceptor	4 15
	0	HIS	203	H-acceptor	3 15
15	5	GLV	351	H-acceptor	<u> </u>
13	0		202	H acceptor	4.47
16	N		203	U donor	2.9
10	IN S		251		2.19
	3		202	n-acceptor	3.30
	0		203	n-acceptor	2.97
	0	HIS	203	n-acceptor	2.99
18	o-ring		383	рі-Н	3.63
17	2	GLN	350	H-acceptor	3.86
	0	HIS	203	H-acceptor	3.02
	5-ring	HIS	203	pi-H	3.64
18	N	SER	379	H-donor	3.12
	S	HIS	203	H-acceptor	3.22
	0	GLY	351	H-acceptor	3
19	S	GLY	351	H-acceptor	3.43
	6-ring	CYS	204	pi-H	4.62
20	S	LYS	383	H-acceptor	3.77
	0	LYS	383	H-acceptor	2.91
	6-ring	HIS	203	pi-H	3.84
				-	

Conformer	Ligand	Residues in	TMPRSS2	Interaction	Distance
21	S	SER	379	H-donor	3.86
	S	HIS	203	H-acceptor	3.86
22	S	HIS	203	H-acceptor	4.34
	0	HIS	203	H-acceptor	3.1
	0	HIS	203	H-acceptor	3.46
23	0	HIS	203	H-acceptor	3.05
	6-ring	ASP	329	pi-H	4.82
	5-ring	SER	379	pi-H	4.64
24	S	HIS	203	H-acceptor	3.86
	S	LYS	302	H-acceptor	3.38
	0	GLY	351	H-acceptor	2.93
	5-ring	VAL	187	pi-H	4.11
25	S	GLY	351	H-acceptor	3.47
	S	THR	305	H-acceptor	3.47
	0	LYS	302	H-acceptor	3.26
	0	GLY	351	H-acceptor	3.07
	6-ring	HIS	203	pi-cation	4.78
26	S	CYS	381	H-donor	4.32
	S	CYS	381	H-acceptor	3.89
	S	GLY	351	H-acceptor	3.43
27	0	GLY	351	H-acceptor	2.83
28	S	GLU	206	H-donor	3.42
	S	HIS	203	H-acceptor	3.43
29	0	CYS	381	H-donor	3.18

 Table S10. Interaction report of each conformer of compound T9. Number of conformer, Atom of compound, Amino acid in TMPRSS2, Type of interaction and Distance in angstroms.

Conformer	Ligand	Residues in '	TMPRSS2	Interaction	Distance
1	0	GLY	351	H-acceptor	3.13
2	N	GLU	206	H-donor	2.91
3	S	HIS	203	H-donor	3.64
	0	HIS	203	H-acceptor	3.32
	6-ring	VAL	187	pi-H	4.05
4	N	HIS	203	H-acceptor	3.07
	0	GLY	351	H-acceptor	2.96
	6-ring	CYS	204	pi-H	3.99
5	Ν	VAL	187	H-donor	2.81
	S	VAL	187	H-donor	3.25
	N	HIS	203	H-acceptor	3.39
	N	HIS	203	H-acceptor	3.47
	5-ring	CYS	204	pi-H	4.14
	5-ring	GLY	351	pi-H	3.4
6	0	GLY	378	H-acceptor	2.88
7	S	GLY	351	H-donor	3.62
	Ν	HIS	203	H-acceptor	3.27
	6-ring	CYS	204	pi-H	4.04
8	S	SER	376	H-donor	4.02
	Ν	GLY	351	H-acceptor	3.05
	6-ring	CYS	381	pi-H	4.48
9	S	SER	348	H-donor	3.33
	0	HIS	203	H-acceptor	3.22
10	5-ring	CYS	204	pi-H	4.03
11	S	HIS	203	H-donor	3.15
12	Ν	GLU	206	H-donor	3.09
13	Ν	CYS	349	H-donor	2.92
	S	CYS	349	H-donor	3.67
	5-ring	GLY	380	pi-H	3.74
14	Ν	GLY	351	H-acceptor	3.35
	0	HIS	203	H-acceptor	3.05
	5-ring	GLY	380	pi-H	3.99
15	S	VAL	187	H-donor	3.36
	S	GLY	351	H-donor	3.76
	5-ring	HIS	203	pi-H	3.59
	6-ring	HIS	203	pi-cation	3.85
16	S	VAL	187	H-donor	3.33
	S	GLY	351	H-donor	3.8

Conformer	Ligand	Residues in	TMPRSS2	Interaction	Distance
	5-ring	HIS	203	pi-H	3.58
	6-ring	HIS	203	pi-cation	3.77
17	Ν	VAL	187	H-donor	2.88
	5-ring	GLY	351	pi-H	3.54
18	Ν	VAL	187	H-donor	2.9
	5-ring	GLY	351	pi-H	3.46
19	S	GLU	206	H-donor	3.33
	С	TRP	215	H-pi	4.63
20	Ν	ASN	249	H-acceptor	3.07
21	0	HIS	203	H-acceptor	3.31
	6-ring	CYS	381	pi-H	4.19
22	S	HIS	203	H-acceptor	3.38
	5-ring	ASN	249	pi-H	4.08

Table S11. Interaction report of each conformer of compound T10. Number of cont	former, Atom of compound,
Amino acid in TMPRSS2, Type of interaction and Distance in ar	ngstroms.

Conformer	Ligand	Residues in	TMPRSS2	Interaction	Distance
1	N	CYS	349	H-donor	3.15
	0	HIS	203	H-acceptor	3.07
	C	HIS	186	Н-рі	3.67
2	0	GLY	351	H-acceptor	3.23
	0	HIS	203	H-acceptor	3.08
	6-ring	HIS	203	pi-cation	4.83
3	6-ring	HIS	203	pi-cation	4.87
4	S	HIS	203	H-donor	3.73
	0	HIS	203	H-acceptor	3.26
5	0	HIS	203	H-acceptor	2.99
6	0	GLY	351	H-acceptor	3.06
	0	HIS	203	H-acceptor	2.98
7	S	HIS	203	H-donor	3.88
	5-ring	VAL	187	pi-H	4.26
8	5-ring	GLN	350	pi-H	4
9	N	GLU	206	H-donor	2.94
10	N	CYS	349	H-donor	3.04
	N	GLY	351	H-acceptor	3.07
	0	HIS	203	H-acceptor	3.1
11	Ν	GLU	206	H-donor	3.17
	5-ring	VAL	187	pi-H	4.3
12	Ν	VAL	187	H-donor	2.85
	Ν	GLU	206	H-donor	3
	0	ASN	249	H-acceptor	3.21
	5-ring	GLY	351	pi-H	3.55
13	S	GLU	206	H-donor	3.43
	N	HIS	203	H-acceptor	3.11
	6-ring	HIS	203	pi-cation	3.69
14	N	GLU	206	H-donor	2.92
	S	GLU	206	H-donor	3.53
	5-ring	HIS	203	pi-cation	3.48
15	S	ASN	249	H-donor	3.76
	5-ring	HIS	203	pi-cation	3.55
16	0	GLY	303	H-acceptor	3.17
	0	GLN	350	H-acceptor	3.17
	0	HIS	203	H-acceptor	3.38
	5-ring	VAL	187	pi-H	4.35
17	5-ring	GLY	378	pi-H	4.62
18	N	GLU	206	H-donor	2.88
19	0	GLY	351	H-acceptor	3.1
20	N	GLU	206	H-donor	2.96
21	0	HIS	203	H-acceptor	3.37
	0	GLY	351	H-acceptor	2.9
22	0	HIS	203	H-acceptor	2.93
	6-ring	VAL	187	рі-Н	4.6
23	5	VAL	187	H-donor	3.8
	5	GLY	351	H-donor	3.99
24	<u> </u>	HIS	186	H-donor	4.29
25	N	GLU	206	H-donor	3.21

Conformer	Ligand	Residues in	TMPRSS2	Interaction	Distance
	С	GLU	206	H-donor	3.59
	0	HIS	203	H-acceptor	3.64

 Table S12. Interaction report of each conformer of Daclatasvir. Number of conformer, Atom of compound, Amino acid in TMPRSS2, Type of interaction and Distance in angstroms.

Conformer	Ligand	Residues in	TMPRSS2	Interaction	Distance
1	N	CYS	349	H-donor	2.99
	0	GLY	351	H-acceptor	3.59
2	6-ring	VAL	187	pi-H	3.96
3	5-ring	CYS	381	pi-H	4.18
4	N	ASN	249	H-donor	3.1
	0	HIS	203	H-acceptor	2.93
	5-ring	CYS	381	pi-H	4.35
5	0	HIS	203	H-acceptor	2.89
	5-ring	CYS	381	pi-H	4.38
6	N	CYS	349	H-donor	3.28
7	N	GLU	206	H-donor	3.29
	5-ring	CYS	381	pi-H	4.36
8	5-ring	CYS	381	pi-H	4.28
9	N	GLU	206	H-donor	3.28
10	5-ring	CYS	381	pi-H	4.35
11	0	CYS	381	H-donor	4.1
	N	GLU	206	H-donor	3.38
	N	GLU	206	H-donor	3.46
	Ν	CYS	381	H-donor	3.78
	0	CYS	381	H-acceptor	3.48
12	5-ring	HIS	203	pi-cation	3.88
13	5-ring	LYS	302	pi-cation	3.83
	6-ring	GLN	350	pi-H	3.83
14	N	GLU	206	H-donor	3.24
15	Ν	GLY	351	H-acceptor	3.08
	6-ring	HIS	203	pi-cation	3.78
16	0	GLY	303	H-acceptor	3.37
	0	HIS	203	H-acceptor	3.28
	Ν	LYS	383	H-acceptor	3.02
	5-ring	CYS	381	pi-H	4.23
16	0	GLY	378	H-acceptor	3.06
17	Ν	GLU	206	H-donor	3.13
	0	LYS	383	H-acceptor	3.24
18	0	LYS	383	H-acceptor	2.91
	N	GLY	303	H-acceptor	3.35
19	Ν	GLU	206	H-donor	3.34
	0	LYS	383	H-acceptor	2.98
20	Ν	GLU	206	H-donor	3.41
21	6-ring	GLN	350	pi-H	4.05

 Table S13. Interaction report of each conformer of Ombitasvir. Number of conformer, Atom of compound, Amino acid in TMPRSS2, Type of interaction and Distance in angstroms.

Conformer	Ligand	Residues in	TMPRSS2	Interaction	Distance
1	6-ring	HIS	203	pi-cation	3.75
2	6-ring	HIS	203	pi-cation	4.09
3	Ν	GLU	206	H-donor	3.11
	0	CYS	381	H-donor	3.38
4	0	SER	379	H-acceptor	3
	0	ARG	386	H-acceptor	3.16
	0	ARG	386	H-acceptor	2.91
	0	HIS	203	H-acceptor	3.05
5	0	GLY	351	H-acceptor	3.12
6	0	ARG	386	H-acceptor	3.08
7	0	HIS	203	H-acceptor	2.91
8	0	HIS	203	H-acceptor	3.52
9	Ν	SER	379	H-donor	3.19
	0	HIS	203	H-acceptor	3.2
10	0	CYS	381	H-donor	3.82
	0	LYS	383	H-acceptor	3.19

Conformer	Ligand	Residues in	TMPRSS2	Interaction	Distance
11	С	TRP	377	H-pi	4.11
12	Ν	SER	379	H-donor	3.4
13	Ν	GLU	206	H-donor	3.29
	0	HIS	203	H-acceptor	2.91
	6-ring	GLN	350	pi-H	3.66
14	Ν	GLU	206	H-donor	3.42
	0	LYS	383	H-acceptor	2.95
15	0	GLY	303	H-acceptor	3.39
16	0	ARG	386	H-acceptor	3.29
17	Ν	GLU	206	H-donor	3.54
	Ν	GLU	206	H-donor	3.17
	0	HIS	203	H-acceptor	3.22
	0	ASN	249	H-acceptor	3.22
18	Ν	GLU	206	H-donor	3.4
	Ν	GLU	206	H-donor	3.15
	0	HIS	203	H-acceptor	3.1
	0	ASN	249	H-acceptor	3.21
19	0	ASN	249	H-acceptor	3.22
20	0	TYR	250	H-acceptor	3.12
	0	LYS	383	H-acceptor	3.26
	0	GLY	303	H-acceptor	3.24
21	0	ASN	249	H-acceptor	3.43
	0	ARG	386	H-acceptor	2.96
22	0	LYS	383	H-acceptor	2.94
	6-ring	GLN	350	pi-H	3.64
23	0	ARG	386	H-acceptor	2.96
24	Ν	GLU	206	H-donor	3.15
	0	LYS	302	H-acceptor	2.94
	0	HIS	203	H-acceptor	3.11
25	0	ARG	386	H-acceptor	2.95

Table S14. Interaction report of each conformer of Camostat. Number of conformer, Atom of compound, Amino acid in TMPRSS2, Type of interaction and Distance in angstroms.

Conformer	Ligand	Residues in	TMPRSS2	Interaction	Distance
1	N	SER	379	H-donor	2.8
	0	HIS	203	H-acceptor	3.19
2	0	HIS	203	H-acceptor	3.42
	N	GLU	206	ionic	3.5
	N	GLU	206	ionic	3.5
	N	GLU	206	ionic	3.83
3	0	HIS	203	H-acceptor	3.37
	0	HIS	203	H-acceptor	3.07
	N	GLU	206	ionic	3.83
	N	GLU	206	ionic	3.53
	Ν	GLU	206	ionic	3.87
4	0	GLY	351	H-acceptor	3.1
	N	GLU	206	ionic	3.5
	Ν	GLU	206	ionic	3.37
	Ν	GLU	206	ionic	3.98
	N	GLU	206	ionic	3.72
5	Ν	GLU	206	H-donor	2.99
	Ν	GLU	206	ionic	2.99
	Ν	GLU	206	ionic	3.92
	Ν	GLU	206	ionic	3.63
6	0	HIS	203	H-acceptor	3.39
	Ν	GLU	206	ionic	3.66
	Ν	GLU	206	ionic	3.65
	Ν	GLU	206	ionic	3.97
	Ν	GLU	206	ionic	3.16
7	Ν	GLU	206	H-donor	3.13
	0	GLY	351	H-acceptor	3.17
	N	GLU	206	ionic	3.13
	6-ring	HIS	203	pi-H	3.92
8	N	GLU	206	ionic	3.65
	Ν	GLU	206	ionic	3.86
9	0	HIS	203	H-acceptor	3.61

Conformer	Ligand	Residues in	TMPRSS2	Interaction	Distance
	0	HIS	203	H-acceptor	3.27
	N	GLU	206	ionic	3.6
	N	GLU	206	ionic	3.7
	N	GLU	206	ionic	3.69
	Ν	GLU	206	ionic	3.55
10	0	HIS	203	H-acceptor	3.39
	Ν	GLU	206	ionic	3.77
	N	GLU	206	ionic	3.91
	Ν	GLU	206	ionic	3.91
	Ν	GLU	206	ionic	3.15
	Ν	GLU	206	ionic	3.64
11	Ν	GLU	206	ionic	3.86
	Ν	GLU	206	ionic	3.49
	Ν	GLU	206	ionic	2.93
	Ν	GLU	206	ionic	4
12	Ν	GLU	206	H-donor	2.94
	Ν	GLU	206	H-donor	3.3
	Ν	GLU	206	ionic	2.94
	Ν	GLU	206	ionic	3.3
13	Ν	GLU	206	H-donor	2.98
	Ν	GLU	206	ionic	2.98
	Ν	GLU	206	ionic	3.89
	N	GLU	206	ionic	3.67
14	Ν	GLU	206	ionic	3.75
	Ν	GLU	206	ionic	3.45
15	N	GLU	206	H-donor	3.55
	0	HIS	203	H-acceptor	2.96
	N	GLU	206	ionic	3.55
	Ν	GLU	206	ionic	2.87
	6-ring	ASN	249	pi-H	4.09
16	N	GLU	206	H-donor	3.24
	Ν	GLU	206	H-donor	2.95
	Ν	GLU	206	ionic	3.24
	Ν	GLU	206	ionic	3.51
	Ν	GLU	206	ionic	2.95
17	Ν	GLU	206	ionic	3.68
	N	GLU	206	ionic	3.91
	Ν	GLU	206	ionic	3.5
18	N	GLU	206	H-donor	3.23
	N	GLU	206	H-donor	2.95
	0	HIS	203	H-acceptor	3.16
	0	HIS	203	H-acceptor	2.91
	N	GLU	206	ionic	2.9
	N	GLU	206	ionic	3.23
	N	GLU	206	ionic	3.87
	N	GLU	206	ionic	2.95
19	N	SER	379	H-donor	3.03
20	N	GLU	206	H-donor	2.95
	0	HIS	203	H-acceptor	3.58
	N	GLU	206	ionic	3.15
	N	GLU	206	ionic	2.95
	N	GLU	206	ionic	3.11
21	N	SER	348	H-donor	2.9
22	N	GLU	206	H-donor	3 23
	N	GLU	206	H-donor	3.07
	N	GLU	206	ionic	3 23
	N	GLU	206	ionic	3.54
	N	GLU	206	ionic	3.07
23	N	GLU	200	H-dopor	2.83
43	N	GLU	200	ionic	2.05
	N	GLU	200	ionic	2.05
24	0	CLU	200	Haccentor	3.30
24	0		202	H acceptor	3.23
	N		203	n-acceptor	2.90
	N		200	ionic	2.0/
	IN N		200	ionic	4
	IN	ULU	206	10110	3.33

Conformer	Ligand	Residues in	TMPRSS2	Interaction	Distance
	Ν	GLU	206	ionic	3.37
	Ν	GLU	206	ionic	3.62
	Ν	GLU	206	ionic	3.37

 Table S15. Interaction report of each conformer of Edoxaban. Number of conformer, Atom of compound, Amino acid in TMPRSS2, Type of interaction and Distance in angstroms.

Conformer	Ligand	Residues in	TMPRSS2	Interaction	Distance
1	N	HIS	186	H-donor	3.06
	0	HIS	203	H-acceptor	3.16
2	0	HIS	203	H-acceptor	3.35
3	Ν	GLU	206	H-donor	2.84
	0	HIS	203	H-acceptor	3.08
	N	GLU	206	ionic	2.84
4	N	GLU	206	H-donor	2.99
-	0	GLY	378	H-acceptor	2.89
	0	GLY	351	H-acceptor	3.23
	N	GLU	206	ionic	2 99
5	N	GLU	206	H-donor	2.91
U	0	HIS	203	H-acceptor	3.06
	N	GLU	205	ionic	2.91
	5-ring	HIS	200	ni-cation	3.92
6	N	SER	348	H-dopor	3.72
U	0	LIS	203	H acceptor	3.02
7	0		203	H deper	3.02
/	0		202	H-uolioi	2.16
	6 ring		203	n-acceptor	5.10
0	0-mig N		203	pi-cation	4.48
δ	IN O		200	H-donor	2.84
			351	n-acceptor	3.07
	N	GLU	206	10110	2.84
0	6-ring	HIS	203	p1-cation	4.32
9	0	GLY	3/8	H-acceptor	2.98
10	S	VAL	18/	H-donor	3.74
	N	SER	348	H-donor	3.16
11	0	GLY	351	H-acceptor	3.08
12	0	GLY	351	H-acceptor	2.86
	0	HIS	203	H-acceptor	2.98
	N	GLU	206	ionic	3.81
13	0	GLY	351	H-acceptor	3.07
	0	HIS	203	H-acceptor	3.1
	N	GLU	206	ionic	3.98
14	N	TRP	377	cation-pi	4.23
	Ν	TRP	377	cation-pi	4.48
15	Ν	GLU	206	H-donor	3.22
	0	HIS	203	H-acceptor	3.3
	0	HIS	203	H-acceptor	2.89
	N	GLU	206	ionic	3.22
	Ν	GLU	206	ionic	3.35
16	N	GLU	206	H-donor	2.75
	0	HIS	203	H-acceptor	3.47
	N	GLU	206	ionic	2.75
17	0	HIS	203	H-acceptor	2.92
	6-ring	GLY	380	pi-H	4.24
18	N	GLN	350	H-donor	2.96
19	S	SER	348	H-donor	4.08
	6-ring	CYS	381	pi-H	4.61
20	0	GLY	351	H-acceptor	3.15
21	CL	SER	348	H-donor	3.43
	С	TRP	215	H-pi	4.94
22	0	HIS	203	H-acceptor	2.99
23	Ν	CYS	349	H-donor	3.26
	N	ASN	249	H-donor	3
	0	HIS	203	H-acceptor	3.06
24	Ν	GLU	206	H-donor	3.45
	0	HIS	203	H-acceptor	3.32
	Ν	GLU	206	ionic	3.45
	Ν	GLU	206	ionic	3.8

Conformer	Ligand	Residues in '	TMPRSS2	Interaction	Distance
1	N	GLU	206	H-donor	2.86
	Ν	LYS	383	H-acceptor	3.01
	Ν	GLU	206	ionic	2.86
	Ν	GLU	206	ionic	3.82
2	Ν	GLU	206	H-donor	2.96
	Ν	GLU	206	ionic	2.96
3	Ν	GLU	206	H-donor	2.95
	Ν	GLU	206	ionic	2.95
4	Ν	SER	348	H-donor	2.9
	N	GLY	378	H-donor	3.2
	6-ring	SER	379	pi-H	4.69
5	0	HIS	203	H-acceptor	2.98
-	N	LYS	383	H-acceptor	2.99
	5-ring	CYS	381	ni-H	4 28
6	N	GUU	206	H-donor	2.89
0	N	IVS	383	H acceptor	3.03
	N	CLU	206	ionic	2.05
	IN 5 ring	CVS	200	ni U	4.09
7	J-IIIg 6 min a		200	pi-n	4.30
/ 0	0-mig	CLU	209	рі-п	3.9
0	N	GLU	206	H-donor	2.92
	N	GLU	206	10110	2.92
0	N	GLU	206	10110	3.54
9	N	THR	254	H-donor	3.03
	N	LYS	302	H-acceptor	3.48
10	N	GLU	206	H-donor	2.96
	N	LYS	383	H-acceptor	3.15
	N	GLU	206	ionic	2.96
11	N	GLY	378	H-donor	3.04
	0	HIS	203	H-acceptor	3.41
	6-ring	HIS	203	pi-cation	3.82
12	N	LYS	383	H-acceptor	2.99
13	5-ring	VAL	187	pi-H	4.08
14	Ν	GLU	206	H-donor	2.89
	Ν	GLU	206	ionic	2.89
	Ν	GLU	206	ionic	3.79
	6-ring	VAL	187	pi-H	4.49
15	Ν	SER	379	H-donor	3.24
	0	HIS	203	H-acceptor	3.21
16	0	HIS	203	H-acceptor	3.29
17	Ν	GLU	206	ionic	3.91
18	Ν	GLU	206	H-donor	2.88
	N	GLU	206	ionic	2.88
19	N	GLU	206	H-donor	3.56
-	N	LYS	383	H-acceptor	2.99
	N	GLU	206	ionic	3 56
	N	GLU	200	ionic	3 48
20	N	GLU	200	H-donor	20
20	N	GLU	200	ionic	2.9
	11	ULU	200	TOILIC	2.9
	N	GLU	206	ionia	Λ

Table S16. Interaction report of each conformer of NCGC00386477. Number of conformer, Atom of compound. Amino acid in TMPRSS2. Type of interaction and Distance in angstroms.

 Table S17. Interaction report of each conformer of Nafamostat. Number of conformer, Atom of compound, Amino acid in TMPRSS2, Type of interaction and Distance in angstroms.

Conformer	Ligand	Residues in	TMPRSS2	Interaction	Distance
1	Ν	GLU	206	H-donor	2.91
	Ν	SER	348	H-donor	3.01
	Ν	GLY	351	H-donor	2.98
	Ν	SER	348	H-donor	3.14
	Ν	GLU	206	ionic	2.91
2	Ν	SER	348	H-donor	2.72
	Ν	GLU	206	ionic	3.73
3	Ν	GLU	206	H-donor	2.94
	Ν	SER	348	H-donor	2.98

Conformer	Ligand	Residues in	TMPRSS2	Interaction	Distance
	Ν	GLY	351	H-donor	2.99
	Ν	SER	348	H-donor	3.04
	Ν	GLU	206	ionic	2.94
4	Ν	SER	348	H-donor	2.86
	Ν	GLU	206	ionic	3.46
	Ν	GLU	206	ionic	3.23
5	Ν	GLU	206	H-donor	2.88
	Ν	GLU	206	ionic	2.88
6	Ν	SER	348	H-donor	2.76
	Ν	GLU	206	H-donor	2.87
	Ν	GLU	206	ionic	2.87
7	Ν	GLU	206	H-donor	2.93
	Ν	SER	348	H-donor	3.08
	Ν	SER	348	H-donor	2.91
	N	GLU	206	ionic	2.93
8	N	GLY	378	H-donor	3.09
	Ν	SER	348	H-donor	2.78
	Ν	GLU	206	ionic	3.63
	Ν	GLU	206	ionic	3.41
	6-ring	HIS	203	pi-cation	4.35
9	N	GLU	206	H-donor	2.99
	Ν	CYS	349	H-donor	3.17
	Ν	SER	348	H-donor	2.93
-	Ν	GLU	206	ionic	2.99
10	Ν	SER	348	H-donor	2.94
-	Ν	GLY	351	H-donor	3.05
	Ν	SER	348	H-donor	3.08
11	Ν	GLU	206	H-donor	2.92
	Ν	CYS	349	H-donor	3.15
	Ν	GLU	206	ionic	2.92
12	Ν	GLU	206	H-donor	3.48
	Ν	SER	348	H-donor	3.49
	Ν	GLU	206	ionic	3.48
13	N	GLU	206	H-donor	2.94
	Ν	GLY	351	H-donor	3.17
	Ν	GLU	206	ionic	2.94
	Ν	ASP	352	ionic	3.91
14	Ν	GLU	206	H-donor	2.96
	Ν	CYS	349	H-donor	3.23
	Ν	SER	348	H-donor	2.81
	N	GLU	206	ionic	2.96
15	Ν	SER	348	H-donor	2.81
	Ν	GLU	206	ionic	3.48
	N	GLU	206	ionic	3.24
16	N	SER	348	H-donor	2.72
	N	CYS	349	H-donor	3.07
	N	GLU	206	ionic	3.38
	N	GLU	206	ionic	3.91
17	Ν	SER	348	H-donor	3.21
	Ν	SER	348	H-donor	2.94
	Ν	GLU	206	ionic	3.37
	Ν	GLU	206	ionic	3.26
	6-ring	VAL	187	pi-H	3.88
18	N	CYS	349	H-donor	3.02
	Ν	GLU	206	H-donor	3.05
	Ν	GLU	206	H-donor	3.22
	Ν	GLU	206	ionic	3.05
	Ν	GLU	206	ionic	3.95
	N	GLU	206	ionic	3.79
	Ν	GLU	206	ionic	3.22
19	Ν	SER	348	H-donor	2.72
	Ν	CYS	349	H-donor	3.07
	N	GLU	206	ionic	3.67
	N	GLU	206	ionic	3.94
	N	GLU	206	ionic	3,68
20	N	GLU	206	H-dopor	2.85
40	1 * 1		200	11-00101	2.05

Conformer	Ligand	Residues in	TMPRSS2	Interaction	Distance
	N	GLU	206	H-donor	2.76
	Ν	CYS	349	H-donor	2.96
	Ν	CYS	381	H-donor	4.06
	Ν	CYS	381	H-donor	3.53
	0	HIS	203	H-acceptor	3.18
	Ν	GLU	206	ionic	2.85
	Ν	GLU	206	ionic	2.76
21	Ν	VAL	187	H-donor	2.96
	Ν	GLY	351	H-donor	2.78
22	Ν	HIS	186	H-donor	3.01
	Ν	GLU	206	ionic	2.83
	Ν	GLU	206	ionic	3.52
	Ν	GLU	206	ionic	3.61
	N	GLU	206	ionic	3.69
	N	GLU	206	ionic	3.64
23	N	GLN	350	H-donor	2.82
	N	GLU	206	ionic	3.03
	N	GLU	206	ionic	3 46
	N	GLU	206	ionic	3.05
	N	GLU	206	ionic	3.73
	6-ring	HIS	203	ni-cation	4 49
	N	CYS	381	H-donor	3 53
	0	HIS	203	H-acceptor	3.18
	N	GLU	205	ionic	2.85
	N	GLU	206	ionic	2.05
21	N	VAL	187	H-donor	2.76
21	N	GLY	351	H-donor	2.96
22	N	HIS	186	H-donor	3.01
22	N	GLU	206	ionic	2.83
	N	GLU	200	ionic	3.52
	N	GLU	200	ionic	3.52
	N	GLU	200	ionic	3.69
	N	GLU	200	ionic	3.6/
23	N	GLU	200	H donor	2.04
25	N	GLU	206	ionia	2.02
	N	GLU	200	ionia	3.03
	N	GLU	200	ionia	3.40
	IN N	GLU	206	ionic	3.03
	IN 6 min a		200	ionic ri action	3.73
	0-mig	CLU	205	pi-cation	4.49
	IN N	GLU	200	ionia	2.60
	IN N	GLU	200	ionic	3.09
22	IN N	GLU	200	Iomic Li donor	3.04
23	IN N	GLU	206	n-dollor	2.02
	IN N	GLU	200		3.03
	IN N	GLU	206	10110	3.40
	IN N	GLU	206	ionic	3.05
	IN C	GLU	206	10110	3./3
	6-ring	HIS	203	p1-cation	4.49

Table S18. Interaction report of each conformer of NCGC00386945. Number of conformer, Atom of compound, Amino acid in TMPRSS2, Type of interaction and Distance in angstroms.

Conformer	Ligand	Residues in	TMPRSS2	Interaction	Distance
1	Ν	GLU	206	H-donor	3.46
	Ν	GLU	206	ionic	3.46
2	Ν	GLU	206	H-donor	2.88
	Ν	GLU	206	ionic	2.88
3	Ν	CYS	349	H-donor	3.07
4	Ν	SER	348	H-donor	2.69
	Ν	SER	379	H-donor	3.23
5	Ν	GLU	206	H-donor	2.93
	Ν	GLU	206	ionic	2.93
6	Ν	GLU	206	ionic	3.46
7	Ν	GLU	206	H-donor	2.94
	Ν	GLU	206	ionic	2.94
8	Ν	CYS	349	H-donor	3.08
	Ν	GLU	206	H-donor	2.98

Conformer	Ligand	Residues in	TMPRSS2	Interaction	Distance
	Ν	GLU	206	ionic	2.98
9	Ν	SER	348	H-donor	3.4
10	Ν	SER	348	H-donor	2.86
	Ν	GLY	351	H-donor	3.19
	С	GLU	206	H-donor	3.54
	Ν	GLU	206	ionic	4
11	0	HIS	203	H-acceptor	3.33
	Ν	GLU	206	ionic	3.24
	Ν	GLU	206	ionic	3.43
12	Ν	GLU	206	ionic	3.41
13	Ν	GLU	206	H-donor	2.98
	N	GLU	206	ionic	2.98
14	N	GLU	206	H-donor	2.86
	N	CYS	381	H-donor	4.47
	N	GLU	206	ionic	2.86
15	N	GLU	206	H-donor	2.94
	Ν	CYS	381	H-donor	4.01
	N	GLU	206	ionic	2.94
	N	GLU	206	ionic	3.66
16	Ν	GLU	206	H-donor	3.38
	N	GLY	378	H-donor	2.97
	N	SER	348	H-donor	2.76
	Ν	GLU	206	ionic	3.38
17	Ν	TRP	215	cation-pi	4.47
	6-ring	HIS	203	pi-cation	4.79
18	N	GLU	206	H-donor	2.96
	N	GLU	206	ionic	2.96
19	6-ring	GLN	350	pi-H	4.78
20	Ν	GLU	206	H-donor	3.19
	Ν	GLU	206	ionic	3.19
21	N	GLU	206	H-donor	2.9
	N	SER	379	H-donor	3.32
	N	GLU	206	ionic	2.9
	N	GLU	206	ionic	3.52
22	Ν	GLY	378	H-donor	2.98
	С	GLU	206	H-donor	3.5
	Ν	GLU	206	ionic	3.71
	6-ring	HIS	203	pi-cation	3.84
23	Ν	GLU	206	ionic	3.87
	N	GLU	206	ionic	3.41

Table S19. Interaction report of each conformer of Otamixaban. Number of conformer, Atom of compound, Amino acid in TMPRSS2, Type of interaction and Distance in angstroms.

Conformer	Ligand	Residues in	TMPRSS2	Interaction	Distance
1	N	SER	348	H-donor	3.09
	Ν	GLY	351	H-donor	3
	N	SER	348	H-donor	3.17
2	N	VAL	205	H-donor	2.87
	Ν	GLU	206	ionic	2.99
	Ν	GLU	206	ionic	2.84
	6-ring	HIS	203	pi-cation	3.81
3	N	VAL	205	H-donor	3.45
	N	VAL	205	H-donor	3.32
	0	HIS	203	H-acceptor	2.98
	0	LYS	383	H-acceptor	3.02
	Ν	GLU	206	ionic	3.05
4	Ν	GLU	206	H-donor	3.04
	N	GLU	206	ionic	3.04
	N	GLU	206	ionic	3.63
	6-ring	ASN	249	pi-H	4.74
	6-ring	GLN	350	pi-H	4.65
5	N	GLU	206	H-donor	3.03
	Ν	GLU	206	H-donor	2.93
	0	HIS	203	H-acceptor	2.89
	Ν	GLU	206	ionic	3.03
	Ν	GLU	206	ionic	2.93

Conformer	Ligand	Residues in 7	TMPRSS2	Interaction	Distance
	Ν	GLU	206	ionic	3.87
6	Ν	CYS	349	H-donor	2.88
	Ν	CYS	381	H-donor	3.52
	0	HIS	203	H-acceptor	2.88
	6-ring	VAL	187	pi-H	4.1
7	Ν	GLU	206	H-donor	2.83
	Ν	GLU	206	ionic	2.83
8	Ν	GLN	350	H-donor	2.91
	0	HIS	203	H-acceptor	2.88
9	Ν	GLY	378	H-donor	2.77
0	Ν	VAL	187	H-donor	3.09
	Ν	GLY	351	H-donor	2.88
10	Ν	GLU	206	H-donor	2.88
	N	GLU	206	H-donor	2.99
	Ν	GLU	206	ionic	2.88
	N	GLU	206	ionic	2.99
11	Ν	SER	348	H-donor	3.2
	N	SER	348	H-donor	3.1
	C	CYS	381	H-donor	4.36
12	N	CYS	349	H-donor	2.98
	N	CYS	349	H-donor	3.04
	0	HIS	203	H-acceptor	2.92
13	N	GLY	351	H-donor	2.92
15	0	ніс	203	H_acceptor	3.13
1/	N	GIV	203	H_dopor	2 00
14	N	GLU	206	H donor	2.99
15	IN N	GLU	200	H-dolloi	2.10
	IN N	GLU	206	H-dollor	3.43
	N	ULC	200		3.09
	U	HIS	203	H-acceptor	2.93
	N	GLU	206	ionic	2.78
	N	GLU	206	10110	3.43
	N	GLU	206	10110	3.09
	6-ring	VAL	187	p1-H	4.51
16	N	GLU	206	H-donor	3.07
	N	GLU	206	H-donor	2.93
	0	HIS	203	H-acceptor	2.95
	N	GLU	206	ionic	3.07
	N	GLU	206	ionic	2.93
	N	GLU	206	ionic	3.79
17	N	GLU	206	H-donor	3.11
	0	THR	254	H-acceptor	3.28
	N	GLU	206	ionic	3.11
	С	TRP	377	H-pi	3.99
	С	TRP	377	H-pi	3.94
18	N	GLU	206	H-donor	2.9
	N	GLU	206	H-donor	2.85
	N	GLU	206	ionic	2.9
	N	GLU	206	ionic	2.85
	6-ring	LEU	209	pi-H	4.55
19	N	GLU	206	H-donor	2.77
	N	GLU	206	ionic	2.77
	N	GLU	206	ionic	3.63
	6-ring	HIS	203	pi-cation	3.62
20	Ν	VAL	205	H-donor	2.97
	Ν	GLU	206	H-donor	2.82
	N	GLU	206	ionic	3.22
	Ν	GLU	206	ionic	2.82
	6-ring	HIS	203	pi-cation	3.84
21	6-ring	HIS	203	pi-cation	3.6
	6-ring	CYS	204	pi-H	4.47
22	N	CYS	349	H-donor	3.62
23	N	GLU	2.06	H-donor	3.36
	N	GLU	206	ionic	3.36
	N	GLU	200	ionic	2 81
24	N	GLU	200	H-donor	2.86
27	N	GLU	200	H-donor	3 44
	1 A 1		200	11 401101	J.TT

Conformer	Ligand	Residues in	TMPRSS2	Interaction	Distance
	0	HIS	203	H-acceptor	2.9
	Ν	GLU	206	ionic	2.86
	Ν	GLU	206	ionic	3.32
	Ν	GLU	206	ionic	3.44

 Table S20. Interaction report of each conformer of Darexaban. Number of conformer, Atom of compound,

 Amino acid in TMPRSS2, Type of interaction and Distance in angstroms.

Conformer	Ligand	Residues in	TMPRSS2	Interaction	Distance
1	6-ring	VAL	187	pi-H	4.05
2	6-ring	HIS	203	pi-cation	4.07
3	6-ring	GLY	351	pi-H	4.59
4	Ν	GLU	206	ionic	3.61
5	0	HIS	203	H-acceptor	2.97
	Ν	GLU	206	ionic	3.94
	Ν	GLU	206	ionic	3.66
	6-ring	TYR	250	pi-H	3.93
6	Ν	GLU	206	ionic	3.98
7	С	CYS	349	H-donor	3.46
8	0	HIS	203	H-acceptor	2.97
	Ν	GLU	206	ionic	3.4
	6-ring	VAL	187	pi-H	4.52
9	6-ring	GLY	351	pi-H	3.62
10	6-ring	HIS	203	pi-H	4.19
	6-ring	HIS	203	pi-cation	3.52
11	0	SER	379	H-donor	2.89
	С	TRP	377	H-pi	4.54
12	Ν	GLU	206	ionic	3.66
	6-ring	GLN	350	pi-H	4.38
	6-ring	GLY	351	pi-H	3.69
13	0	HIS	203	H-acceptor	3.05
	Ν	GLU	206	ionic	3.67
	6-ring	GLY	351	pi-H	4.35
14	6-ring	VAL	187	pi-H	4.01
15	Ν	GLU	206	ionic	3.74
	Ν	CYS	349	H-donor	3.1
	0	CYS	381	H-acceptor	3.26
	0	LYS	383	H-acceptor	2.93
16	N	GLU	206	H-donor	3.29
17	6-ring	HIS	203	pi-cation	3.9
18	N	GLU	206	H-donor	2.94
	Ν	GLU	206	ionic	2.94

Table S21. Interaction report of each conformer of Gabexate. Number of conformer, Atom of compound, Amino acid in TMPRSS2, Type of interaction and Distance in angstroms.

Conformer	Ligand	Residues in	TMPRSS2	Interaction	Distance
1	Ν	SER	348	H-donor	3.13
	Ν	SER	348	H-donor	3.03
2	Ν	GLU	206	H-donor	2.89
	Ν	GLU	206	ionic	3.53
	Ν	GLU	206	ionic	2.89
	6-ring	HIS	203	pi-H	3.87
3	Ν	GLU	206	H-donor	2.87
	0	GLY	351	H-acceptor	3.27
	Ν	GLU	206	ionic	2.87
	Ν	GLU	206	ionic	3.43
4	Ν	CYS	349	H-donor	3.02
5	Ν	CYS	349	H-donor	2.95
	6-ring	VAL	187	pi-H	3.99
6	Ν	GLY	351	H-donor	3.12
7	Ν	GLU	206	ionic	3.14
8	Ν	GLU	206	H-donor	2.79
	0	HIS	203	H-acceptor	3.37
	Ν	GLU	206	ionic	2.79
	Ν	GLU	206	ionic	3.48
9	Ν	SER	348	H-donor	2.92

Conformer	Ligand	Residues in	TMPRSS2	Interaction	Distance
	Ν	CYS	349	H-donor	3.34
	N	CYS	381	H-donor	4.26
10	N	GLU	206	H-donor	3.2
	N	GLU	206	H-donor	2.94
	0	HIS	203	H-acceptor	3.02
	Ν	GLU	206	ionic	3.2
	Ν	GLU	206	ionic	2.94
11	Ν	GLU	206	H-donor	2.88
	Ν	GLU	206	H-donor	2.78
	Ν	GLU	206	ionic	2.88
	Ν	GLU	206	ionic	3.89
	Ν	GLU	206	ionic	2.78
12	Ν	SER	348	H-donor	3.14
	Ν	SER	348	H-donor	2.94
	6-ring	VAL	187	pi-H	4.22
13	N	SER	379	H-donor	2.92
	6-ring	VAL	187	pi-H	4.33
14	N	GLY	378	H-donor	2.84
	0	HIS	203	H-acceptor	3.18
	6-ring	HIS	203	pi-H	3.78
15	N	CYS	349	H-donor	3.13
	N	CYS	349	H-donor	3.04
16	N	GLU	206	H-donor	3.14
	N	GLU	206	H-donor	3.04
	N	GLU	206	ionic	3.98
	N	GLU	206	ionic	3.14
	N	GLU	206	ionic	3.04
17	0	HIS	203	H-acceptor	2 97
17	N	GUU	205	ionic	3.95
18	N	GLU	206	H-donor	2 75
10	N	ASN	200	H-donor	3.21
	N	GUU	245	ionic	3.62
	N	GLU	200	ionic	2 75
10	N	GLU	200	H-donor	2.75
1)	N	GLU	200	ionic	2.86
	N	GLU	200	ionic	3 38
20	N	GLU	200	ionic	3.10
20	N	GLU	200	ionic	3.17
21	N	GLU	200	ionic	3 21
	N	GLU	200	ionic	2.94
22	0	GLU	351	Hacceptor	3.27
44	N	CLU	206	ionio	3.27
	N	GLU	200	ionic	3.5
	N	GLU	200	ionic	2.00
22	N	CLU	200	U donor	2.03
23	N		200	п-dollor Ц donor	2.93
	N		200	ionia	2.10
	N		200	ionic	2.75
	N		200	ionic	2.5
24	N	CEP	200	U donor	2.1
24	IN N	SEK	240	п-uonor Ц donor	2.1
25	IN N		348	п-uonor Ц dom-т	2.68
43	IN N		200	n-uonor	2.63
20	N	GLU	206	10mic	2.85
20	IN N	SEK	248	H-uonor	3.42
27	IN N	SEK	348	H-uonor	2.82
21	IN N	ASN	249	H-donor	3.27
			200	H-uonor	2.70
	U N		351	H-acceptor	3.01
20	IN N	GLU	206	10110	2.76
28	IN N	GLU	206	H-donor	5.1
	N	GLU	206	H-donor	3.25
	N	GLU	206	H-donor	2.88
	0	HIS	203	H-acceptor	3.15
	0	GLY	351	H-acceptor	3.12
	N	GLU	206	ionic	3.1
	N	GLU	206	ionic	3.25

Conformer	Ligand	Residues in	TMPRSS2	Interaction	Distance
	Ν	GLU	206	ionic	4
	Ν	GLU	206	ionic	2.88

Table S22. Interaction report of each conformer of Letaxaban. Number of conformer, Atom of compound, Amino acid in TMPRSS2, Type of interaction and Distance in angstroms.

Conformer	Ligand	Residues in	TMPRSS2	Interaction	Distance
1	0	SER	348	H-donor	3.01
	0	HIS	203	H-acceptor	3.17
2	0	HIS	203	H-acceptor	2.91
	6-ring	VAL	187	pi-H	3.89
	6-ring	VAL	187	pi-H	4.65
3	Ν	CYS	349	H-donor	3.13
4	0	VAL	187	H-donor	3.09
	6-ring	GLY	380	pi-H	4.56
5	6-ring	HIS	203	pi-cation	3.72
6	0	GLY	351	H-acceptor	2.98
	6-ring	GLN	350	pi-H	3.74
7	0	GLY	351	H-acceptor	3.25
	6-ring	VAL	187	pi-H	4.44
	6-ring	VAL	187	pi-H	4
8	0	GLY	351	H-acceptor	3.05
9	0	VAL	187	H-donor	3.3
	0	HIS	203	H-acceptor	3.33
	6-ring	ASN	249	pi-H	4.12
10	0	HIS	203	H-acceptor	3.02
	6-ring	VAL	187	pi-H	4.46
11	0	VAL	187	H-donor	2.97
	0	HIS	203	H-acceptor	2.91
	6-ring	ASN	249	pi-H	3.82
	6-ring	ASN	249	pi-H	4.05
13	0	HIS	203	H-acceptor	2.95
14	Ν	SER	348	H-donor	3.07
15	0	SER	348	H-donor	3
16	6-ring	HIS	203	pi-cation	4.22
17	0	GLN	350	H-acceptor	3.34
	0	HIS	203	H-acceptor	3.32
18	0	ASN	249	H-acceptor	3.1
19	0	HIS	203	H-acceptor	2.89
20	0	VAL	187	H-donor	3
	6-ring	ASN	249	pi-H	3.91
21	С	GLU	206	H-donor	3.46
	0	HIS	203	H-acceptor	2.98

 Table S23. Interaction report of each conformer of Argatroban. Number of conformer, Atom of compound, Amino acid in TMPRSS2, Type of interaction and Distance in angstroms.

Conformer	Ligand	Residues in TMPRSS2		Interaction	Distance
1	Ν	GLN	350	H-donor	3.09
	Ν	GLN	350	H-donor	3.18
	0	HIS	203	H-acceptor	2.87
	0	HIS	203	ionic	2.87
2	Ν	GLU	206	H-donor	2.84
	0	HIS	203	H-acceptor	2.91
	Ν	GLU	206	ionic	3.87
	Ν	GLU	206	ionic	2.84
	6-ring	GLY	351	pi-H	4.25
3	Ν	VAL	187	H-donor	2.91
	Ν	HIS	203	H-donor	3.52
	Ν	GLU	206	H-donor	3.34
	Ν	GLU	206	H-donor	2.89
	0	HIS	203	H-acceptor	3.19
	0	GLY	351	H-acceptor	3.33
	0	HIS	203	ionic	3.19
	0	HIS	203	ionic	3.02
	Ν	GLU	206	ionic	3.34
	Ν	GLU	206	ionic	2.89

Conformer	Ligand	gand Residues in TMPRSS2		Interaction	Distance
4	Ν	GLU	206	H-donor	2.9
	N	HIS	203	H-donor	3.26
	Ν	GLU	206	H-donor	2.83
	0	HIS	203	ionic	2.9
	N	GLU	206	ionic	2.9
	N	GLU	206	ionic	2.83
5	N	GLU	206	H-donor	2.87
	N	GLU	206	H-donor	2.89
	0	HIS	203	H-acceptor	2.88
	0	HIS	203	ionic	2.88
	0	HIS	203	ionic	3.44
	N	GLU	206	10110	2.87
	N	GLU	206	10110	2.89
6	0	HIS	203	H-acceptor	2.78
	0	HIS	203	10110	2.78
	N	GLU	206	10110	3.1
	N	GLU	206	10110	3.49
1	N	SER	348	H-donor	2.83
	N		349	H-donor	3.19
	0	GLY	202 H-acceptor		3.29
0	U N	HIS	203	H-acceptor	3.1
8	N		349	H-donor	3.29
	0		203	п-ассерtor	3.04
	0	HIS	203	H-acceptor	2.96
	0	GLN	350	H-acceptor	3.09
	0	HIS	203	ionic	3.04
0	U N	HIS	203	10nic	2.96
9	N	GLU	206	H-donor	3.13
	N N	VAL	205	H-donor	2.84
	N		200		2.80
	0		203	H-acceptor	2.84
	0		203	ionic	2.04
	0		203	ionic	2.84
	N	GLU	205	ionic	3.13
	N	GLU	200	ionic	2.86
10	0	HIS	200	H-acceptor	2.00
	N	GLU	205	ionic	2.96
	N	GLU	206	ionic	3 58
	N	GLU	206	ionic	3.29
11	N	HIS	186	H-donor	2.91
12	N	GLN	350	H-donor	3.06
	0	HIS	203	H-acceptor	2.73
	0	HIS	203	ionic	2.73
13	0	HIS	203	H-acceptor	2.82
	0	GLY	351	H-acceptor	3.15
	0	HIS	203	ionic	2.82
14	Ν	GLN	350	H-donor	3.18
	0	GLY	351	H-acceptor	3.09
	0	HIS	203	ionic	2.96
	Ν	HIS	186	cation-pi	4.55
15	Ν	GLN	350	H-donor	2.92
	0	HIS	203	H-acceptor	2.83
	0	HIS	203	ionic	2.83
	0	HIS	203	ionic	3.41
16	N	GLU	206	H-donor	2.82
	N	GLU	206	H-donor	2.96
	0	HIS	203	H-acceptor	2.85
	0	HIS	203	ionic	2.85
	N	GLU	206	ionic	2.82
	N	GLU	206	ionic	2.96
17	N	GLU	206	H-donor	2.85
	N	GLU	206	H-donor	3.08
	0	HIS	203	H-acceptor	2.84
	0	HIS	203	H-acceptor	3.29
	0	HIS	203	ionic	2.84

Conformer	Ligand	Residues in	TMPRSS2	Interaction	Distance
	0	HIS	203	ionic	3.29
	Ν	GLU	206	ionic	2.85
	Ν	GLU	206	ionic	3.08
	Ν	GLU	206	ionic	3.6
18	Ν	GLU	206	H-donor	2.84
	0	HIS	203	H-acceptor	2.86
	0	HIS	203	ionic	2.86
	0	HIS	203	ionic	3.5
	Ν	GLU	206	ionic	3.2
	Ν	GLU	206	ionic	2.84
19	Ν	GLY	351	H-donor	3.06
	0	HIS	203	H-acceptor	3
	0	HIS	203	ionic	3
	Ν	ASP	352	ionic	3.74
20	Ν	SER	348	H-donor	2.88
	0	HIS	203	H-acceptor	2.88
	0	HIS	203	ionic	2.88
	0	HIS	203	ionic	3.17
	6-ring	GLY	351	pi-H	4.58
21	N	SER	348	H-donor	3.12
	0	HIS	203	ionic	3.84
22	N	CYS	349	H-donor	2.92
	N	GLY	351	H-donor	3.08
	0	HIS	203	H-acceptor	2.84
	0	HIS	203	H-acceptor	3.31
	0	GLN	350	H-acceptor	3.08
	0	HIS	203	ionic	2.84
	0	HIS	203	ionic	3.31
23	N	GLU	206	H-donor	2.87
	N	GLU	206	H-donor	2.87
	0	HIS	203	H-acceptor	3.08
	0	HIS	203	H-acceptor	2.99
	0	HIS	203	ionic	3.08
	0	HIS	203	ionic	2.99
	N	GLU	206	ionic	2.87
	N	GLU	206	ionic	2.87
24	N	SER	348	H-donor	2.93
	0	HIS	203	H-acceptor	2.9
	0	HIS	203	ionic	3.24
	0	HIS	203	ionic	2.9
25	Ν	SER	348	H-donor	2.86
	0	HIS	203	H-acceptor	3.02
	0	HIS	203	H-acceptor	3.07
	0	HIS	203	ionic	3.02
	0	HIS	203	ionic	3.07
	N	GLU	206	H-donor	3.26
	0	HIS	203	H-acceptor	2.81
	0	HIS	203	ionic	2.81
	N	GLU	206	ionic	3.46
	N	GLU	206	ionic	3.26
	N	GLU	206	ionic	3.52
27	N	VAL	187	H-donor	3.19
	0	GLY	351	H-acceptor	3.58
	0	HIS	203	H-acceptor	2.89
	0	HIS	203	ionic	2.89
	0	HIS	203	ionic	3.15

Table S24. Interaction report of each conformer of Sivelestat. Number of conformer, Atom of compound, Amino acid in TMPRSS2, Type of interaction and Distance in angstroms.

Conformer	Ligand	Residues in	TMPRSS2	Interaction	Distance
1	0	HIS	203	H-acceptor	2.93
2	Ν	CYS	349	H-donor	3
	0	HIS	203	ionic	3.26
	6-ring	GLY	351	pi-H	4.61
3	0	HIS	203	ionic	3.84
4	Ν	CYS	381	H-donor	3.43

Conformer	Ligand	Residues in TMPRSS2		Interaction	Distance	
	0	LYS	302	H-acceptor	3.26	
	0	LYS	302	H-acceptor	2.94	
	0	LYS	302	ionic	2.94	
	6-ring	GLY	303	pi-H	3.86	
5	0	HIS	203	ionic	3.62	
	6-ring	HIS	203	pi-cation	4.12	
6	0	HIS	203	H-acceptor	2.91	
	0	HIS	203	H-acceptor	3.01	
	0	HIS	203	H-acceptor	3.36	
	0	HIS	203	ionic	3.01	
	0	HIS	203	ionic	3.36	
7	0	CYS	381	H-donor	3.74	
	0	GLY	351	H-acceptor	3.12	
	0	LYS	383	H-acceptor	3.18	
	0	CYS	381	H-acceptor	3.01	
	0	LYS	383	H-acceptor	3.06	
-	0	LYS	383	ionic	3.18	
	0	LYS	383	ionic	3.06	
8	0	CYS	381	H-donor	3.89	
	0	LYS	383 H-acceptor		3.16	
	0	CYS	381 H-acceptor		3.35	
	0	LYS	302 H-acceptor		2.86	
	0	LYS	302	ionic	2.86	
9	0	CYS	381	H-donor	3.74	
	0	LYS	383	H-accentor	3.2	
	0	CYS	381	H-acceptor	3.01	
	0		383	H-acceptor	3.02	
	0		383	ionic	3.02	
	0	LYS	383	ionic	3.02	
10	0	HIS	203	H-acceptor	3.02	
	0	HIS	203	ionic	3.07	
	0	HIS	203	ionic	33	
11	0	HIS	203	H-acceptor	2.89	
	0	HIS	203	H-acceptor	2.05	
	0	HIS	203	ionic	3.94	
	0	HIS	203	ionic	2.96	
12	0	GLV	351	H-acceptor	2.90	
12	0	HIS	203	H-acceptor	2.93	
	0		203	ionic	2.07	
	0	HIS	203	ionic	2.43	
12	0		203	U accortor	2.07	
13	0	GLI	250	H-acceptor	2.05	
	0		300	H-acceptor	3.03	
	0	CLV	302	H acceptor	2.99	
	0		303	H-acceptor	3.09	
	0		302	ionic	2.99	
14	0		302	IOIIIC	2.1	
14	0	HIS	203	H-acceptor	3.1	
	0	HIS	203	H-acceptor	2.87	
1.5	0	HIS	203	ionic	2.87	
15	0	HIS	203	H-acceptor	3.07	
	0	HIS	203	H-acceptor	3.08	
	0	HIS	203	10110	2.87	
	0	HIS	203	10110	3.08	
16	0	HIS	203	H-acceptor	2.9	
	0	HIS	203	ionic	2.9	
	0	HIS	203	10110	3.3	
17	0	GLY	351	H-acceptor	2.92	
	0	HIS	203	H-acceptor	2.9	
	0	HIS	203	ionic	2.9	
	0	HIS	203	ionic	3.88	
18	0	LYS	383	H-acceptor	3.14	
	0	LYS	302	H-acceptor	2.95	
	0	LYS	302	ionic	3.41	
	0	LYS	302	ionic	2.95	
19	0	HIS	203	H-acceptor	2.75	
	0	HIS	203	ionic	3.81	

Conformer	Ligand	Residues in TMPRSS2		Interaction	Distance
20	0	GLY	351	H-acceptor	2.91
	0	HIS	203	H-acceptor	2.97
	0	HIS	203	ionic	2.97
	0	HIS	203	ionic	2.99
21	0	HIS	203	H-acceptor	2.93
	0	HIS	203	ionic 2.9	
22	Ν	CYS	349	H-donor	3.3
	0	GLY	351	H-acceptor	2.96
	0	HIS	203	H-acceptor	2.89
	0	HIS	203	H-acceptor	3.44
	0	HIS	203	ionic	2.89
	0	HIS	203	ionic	3.44
23	6-ring	HIS	203	pi-cation	4.37
24	0	HIS	203	H-acceptor	2.95
25	0	HIS	203	H-acceptor	3.21
	0	HIS	203	H-acceptor	3.01
	0	HIS	203	ionic	3.21
	0	HIS	203	ionic	3.01
26	0	GLY	351	H-acceptor	3.05
	0	GLN	350	H-acceptor	3.31
	0	LYS	302	ionic	3.26
	0	LYS	302	ionic	3.1

Table S25. Interaction report of each conformer of NCGC00385043. Number of conformer, Atom of
compound, Amino acid in TMPRSS2, Type of interaction and Distance in angstroms.

Conformer	Ligand	Residues in	Residues in TMPRSS2		Distance
1	0	VAL	187	H-donor	2.9
	0	CYS	349	H-donor	2.96
	0	HIS	203	H-acceptor	3.21
2	0	GLY	351	H-acceptor	3.34
3	0	SER	348	H-donor	2.99
	0	HIS	203	H-acceptor	3.14
4	0	VAL	187	H-donor	2.94
	0	HIS	203	H-acceptor	2.94
5	0	GLU	206	H-donor	3.16
	0	HIS	203	H-acceptor	3.38
6	0	SER	348	H-donor	2.97
	0	GLY	378	H-donor	2.82
7	0	CYS	349	H-donor	3.04
	0	HIS	203	H-acceptor	3.23
8	0	SER	348	H-donor	3.01
	0	GLY	351	H-acceptor	3.04
9	0	GLY	378	H-donor	3.13
	0	GLY	378	H-donor	2.91
	0	SER	348	H-donor	2.96
10	0	HIS	203	H-acceptor	3
11	0	SER	348	H-donor	3.05
12	0	SER	348	H-donor 2.98	
13	0	CYS	349	H-donor	2.96
14	0	GLY	351	H-acceptor	3.27
15	0	GLY	351	H-donor	3.13
16	0	SER	348	H-donor	2.8
	0	HIS	203	H-acceptor	3.03
	0	GLY	351	H-acceptor	3.18
17	0	HIS	186	H-donor	2.79
18	0	SER	348	H-donor	2.91
	0	GLY	378	H-donor	3.04
19	0	GLY	351	H-donor	3.06
	0	GLN	350	H-donor	3.13
	0	CYS	349	H-donor	2.96
20	0	SER	379	H-donor	3
	0	HIS	203	H-acceptor	2.95
21	0	ASN	249	H-acceptor	3.04
22	0	GLY	351	H-acceptor	3.3
	0	HIS	203	H-acceptor	3.1

Conformer	Ligand	Residues in TMPRSS2		Interaction	Distance
1	N	SER	348	H-donor	2.98
	6-ring	GLY	351	pi-H	4.15
2	Ν	VAL	187	H-donor	3.42
3	6-ring	GLY	351	pi-H	4.05
4	Ν	SER	348	H-donor	3.28
	6-ring	GLY	351	pi-H	4.06
5	Ν	HIS	203	H-acceptor	3.04
6	Ν	GLY	378	H-donor	3.12
	С	TRP	377	H-pi	4.41
7	Ν	CYS	349	H-donor	3.17
8	Ν	VAL	187	H-donor	2.92
	6-ring	GLY	351	pi-H	4.63
9	Ν	CYS	349	H-donor	2.99
10	BR	SER	376	H-donor	3.6
11	Ν	CYS	349	H-donor	2.87
12	6-ring	HIS	203	pi-cation	4.73
13	BR	VAL	187	H-donor	3.67

 Table S26. Interaction report of each conformer of Bromhexine. Number of conformer, Atom of compound, Amino acid in TMPRSS2, Type of interaction and Distance in angstroms.

Table S27. Toxicity – PreADMET | Prediction of ADME/Tox of compounds T1–T10.

T1	5	Т2	1	
algae_at 0.016014	16	algae_at 0.003187	792	
Ames_test	mutagen	Ames_test	mutagen	
Carcino_Mouse	negative	Carcino_Mouse	negative	
Carcino_Rat	negative	Carcino_Rat	negative	
daphnia_at	0.0368447	daphnia_at	0.00243684	
hERG_inhibition	medium_risk	hERG_inhibition	low_risk	
medaka_at	0.00317449	medaka_at	2.3298e-005	
minnow_at	0.0141893	minnow_at	0.000274219	
TA100_10RLI	positive	TA100_10RLI	positive	
TA100_NA	negative	TA100_NA	negative	
TA1535_10RLI	negative	TA1535_10RLI	negative	
TA1535_NA	negative	TA1535_NA	negative	
Т3		T4		
algae_at 0.001622	258	algae_at 0.013343	3	
Ames_test	mutagen	Ames_test	mutagen	
Carcino_Mouse	negative	Carcino_Mouse	negative	
Carcino_Rat	positive	Carcino_Rat	positive	
daphnia_at	0.00107575	daphnia_at	0.0123293	
hERG_inhibition	medium_risk	hERG_inhibition	high_risk	
medaka_at	6.44964e-006	medaka_at	0.000530206	
minnow_at	2.22289e-005	minnow_at	0.00376132	
TA100_10RLI	negative	TA100_10RLI	positive	
TA100_NA	negative	TA100_NA	positive	
TA1535_10RLI	negative	TA1535_10RLI	positive	
TA1535_NA	negative	TA1535_NA	negative	
T5		Тб		
algae_at 0.00253	114	algae_at 0.000292094		
Ames_test	mutagen	Ames_test	non-mutagen	
Carcino_Mouse	negative	Carcino_Mouse	positive	
Carcino_Rat	positive	Carcino_Rat	negative	
daphnia_at	0.000552924	daphnia_at	0.000115612	
hERG_inhibition	medium_risk	hERG_inhibition	medium_risk	
medaka_at	1.77373e-006	medaka_at	7.43255e-008	
minnow_at	1.69902e-005	minnow_at	6.61832e-007	
TA100_10RLI	positive	TA100_10RLI	negative	
TA100_NA	negative	TA100_NA	negative	
TA1535_10RLI	positive	TA1535_10RLI	negative	
TA1535_NA	negative	TA1535_NA	negative	
T7		T8		
algae_at 0.009488	331	algae_at 0.001635	506	
Ames_test	mutagen	Ames_test	mutagen	
Carcino_Mouse	negative	Carcino_Mouse	negative	
Carcino_Rat	positive	Carcino_Rat	negative	
daphnia_at	0.010758	daphnia_at	0.00033623	
hERG_inhibition	medium_risk	hERG_inhibition	low_risk	
medaka_at	0.000413187	medaka_at	9.18187e-007	

https://biointerfaceresearch.com/

	0.002905	09	minnow at	9 75353e	-006
$T\Delta 100 10RII$	nositive		$T\Delta 100 10 RII$	negative	-000
TA100_NA	positive		TA100 NA	negative	
TA1535 10DI I	positive		TA100_NA TA1535_10DLI	negative	
TAI555_IUKLI	negative		TA1555_IUKLI TA1525_NA	negative	
TA1555_NA	negative		TAI355_NA	negative	
19	- A =		110	72	
algae_at 0.003200	545		algae_at 0.006331	1/3	
Ames_test	mutagen		Ames_test	mutagen	
Carcino_Mouse	negative		Carcino_Mouse	negative	
Carcino_Rat	positive		Carcino_Rat	positive	
daphnia_at	0.002789	97	daphnia_at	0.007314	01
hERG_inhibition	medium_	<u>risk</u>	hERG_inhibition	medium_	risk
medaka_at	2.82397e	-005	medaka_at	0.000199	172
minnow_at	0.000182	2003	minnow_at	0.001577	33
TA100_10RLI	negative		TA100_10RLI	positive	
TA100 NA	negative		TA100 NA	positive	
TA1535 10RLI	positive		TA1535 10RLI	negative	
TA1535 NA	negative		TA1535 NA	negative	
111000_101	negutive		111000_101	neguive	
Tabl	C10 AT		an of ADME/Ter	. f	aug da T1 T10
Table	e 526. Al	DME - PREADMET Predicti	ION OF ADME/ TOX	of comp	bunds 11–110.
T1			T2		
BBB 0.079218	34		BBB 0.216377	7	
Buffer_solubility_	mg_L	0.014869	Buffer_solubility_1	mg_L	0.0018581
Caco2 5.08791			Caco2 35.6274		
CYP_2C19_inhibi	tion	Non	CYP_2C19_inhibit	tion	Non
CYP 2C9 inhibiti	on	Non	CYP 2C9 inhibiti	on	Inhibitor
CYP 2D6 inhibiti	on	Non	CYP 2D6 inhibiti	on	Non
CYP 2D6 substra	te	Non	CYP 2D6 substrat	te	Non
$CYP 3\Delta4$ inhibiti	on	Non	$CYP_{3\Delta4}$ inhibiti	on	Non
CVP 3A4 substra	te	Substrate	CVP 344_minoru	to	Substrate
UIA = 0.07334	10 DA	Substrate	UIA 07 71082	10	Substrate
MDCV 48 0201	24		MDCV 0.054125	5	
MDCK 48.9391	N		MDCK 0.034153).) T.: 1.: 1.: 4	
Pgp_innibition	NON .	07.07.00.11	Pgp_innibition		00 102 (10
Plasma_Protein_B	inding	8/.8/6841	Plasma_Protein_Bi	inding	98.183640
Pure_water_solubi	lity_mg_L	. 0.833992	Pure_water_solubil	lity_mg_L	0.00112507
C1 ' D 1'1'	2 20502		Clrin Domnochility	A A O O O 1	4-
Skin_Permeability	-2.29383		Skin_Permeability	-2.28891	*
Skin_Permeability SKlogD_value	4.417320)	SKIn_Permeability SKlogD_value	-2.28891 5.926930	Ϋ́
Skin_Permeability SKlogD_value SKlogP_value	-2.29385 4.417320 4.417320)	SKlogD_value SKlogP_value	-2.28891 5.926930 5.926930	*
Skin_Permeability SKlogD_value SKlogP_value SKlogS_buffer	-2.29383 4.417320 4.417320 -7.50951)) 0	SKlogD_value SKlogP_value SKlogS_buffer	-2.28891 5.926930 5.926930 -8.46301	0
SKIn_Permeability SKlogD_value SKlogP_value SKlogS_buffer SKlogS_pure	-2.29383 4.417320 4.417320 -7.50951 -5.76063)) 0 0	SKIngP_value SKlogP_value SKlogS_buffer SKlogS_pure	-2.28891 5.926930 5.926930 -8.46301 -8.68090	0 0
Skin_Permeability SKlogD_value SKlogP_value SKlogS_buffer SKlogS_pure T3	-2.29383 4.417320 4.417320 -7.50951 -5.76063)) 0 0	SKIn_Permeability SKlogD_value SKlogP_value SKlogS_buffer SKlogS_pure T4	-2.28891 5.926930 5.926930 -8.46301 -8.68090	0
Skin_Permeability SKlogD_value SKlogP_value SKlogS_buffer SKlogS_pure T3 BBB 0.083460	-2.29383 4.417320 4.417320 -7.50951 -5.76063)) 0 0	Skin_Permeability SklogD_value SklogS_buffer SklogS_pure T4 BBB 0.053206	-2.28891 5.926930 5.926930 -8.46301 -8.68090	0 0
Skin_Permeability SKlogD_value SKlogP_value SKlogS_buffer SKlogS_pure T3 BBB 0.083469 Buffer solubility	-2.29385 4.417320 4.417320 -7.50951 -5.76063) 0 0 10.9611**	Skin_Permeability SklogD_value SklogS_buffer SklogS_pure T4 BBB 0.053206 Buffer solubility t	-2.28891 5.926930 5.926930 -8.46301 -8.68090	7.61522**
Skin_Permeability SKlogD_value SKlogS_buffer SKlogS_pure T3 BBB 0.083469 Buffer_solubility_ Caco2 30 3638	-2.29385 4.417320 4.417320 -7.50951 -5.76063 99 mg_L) 0 0 10.9611**	Skin_Permeability SklogD_value SklogS_buffer SklogS_pure T4 BBB 0.053206 Buffer_solubility_1 Caco2 0.701092	-2.28891 5.926930 5.926930 -8.46301 -8.68090 63 mg_L	7.61522**
Skin_Permeability SKlogD_value SKlogS_buffer SKlogS_pure T3 BBB 0.083469 Buffer_solubility_ Caco2 30.3638 CYP 2C19 inbibi	-2.29385 4.417320 4.417320 -7.50951 -5.76063 09 mg_L tion) 0 0 10.9611** Non	Skin_Permeability SklogD_value SklogS_buffer SklogS_pure T4 BBB 0.053206 Buffer_solubility_1 Caco2 0.701092 CYP 2C19 inhibit	-2.28891 5.926930 5.926930 -8.46301 -8.68090 53 mg_L 2 tion	7.61522**
Skin_Permeability SKlogD_value SKlogS_buffer SKlogS_pure T3. BBB 0.083469 Buffer_solubility_ Caco2 30.3638 CYP_2C19_inhibi CYP_2C9_inhibit	-2.29385 4.417320 4.417320 -7.50951 -5.76063 09 mg_L tion) 0 0 10.9611** Non	SklogD_value SklogS_buffer SklogS_buffer SklogS_pure T4 BBB 0.053206 Buffer_solubility_1 Caco2 0.701092 CYP_2C19_inhibit	-2.28891 5.926930 5.926930 -8.46301 -8.68090 53 mg_L 2 tion	* 0 0 0 7.61522** Non Inhibitor
Skin_Permeability SKlogD_value SKlogS_buffer SKlogS_pure T3. BBB 0.083469 Buffer_solubility_ Caco2 30.3638 CYP_2C19_inhibit CYP_2C9_inhibiti	-2.29385 4.417320 4.417320 -7.50951 -5.76063 09 mg_L tion on) 0 0 10.9611** Non Inhibitor	SklogD_value SklogS_buffer SklogS_buffer SklogS_pure T4 BBB 0.053206 Buffer_solubility_1 Caco2 0.701092 CYP_2C19_inhibiti CYP_2C9_inhibiti	-2.28891 5.926930 5.926930 -8.46301 -8.68090 53 mg_L 2 tion on	7.61522** Non Inhibitor
Skin_Permeability SklogD_value SklogS_buffer SklogS_pure T3 BBB 0.083469 Buffer_solubility_ Caco2 30.3638 CYP_2C19_inhibit CYP_2C9_inhibiti CYP_2D6_inhibiti	-2.29385 4.417320 4.417320 -7.50951 -5.76063 09 mg_L tion on) 0 0 10.9611** Non Inhibitor Non	SklogD_value SklogD_value SklogS_buffer SklogS_pure T4 BBB 0.053206 Buffer_solubility_1 Caco2 0.701092 CYP_2C19_inhibiti CYP_2C9_inhibiti CYP_2D6_inhibiti	-2.28891 5.926930 5.926930 -8.46301 -8.68090 53 mg_L 2 tion on on	7.61522** Non Inhibitor Non
Skin_Permeability SklogD_value SklogS_buffer SklogS_buffer T3 BBB 0.083469 Buffer_solubility_ Caco2 30.3638 CYP_2C19_inhibit CYP_2C9_inhibitit CYP_2D6_inhibitit CYP_2D6_substra	-2.29385 4.417320 4.417320 -7.50951 -5.76063 99 mg_L tion on te) 0 0 10.9611** Non Inhibitor Non Non	SklogD_value SklogD_value SklogS_buffer SklogS_pure T4 BBB 0.053206 Buffer_solubility_1 Caco2 0.701092 CYP_2C19_inhibiti CYP_2C9_inhibiti CYP_2D6_substrat	-2.28891 5.926930 5.926930 -8.46301 -8.68090 53 mg_L 2 tion on on te	7.61522** Non Inhibitor Non Non
Skin_Permeability SklogD_value SklogS_buffer SklogS_buffer T3 BBB 0.083469 Buffer_solubility_ Caco2 30.3638 CYP_2C19_inhibit CYP_2C9_inhibit CYP_2D6_inhibit CYP_2D6_substra CYP_3A4_inhibit	-2.29385 4.417320 4.417320 -7.50951 -5.76063 99 mg_L tion on te on) 0 0 10.9611** Non Inhibitor Non Non Non	SklogD_value SklogD_value SklogS_buffer SklogS_pure T4 BBB 0.053206 Buffer_solubility_1 Caco2 0.701092 CYP_2C19_inhibiti CYP_2C9_inhibiti CYP_2D6_inhibiti CYP_2D6_substrat CYP_3A4_inhibiti	-2.28891 5.926930 5.926930 -8.46301 -8.68090 53 mg_L 2 tion on te on	7.61522** Non Inhibitor Non Non Non
Skin_Permeability SklogD_value SklogS_buffer SklogS_pure T3 BBB 0.083469 Buffer_solubility_ Caco2 30.3638 CYP_2C19_inhibit CYP_2C9_inhibit CYP_2D6_substra CYP_3A4_inhibit CYP_3A4_substra	-2.29385 4.417320 4.417320 -7.50951 -5.76063 99 mg_L tion on te on te) 0 0 10.9611** Non Inhibitor Non Non Non Weakly	SklogD_value SklogD_value SklogS_buffer SklogS_pure T4 BBB 0.053206 Buffer_solubility_1 Caco2 0.701092 CYP_2C19_inhibiti CYP_2C9_inhibiti CYP_2D6_inhibiti CYP_2D6_substrat CYP_3A4_inhibiti CYP_3A4_substrat	-2.28891 5.926930 5.926930 -8.46301 -8.68090 53 mg_L 2 tion on te on te on	7.61522** Non Inhibitor Non Non Non Weakly
Skin_Permeability SklogD_value SklogS_buffer SklogS_buffer SklogS_pure T3 BBB 0.083469 Buffer_solubility_ Caco2 30.3638 CYP_2C19_inhibit CYP_2C9_inhibit CYP_2D6_substra CYP_3A4_inhibiti CYP_3A4_substra HIA 94.80124	-2.29385 4.417320 4.417320 -7.50951 -5.76063 99 mg_L tion on te on te on) 0 0 10.9611** Non Inhibitor Non Non Non Weakly	SklogD_value SklogD_value SklogS_buffer SklogS_pure T4 BBB 0.053206 Buffer_solubility_n Caco2 0.701092 CYP_2C19_inhibiti CYP_2C9_inhibiti CYP_2D6_substrat CYP_3A4_inhibiti CYP_3A4_substrat HIA 86.81399	-2.28891 5.926930 5.926930 -8.46301 -8.68090 53 mg_L 2 tion on te on te on te 28	7.61522** Non Inhibitor Non Non Non Weakly
Skin_Permeability SklogD_value SklogS_buffer SklogS_pure T3 BBB 0.083469 Buffer_solubility_ Caco2 30.3638 CYP_2C19_inhibit CYP_2C9_inhibit CYP_2D6_substra CYP_3A4_inhibiti CYP_3A4_substra HIA 94.80124 MDCK 0.073520	-2.29385 4.417320 4.417320 -7.50951 -5.76063 09 mg_L tion on te on te 41 56) 0 0 10.9611** Non Inhibitor Non Non Non Weakly	SklogD_value SklogS_buffer SklogS_buffer SklogS_pure T4 BBB 0.053206 Buffer_solubility_1 Caco2 0.701092 CYP_2C19_inhibiti CYP_2C9_inhibiti CYP_2D6_substrat CYP_3A4_inhibiti CYP_3A4_substrat HIA 86.81399 MDCK 0.35926	-2.28891 5.926930 5.926930 -8.46301 -8.68090 53 mg_L 2 tion on te on te on te 28	7.61522** Non Inhibitor Non Non Non Weakly
Skin_Permeability SklogD_value SklogS_buffer SklogS_pure T3 BBB 0.083469 Buffer_solubility_ Caco2 30.3638 CYP_2C19_inhibit CYP_2C9_inhibit CYP_2D6_substra CYP_3A4_inhibiti CYP_3A4_substra HIA 94.80124 MDCK 0.073520 Pgp_inhibition	-2.29385 4.417320 4.417320 -7.50951 -5.76063 99 mg_L tion on te on te 41 56 Inhibitor	0 0 0 10.9611** Non Inhibitor Non Non Non Weakly	SklogD_value SklogS_buffer SklogS_buffer SklogS_pure T4 BBB 0.053206 Buffer_solubility_n Caco2 0.701092 CYP_2C19_inhibiti CYP_2C9_inhibiti CYP_2D6_substrat CYP_3A4_inhibiti CYP_3A4_substrat HIA 86.81399 MDCK 0.35926 Pgp_inhibition	-2.28891 5.926930 5.926930 -8.46301 -8.68090 53 mg_L 2 tion on te on te on te 28 Inhibitor	7.61522** Non Inhibitor Non Non Weakly
Skin_Permeability SklogD_value SklogS_buffer SklogS_pure T3 BBB 0.083469 Buffer_solubility_ Caco2 30.3638 CYP_2C19_inhibit CYP_2C9_inhibit CYP_2D6_substra CYP_3A4_inhibit CYP_3A4_substra HIA 94.80124 MDCK 0.073520 Pgp_inhibition Plasma_Protein_B	-2.29385 4.417320 4.417320 -7.50951 -5.76063 99 mg_L tion on te on te 41 56 Inhibitor inding	0 0 0 10.9611** Non Inhibitor Non Non Non Weakly 91.538989	SklogD_value SklogD_value SklogS_buffer SklogS_pure T4 BBB 0.053206 Buffer_solubility_n Caco2 0.701092 CYP_2C19_inhibiti CYP_2D6_inhibiti CYP_2D6_substrat CYP_3A4_inhibiti CYP_3A4_substrat HIA 86.81399 MDCK 0.35926 Pgp_inhibition Plasma_Protein_Bi	-2.28891 5.926930 5.926930 -8.46301 -8.68090 53 mg_L 2 tion on te on te on te 28 Inhibitor inding	7.61522** Non Inhibitor Non Non Weakly 99.658773
Skin_Permeability SklogD_value SklogS_buffer SklogS_pure T3 BBB 0.083469 Buffer_solubility_ Caco2 30.3638 CYP_2C19_inhibit CYP_2C9_inhibit CYP_2D6_substra CYP_3A4_inhibitit CYP_3A4_substra HIA 94.80124 MDCK 0.073520 Pgp_inhibition Plasma_Protein_B Pure_water_solubi	-2.29385 4.417320 4.417320 -7.50951 -5.76063 99 mg_L tion on te on te 41 56 Inhibitor inding lity_mg_L	0 0 0 10.9611** Non Inhibitor Non Non Non Weakly 91.538989 0.0137368	SklogD_value SklogD_value SklogS_buffer SklogS_pure T4 BBB 0.053206 Buffer_solubility_n Caco2 0.701092 CYP_2C19_inhibiti CYP_2D6_inhibiti CYP_2D6_inhibiti CYP_3A4_inhibiti CYP_3A4_substrat HIA 86.81399 MDCK 0.35926 Pgp_inhibition Plasma_Protein_Bi Pure_water_solubi	-2.28891 5.926930 5.926930 -8.46301 -8.68090 53 mg_L 2 tion on te on te on te 28 Inhibitor inding lity_mg_L	7.61522** Non Inhibitor Non Non Weakly 99.658773 0.0631993
Skin_Permeability SKlogD_value SKlogS_buffer SKlogS_pure T3 BBB 0.083469 Buffer_solubility_ Caco2 30.3638 CYP_2C19_inhibit CYP_2C9_inhibit CYP_2D6_substra CYP_3A4_inhibiti CYP_3A4_substra HIA 94.80124 MDCK 0.073520 Pgp_inhibition Plasma_Protein_B Pure_water_solubi Skin_Permeability	-2.29385 4.417320 4.417320 -7.50951 -5.76063 99 mg_L tion on te on te 41 56 Inhibitor inding lity_mg_L -3.32269	0 0 0 10.9611** Non Inhibitor Non Non Non Weakly 91.538989 0.0137368	SklogD_value SklogD_value SklogS_buffer SklogS_pure T4 BBB 0.053206 Buffer_solubility_1 Caco2 0.701092 CYP_2C19_inhibiti CYP_2D6_inhibiti CYP_2D6_inhibiti CYP_3A4_inhibiti CYP_3A4_substrat HIA 86.81399 MDCK 0.35926 Pgp_inhibition Plasma_Protein_Bi Pure_water_solubil Skin_Permeability	-2.28891 5.926930 5.926930 -8.46301 -8.68090 53 mg_L 2 tion on te on te on te 28 Inhibitor inding lity_mg_L -3.74129	7.61522** Non Inhibitor Non Non Weakly 99.658773 0.0631993
Skin_Permeability SKlogD_value SKlogS_buffer SKlogS_pure T3 BBB 0.083469 Buffer_solubility_ Caco2 30.3638 CYP_2C19_inhibit CYP_2C9_inhibit CYP_2D6_substra CYP_3A4_inhibiti CYP_3A4_substra HIA 94.80124 MDCK 0.073520 Pgp_inhibition Plasma_Protein_B Pure_water_solubi Skin_Permeability SKlogD_value	-2.29385 4.417320 4.417320 -7.50951 -5.76063 99 mg_L tion on te on te 41 56 Inhibitor inding lity_mg_L -3.32269 6.086980	0 0 0 10.9611** Non Inhibitor Non Non Non Weakly 91.538989 0.0137368	SklogD_value SklogS_buffer SklogS_buffer SklogS_pure T4 BBB 0.053206 Buffer_solubility_1 Caco2 0.701092 CYP_2C19_inhibit CYP_2C9_inhibiti CYP_2D6_inhibiti CYP_2D6_substrat CYP_3A4_inhibiti CYP_3A4_substrat HIA 86.81399 MDCK 0.35926 Pgp_inhibition Plasma_Protein_Bi Pure_water_solubil SklogD_value	-2.28891 5.926930 5.926930 -8.46301 -8.68090 53 mg_L 2 tion on te on te 0 8 Inhibitor inding lity_mg_L -3.74129 4.494410	7.61522** Non Inhibitor Non Non Weakly 99.658773 0.0631993
Skin_Permeability SKlogD_value SKlogS_buffer SKlogS_pure T3 BBB 0.083469 Buffer_solubility_ Caco2 30.3638 CYP_2C19_inhibit CYP_2C9_inhibit CYP_2D6_substra CYP_3A4_inhibiti CYP_3A4_substra HIA 94.80124 MDCK 0.073520 Pgp_inhibition Plasma_Protein_B Pure_water_solubi Skin_Permeability SKlogD_value SKlogP_value	-2.29385 4.417320 4.417320 -7.50951 -5.76063 99 mg_L tion on te on te 41 56 Inhibitor inding lity_mg_L -3.32269 6.086980 6.086980	0 0 10.9611** Non Inhibitor Non Non Non Weakly 91.538989 0.0137368	SklogD_value SklogS_buffer SklogS_buffer SklogS_pure T4 BBB 0.053206 Buffer_solubility_1 Caco2 0.701092 CYP_2C19_inhibit CYP_2C9_inhibiti CYP_2D6_substrat CYP_3A4_substrat HIA 86.81399 MDCK 0.35926 Pgp_inhibition Plasma_Protein_Bi Pure_water_solubil SklogD_value SklogP_value	-2.28891 5.926930 5.926930 -8.46301 -8.68090 53 mg_L 2 tion on te on te 0 8 Inhibitor inding lity_mg_L -3.74129 4.494410 4.494410	7.61522** Non Inhibitor Non Non Weakly 99.658773 0.0631993
Skin_Permeability SKlogD_value SKlogS_buffer SKlogS_pure T3 BBB 0.083469 Buffer_solubility_ Caco2 30.3638 CYP_2C19_inhibit CYP_2C9_inhibit CYP_2D6_substra CYP_3A4_inhibiti CYP_3A4_substra HIA 94.80124 MDCK 0.073520 Pgp_inhibition Plasma_Protein_B Pure_water_solubi Skin_Permeability SKlogD_value SKlogP_value SKlogS_buffer	-2.29385 4.417320 4.417320 -7.50951 -5.76063 99 mg_L tion on te on te 41 56 Inhibitor inding lity_mg_L -3.32269 6.086980 6.086980 -4.69789	0 0 10.9611** Non Inhibitor Non Non Non Weakly 91.538989 0.0137368	SklogD_value SklogS_buffer SklogS_buffer SklogS_pure T4 BBB 0.053206 Buffer_solubility_1 Caco2 0.701092 CYP_2C19_inhibit CYP_2C9_inhibiti CYP_2D6_substrat CYP_3A4_substrat HIA 86.81399 MDCK 0.35926 Pgp_inhibition Plasma_Protein_Bi Pure_water_solubil SklogD_value SklogP_value SklogS_buffer	-2.28891 5.926930 5.926930 -8.46301 -8.68090 53 mg_L 2 tion on te on te 0 8 Inhibitor inding lity_mg_L -3.74129 4.494410 -4.82551	7.61522** Non Inhibitor Non Non Non Weakly 99.658773 0.0631993
Skin_Permeability SKlogD_value SKlogS_buffer SKlogS_pure T3 BBB 0.083469 Buffer_solubility_ Caco2 30.3638 CYP_2C19_inhibit CYP_2C9_inhibit CYP_2D6_substra CYP_3A4_inhibiti CYP_3A4_substra HIA 94.80124 MDCK 0.073520 Pgp_inhibition Plasma_Protein_B Pure_water_solubi Skin_Permeability SKlogD_value SKlogS_buffer SKlogS_pure	-2.29385 4.417320 4.417320 -7.50951 -5.76063 99 mg_L tion on te on te 41 56 Inhibitor inding lity_mg_L -3.32269 6.086980 6.086980 -4.69789 -7.59986	0 0 10.9611** Non Inhibitor Non Non Non Weakly 91.538989 0.0137368 0 0 0 ** 0	SklogD_value SklogS_buffer SklogS_buffer SklogS_pure T4 BBB 0.053206 Buffer_solubility_1 Caco2 0.701092 CYP_2C19_inhibit CYP_2C9_inhibiti CYP_2D6_substrat CYP_3A4_substrat HIA 86.81399 MDCK 0.35926 Pgp_inhibition Plasma_Protein_Bi Pure_water_solubil Skin_Permeability SklogD_value SklogS_buffer SklogS_pure	-2.28891 5.926930 5.926930 -8.46301 -8.68090 53 mg_L 2 tion on te on te 0 8 Inhibitor inding lity_mg_L -3.74129 4.494410 4.494410 -4.82551 -6.90648	7.61522** Non Inhibitor Non Non Non Weakly 99.658773 0.0631993
Skin_Permeability SKlogD_value SKlogS_buffer SKlogS_pure T3 BBB 0.083469 Buffer_solubility_ Caco2 30.3638 CYP_2C19_inhibit CYP_2C9_inhibit CYP_2D6_substra CYP_3A4_inhibiti CYP_3A4_substra HIA 94.80124 MDCK 0.073520 Pgp_inhibition Plasma_Protein_B Pure_water_solubi Skin_Permeability SKlogD_value SKlogS_buffer SKlogS_pure T5	-2.29385 4.417320 4.417320 -7.50951 -5.76063 99 mg_L tion on te on te 41 56 Inhibitor inding lity_mg_L -3.32269 6.086980 6.086980 -4.69789 -7.59986	0 0 10.9611** Non Inhibitor Non Non Non Weakly 91.538989 0.0137368 0 0 0 ** 0	Skin_Permeability SklogD_value SklogS_buffer SklogS_pure T4 BBB 0.053206 Buffer_solubility_1 Caco2 0.701092 CYP_2C19_inhibiti CYP_2C9_inhibiti CYP_2D6_substrat CYP_3A4_substrat HIA 86.81399 MDCK 0.35926 Pgp_inhibition Plasma_Protein_Bi Pure_water_solubil Skin_Permeability SklogD_value SklogS_pure T6	-2.28891 5.926930 5.926930 -8.46301 -8.68090 53 mg_L 2 tion on te on te 08 Inhibitor inding lity_mg_L -3.74129 4.494410 -4.82551 -6.90648	7.61522** Non Inhibitor Non Non Non Weakly 99.658773 0.0631993
Skin_Permeability SKlogD_value SKlogS_buffer SKlogS_pure T3 BBB 0.083469 Buffer_solubility_ Caco2 30.3638 CYP_2C19_inhibit CYP_2C9_inhibit CYP_2D6_substra CYP_3A4_inhibiti CYP_3A4_substra HIA 94.80124 MDCK 0.073520 Pgp_inhibition Plasma_Protein_B Pure_water_solubi Skin_Permeability SKlogD_value SKlogS_buffer SKlogS_pure T5 BBB 0.140883	-2.29385 4.417320 4.417320 -7.50951 -5.76063 99 mg_L tion on te on te 11 566 Inhibitor inding lity_mg_L -3.32269 6.086980 6.086980 -4.69789 -7.59986	0 0 10.9611** Non Inhibitor Non Non Weakly 91.538989 0.0137368 0 0 0 ** 0	SklogD_value SklogD_value SklogS_buffer SklogS_pure T4 BBB 0.053206 Buffer_solubility_1 Caco2 0.701092 CYP_2C19_inhibiti CYP_2C9_inhibiti CYP_2D6_substrat CYP_3A4_inhibiti CYP_3A4_substrat HIA 86.81399 MDCK 0.35926 Pgp_inhibition Plasma_Protein_Bi Pure_water_solubil Skin_Permeability SklogD_value SklogP_value SklogS_buffer SklogS_pure T6 BBB 0.128735	-2.28891 5.926930 5.926930 -8.46301 -8.68090 53 mg_L 2 tion on te on te 08 Inhibitor inding lity_mg_L -3.74129 4.494410 -4.82551 -6.90648	7.61522** Non Inhibitor Non Non Weakly 99.658773 0.0631993
Skin_Permeability SKlogD_value SKlogS_buffer SKlogS_pure T3 BBB 0.083469 Buffer_solubility_ Caco2 30.3638 CYP_2C19_inhibit CYP_2C9_inhibit CYP_2D6_substra CYP_3A4_inhibiti CYP_3A4_substra HIA 94.80124 MDCK 0.073520 Pgp_inhibition Plasma_Protein_B Pure_water_solubi Skin_Permeability SKlogS_buffer SKlogS_pure T5 BBB 0.140888 Buffer_solubility	-2.29385 4.417320 4.417320 -7.50951 -5.76063 09 mg_L tion on te on te 11 566 Inhibitor inding lity_mg_L -3.32269 6.086980 6.086980 -7.59986	10.9611** Non Inhibitor Non Non Non Weakly 91.538989 0.0137368 0 0** 0 2 46049**	SklogD_value SklogD_value SklogS_buffer SklogS_buffer T4 BBB 0.053206 Buffer_solubility_1 Caco2 0.701092 CYP_2C19_inhibite CYP_2C9_inhibite CYP_2D6_substrat CYP_3A4_inhibite CYP_3A4_substrat HIA 86.81399 MDCK 0.35926 Pgp_inhibition Plasma_Protein_Bi Pure_water_solubit Skin_Permeability SklogD_value SklogS_buffer SklogS_pure T6 BBB 0.128735 Buffer_solubility	-2.28891 5.926930 5.926930 -8.46301 -8.68090 53 mg_L 2 tion on te on te on te 28 Inhibitor inding lity_mg_L -3.74129 4.494410 -4.82551 -6.90648	7.61522** Non Inhibitor Non Non Non Weakly 99.658773 0.0631993 0** 0 1.64836e-006
Skin_Permeability SklogD_value SklogS_buffer SklogS_buffer BBB 0.083469 Buffer_solubility_ Caco2 30.3638 CYP_2C19_inhibit CYP_2C9_inhibiti CYP_2D6_substra CYP_3A4_inhibitit CYP_3A4_substra HIA 94.80124 MDCK 0.073526 Pgp_inhibition Plasma_Protein_B Pure_water_solubi Skin_Permeability SklogD_value SklogS_buffer SklogS_pure T5 BBB 0.140888 Buffer_solubility_ Caco2 13.04280	-2.29385 4.417320 4.417320 -7.50951 -5.76063 09 mg_L tion on te 00 te 11 566 Inhibitor inding lity_mg_L -3.32269 6.086980 6.086980 6.086980 6.086980 -7.59986	0 0 10.9611** Non Inhibitor Non Non Weakly 91.538989 0.0137368 0 0** 0 2.46049**	SklogD_value SklogD_value SklogS_buffer SklogS_pure T4 BBB 0.053206 Buffer_solubility_n Caco2 0.701092 CYP_2C19_inhibite CYP_2C9_inhibite CYP_2D6_substrat CYP_3A4_inhibite CYP_3A4_substrat CYP_3A4_substrat HIA 86.81399 MDCK 0.35926 Pgp_inhibition Plasma_Protein_Bi Pure_water_solubite SklogD_value SklogD_value SklogS_pure T6 BBB 0.128735 Buffer_solubitity_1 Caco2 23 2206	-2.28891 5.926930 5.926930 -8.46301 -8.68090 53 mg_L 2 tion on te on te 28 Inhibitor inding lity_mg_L -3.74129 4.494410 -4.82551 -4.90648 5 mg_L	7.61522** Non Inhibitor Non Non Non Weakly 99.658773 0.0631993 0** 0 1.64836e-006
Skin_Permeability SKlogD_value SKlogS_buffer SKlogS_buffer BBB 0.083469 Buffer_solubility_ Caco2 30.3638 CYP_2C19_inhibit CYP_2C9_inhibiti CYP_2D6_substra CYP_3A4_inhibiti CYP_3A4_substra HIA 94.80124 MDCK 0.073526 Pgp_inhibition Plasma_Protein_B Pure_water_solubi Skin_Permeability SKlogD_value SKlogS_buffer SKlogS_pure T5. - BBB 0.140888 Buffer_solubility_ Caco2 13.9488	-2.29385 4.417320 4.417320 -7.50951 -5.76063 99 mg_L tion on te on te 1nhibitor inding lity_mg_L -3.32269 6.086980 6.086980 -4.69789 -7.59986	0 0 10.9611** Non Inhibitor Non Non Weakly 91.538989 0.0137368 0 0** 0 2.46049** Non	SklogD_value SklogD_value SklogS_buffer SklogS_pure T4 BBB 0.053206 Buffer_solubility_1 Caco2 0.701092 CYP_2C19_inhibiti CYP_2C9_inhibiti CYP_2C6_substrat CYP_3A4_inhibiti CYP_3A4_substrat CYP_3A4_substrat HIA 86.81399 MDCK 0.35926 Pgp_inhibition Plasma_Protein_Bi Pure_water_solubil Skin_Permeability SklogD_value SklogS_buffer SklogS_pure T6 BBB 0.128735 Buffer_solubility_1 Caco2 23.2206	-2.28891 5.926930 5.926930 -8.46301 -8.68090 53 mg_L 2 tion on te on te on te 2 Inhibitor inding lity_mg_L -3.74129 4.494410 -4.82551 -4.994410 5 mg_L	7.61522** Non Inhibitor Non Non Non Weakly 99.658773 0.0631993 0 0 1.64836e-006 Non
Skin_Permeability SklogD_value SklogS_buffer SklogS_buffer BBB 0.083469 Buffer_solubility_ Caco2 30.3638 CYP_2C19_inhibit CYP_2C9_inhibitit CYP_2D6_inhibitit CYP_2D6_substra CYP_3A4_inhibitit CYP_3A4_substra HIA 94.80124 MDCK 0.073526 Pgp_inhibition Plasma_Protein_B Pure_water_solubi Skin_Permeability SklogD_value SklogS_buffer SklogS_buffer SklogS_pure T5. BBB 0.140888 Buffer_solubility_ Caco2 13.9488 CYP_2C19_inhibi	-2.29385 4.417320 4.417320 -7.50951 -5.76063 99 mg_L tion on te 11 56 Inhibitor inding lity_mg_L -3.32269 6.086980 6.086980 6.086980 -7.59986 8 mg_L tion	0 0 10.9611** Non Inhibitor Non Non Weakly 91.538989 0.0137368 0 0 0 2.46049** Non Labibitor	SklogD_value SklogD_value SklogS_buffer SklogS_pure T4 BBB 0.053206 Buffer_solubility_1 Caco2 0.701092 CYP_2C19_inhibiti CYP_2C9_inhibiti CYP_2C6_inhibiti CYP_2D6_substrat CYP_3A4_inhibiti CYP_3A4_substrat HIA 86.81399 MDCK 0.35926 Pgp_inhibition Plasma_Protein_Bi Pure_water_solubil Skin_Permeability SklogD_value SklogS_buffer SklogS_pure T6 BBB 0.128735 Buffer_solubility_1 Caco2 23.2206 CYP_2C19_inhibiti	-2.28891 5.926930 5.926930 -8.46301 -8.68090 53 mg_L 2 tion on te on te 08 Inhibitor inding lity_mg_L -3.74129 4.494410 -4.82551 -6.90648 5 mg_L tion on 0 -8.66090 -8.68090 -8.69090 -8.69090 -4.994410 -6.90648 -5.590	7.61522** Non Inhibitor Non Non Weakly 99.658773 0.0631993 0** 0 1.64836e-006 Non Inhibitor
Skin_Permeability SklogD_value SklogS_buffer SklogS_buffer SklogS_pure T3 BBB 0.083469 Buffer_solubility_ Caco2 30.3638 CYP_2C19_inhibit CYP_2C9_inhibit CYP_2D6_inhibit CYP_2D6_substra CYP_3A4_inhibitit CYP_3A4_substra HIA 94.80124 MDCK 0.073526 Pgp_inhibition Plasma_Protein_B Pure_water_solubi Skin_Permeability SklogD_value SklogS_buffer SklogS_pure T5 BBB 0.140888 Buffer_solubility_ Caco2 13.9488 CYP_2C19_inhibit CYP_2C9_inhibit	-2.29385 4.417320 4.417320 -7.50951 -5.76063 99 mg_L tion on te 11 56 Inhibitor inding lity_mg_L -3.32269 6.086980 6.086980 6.086980 -7.59986 3 mg_L tion on	0 0 10.9611** Non Inhibitor Non Non Weakly 91.538989 0.0137368 0 0 0 2.46049** Non Inhibitor Non Non Non Non Non Non Non Non	SklogD_value SklogS_buffer SklogS_buffer SklogS_pure T4 BBB 0.053206 Buffer_solubility_1 Caco2 0.701092 CYP_2C19_inhibiti CYP_2C9_inhibiti CYP_2D6_substrat CYP_3A4_inhibiti CYP_3A4_substrat HIA 86.81399 MDCK 0.35926 Pgp_inhibition Plasma_Protein_Bi Pure_water_solubil SklogD_value SklogD_value SklogS_buffer SklogS_pure T6 BBB 0.128735 Buffer_solubility_1 Caco2 23.2206 CYP_2C19_inhibiti CYP_2C9_inhibiti	-2.28891 5.926930 5.926930 -8.46301 -8.68090 53 mg_L 2 tion on te 00 1nhibitor inding lity_mg_L -3.74129 4.494410 -4.82551 -4.90648 5 mg_L tion on 0 -4.90648 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5	7.61522** Non Inhibitor Non Non Non Weakly 99.658773 0.0631993 0 1.64836e-006 Non Inhibitor Non Non Non Non Non Non Non Non
Skin_Permeability SklogD_value SklogS_buffer SklogS_buffer SklogS_pure T3 BBB 0.083469 Buffer_solubility_ Caco2 30.3638 CYP_2C19_inhibit CYP_2C9_inhibit CYP_2D6_inhibit CYP_3A4_inhibit CYP_3A4_substra HIA 94.80124 MDCK 0.073520 Pgp_inhibition Plasma_Protein_B Pure_water_solubi Skin_Permeability SklogD_value SklogS_buffer SklogS_pure T5 BBB 0.140888 Buffer_solubility_ Caco2 13.9488 CYP_2C19_inhibit CYP_2C9_inhibit CYP_2C9_inhibit CYP_2C9_inhibit	-2.29385 4.417320 4.417320 -7.50951 -5.76063 99 mg_L tion on te 11 56 Inhibitor inding lity_mg_L -3.32269 6.086980 6.086980 6.086980 -7.59986 3 mg_L tion on	0 0 10.9611** Non Inhibitor Non Non Weakly 91.538989 0.0137368 0 0 0 2.46049** Non Inhibitor Non Non Non Non Non Non Non Non	SklogD_value SklogS_buffer SklogS_buffer SklogS_pure T4 BBB 0.053206 Buffer_solubility_1 Caco2 0.701092 CYP_2C19_inhibiti CYP_2C9_inhibiti CYP_2D6_substrat CYP_3A4_inhibiti CYP_3A4_substrat HIA 86.81399 MDCK 0.35926 Pgp_inhibition Plasma_Protein_Bi Pure_water_solubil SklogD_value SklogD_value SklogS_buffer SklogS_pure T6 BBB 0.128735 Buffer_solubility_1 Caco2 23.2206 CYP_2C19_inhibiti CYP_2C9_inhibiti CYP_2C9_inhibiti	-2.28891 5.926930 5.926930 -8.46301 -8.68090 53 mg_L 2 tion on te on te 08 Inhibitor inding lity_mg_L -3.74129 4.494410 -4.82551 -3.74129 4.494410 5 mg_L tion on c.4.90648 5 mg_L	7.61522** Non Inhibitor Non Non Non Weakly 99.658773 0.0631993
Skin_Permeability SKlogD_value SKlogS_buffer SKlogS_buffer SKlogS_pure T3 BBB 0.083469 Buffer_solubility_ Caco2 30.3638 CYP_2C19_inhibit CYP_2C9_inhibitit CYP_2D6_substra CYP_3A4_inhibitit CYP_3A4_substra HIA 94.80124 MDCK 0.073526 Pgp_inhibition Plasma_Protein_B Pure_water_solubi Skin_Permeability SKlogD_value SKlogS_buffer SKlogS_pure T5 BBB 0.140888 Buffer_solubility_ Caco2 13.9488 CYP_2C19_inhibit CYP_2D6_substra	-2.29385 4.417320 4.417320 -7.50951 -5.76063 99 mg_L tion on te 00 te 11 56 Inhibitor inding lity_mg_L -3.32269 6.086980 6.086980 6.086980 -4.69789 -7.59986 3 mg_L tion on te	0 0 10.9611** Non Inhibitor Non Non Weakly 91.538989 0.0137368 0 0 0 2.46049** Non Inhibitor Non Non Non Non Non Non Non Non	SklogD_value SklogS_buffer SklogS_buffer SklogS_pure T4 BBB 0.053206 Buffer_solubility_1 Caco2 0.701092 CYP_2C19_inhibiti CYP_2C9_inhibiti CYP_2D6_substrat CYP_3A4_substrat HIA 86.81399 MDCK 0.35926 Pgp_inhibition Plasma_Protein_Bi Pure_water_solubil Skin_Permeability SklogD_value SklogS_buffer SklogS_pure T6 BBB 0.128735 Buffer_solubility_1 Caco2 23.2206 CYP_2C19_inhibiti CYP_2D6_substrat CYP_2C9_inhibiti CYP_2C9_inhibiti CYP_2C9_inhibiti CYP_2D6_substrat	-2.28891 5.926930 5.926930 -8.46301 -8.68090 53 mg_L 2 tion on te on te 08 Inhibitor inding lity_mg_L -3.74129 4.494410 -4.82551 -6.90648 5 mg_L tion on te tion on te tion te te tion te te tion te tion te tion te tion te tion te tion te tion te tion te tion te te tion te te te te te te tion te tion te tion te tion te tion te tion te tion te tion te te te te te tion te te te te te te te te te te te te te	7.61522** Non Inhibitor Non Non Non Weakly 99.658773 0.0631993 0 1.64836e-006 Non Inhibitor Non Inhibitor Non
Skin_Permeability SKlogD_value SKlogS_buffer SKlogS_buffer SKlogS_pure T3 BBB 0.083469 Buffer_solubility_ Caco2 30.3638 CYP_2C19_inhibit CYP_2C9_inhibitit CYP_2D6_substra CYP_3A4_inhibitit CYP_3A4_substra HIA 94.80124 MDCK 0.073526 Pgp_inhibition Plasma_Protein_B Pure_water_solubi Skin_Permeability SKlogD_value SKlogS_buffer SKlogS_pure T5 BBB 0.140888 Buffer_solubility_ Caco2 13.9488 CYP_2C9_inhibit CYP_2D6_substra CYP_2D6_substra CYP_3A4_inhibiti	-2.29385 4.417320 4.417320 -7.50951 -5.76063 99 mg_L tion on te on te 11 56 Inhibitor inding lity_mg_L -3.32269 6.086980 6.086980 6.086980 -4.69789 -7.59986 3 mg_L tion on te on	0 0 10.9611** Non Inhibitor Non Non Non Weakly 91.538989 0.0137368 0 0 2.46049** Non Inhibitor Non Non Non Non Non Non Non Non	SklagD_value SklagD_value SklagS_buffer SklagS_pure T4 BBB 0.053206 Buffer_solubility_1 Caco2 0.701092 CYP_2C19_inhibiti CYP_2C9_inhibiti CYP_2D6_substrat CYP_3A4_inhibiti CYP_3A4_substrat HIA 86.81399 MDCK 0.35926 Pgp_inhibition Plasma_Protein_Bi Pure_water_solubil Skin_Permeability SklagD_value SklagS_buffer SklagS_pure T6 BBB 0.128735 Buffer_solubility_1 Caco2 23.2206 CYP_2C19_inhibiti CYP_2D6_substrat CYP_2D6_substrat CYP_2D6_substrat CYP_2D6_substrat CYP_2D6_substrat CYP_3A4_inhibiti	-2.28891 5.926930 5.926930 -8.46301 -8.68090 53 mg_L 2 tion on te on te 08 Inhibitor inding lity_mg_L -3.74129 4.494410 -4.82551 -6.90648 5 mg_L tion on te te te on te on te on te te te te te te te te te te te te te	7.61522** Non Inhibitor Non Non Non Weakly 99.658773 0.0631993 0 0** 0 1.64836e-006 Non Inhibitor Non Non Contemporation Non Non Non Non Non Non Non Non Non N

https://biointerfaceresearch.com/

90.020365

268.431

Non

Non

Non

Non

Inhibitor

Substrate

93.796183

59.1204**

Inhibitor

Substrate

98.979883

Non

Non

Non

Non

Inhibitor

9.257430

9.257430

-11.568820

-11.275930

Inhibitor

3.993980

3.993980

-3.397780

-8.515780

Inhibitor

4.998060

4.998060

-3.958730**

-7.094630

HIA 99.252848 HIA 97.742949 MDCK 0.0494344* MDCK 0.0183324* Pgp_inhibition Pgp_inhibition Inhibitor Plasma_Protein_Binding 95.313410 Plasma_Protein_Binding Pure_water_solubility_mg_L 0.00147252 Pure_water_solubility_mg_L 3.23551e-006 Skin_Permeability -2.11357* Skin_Permeability -2.64495 SKlogD_value 5.322230 SKlogD_value SKlogP_value 5.322230 SKlogP_value SKlogS_buffer -5.369000** SKlogS_buffer SKlogS_pure -8.591960 SKlogS_pure T7.-T8.-BBB 0.0559919 BBB 0.0925209 120.369** Buffer_solubility_mg_L Buffer_solubility_mg_L 0.780057 Caco2 Caco2 27.3493 CYP_2C19_inhibition CYP_2C19_inhibition Non CYP_2C9_inhibition CYP_2C9_inhibition Inhibitor CYP 2D6 inhibition CYP 2D6 inhibition Non CYP 2D6 substrate CYP 2D6 substrate Non CYP_3A4_inhibition CYP_3A4_inhibition Non CYP_3A4_substrate CYP_3A4_substrate Weakly HIA 88.054458 HIA 98.564667 0.137772 MDCK 0.042602* MDCK Pgp_inhibition Pgp_inhibition Inhibitor 99.860851 Plasma_Protein_Binding Plasma_Protein_Binding Pure_water_solubility_mg_L 0.0704962 Pure_water_solubility_mg_L 0.00204566 Skin_Permeability -3.65081 Skin_Permeability -2.86884 SKlogD_value 4.626720 SKlogD_value SKlogP_value 4.626720 SKlogP_value SKlogS_buffer -3.638470** SKlogS_buffer SKlogS_pure -6.870820 SKlogS_pure **T9**.-T10.-BBB 0.339968 BBB 0.0604172 Buffer_solubility_mg_L 175.429** Buffer_solubility_mg_L Caco2 29.644 Caco2 1.07307 CYP_2C19_inhibition Non CYP_2C19_inhibition CYP_2C9_inhibition CYP_2C9_inhibition Inhibitor CYP 2D6 inhibition CYP 2D6 inhibition Non CYP_2D6_substrate Non CYP_2D6_substrate CYP_3A4_inhibition Non CYP_3A4_inhibition CYP_3A4_substrate Substrate CYP_3A4_substrate HIA 98.397830 89.178280 HIA MDCK 0.0704082 MDCK 0.0500051 Pgp_inhibition Inhibitor Pgp_inhibition Plasma_Protein_Binding Plasma_Protein_Binding 92.817438 Pure_water_solubility_mg_L 0.00972436 Pure_water_solubility_mg_L 0.0432352 Skin_Permeability -2.74744 Skin_Permeability -3.46339 SKlogD_value 6.444920 SKlogD_value SKlogP_value SKlogP_value 6.444920

Table S29. Properties predicted by PhysChem - ACD/Labs of compounds T1-T10.

SKlogS_buffer

SKlogS_pure

T2
Density: 1.3±0.1 g/cm3
Boiling Point:
Vapour Pressure:
Enthalpy of Vaporization:
Flash Point:
Index of Refraction: 1.669
Molar Refractivity: 151.6±0.5 cm3
#H bond acceptors: 9
#H bond donors: 1
#Freely Rotating Bonds: 9
#Rule of 5 Violations: 2
ACD/LogP: 6.41
ACD/LogD (pH 5.5): 4.76
ACD/BCF (pH 5.5): 2438.11
ACD/KOC (pH 5.5): 9247.98
ACD/LogD (pH 7.4): 4.76

https://biointerfaceresearch.com/

SKlogS_buffer

SKlogS_pure

-3.449310**

-7.705550

ACD/BCF (pH 7.4): 1475.90	ACD/BCF (pH 7.4): 2437.13
ACD/KOC (pH 7.4): 6451.96	ACD/KOC (pH 7.4): 9244.25
Polar Surface Area: 99 Å2	Polar Surface Area: 133 Å2
Polarizability: 55.4±0.5 10-24cm3	Polarizability: 60.1±0.5 10-24cm3
Surface Tension: 41.6±7.0 dyne/cm	Surface Tension: 53.3 ± 7.0 dyne/cm
Molar Volume: 431.6 ± 7.0 cm3	Molar Volume: 406.1±7.0 cm3
T3	T4
Density: $1.5\pm0.1 \text{ g/cm}^3$	Density: 1.5±0.1 g/cm3
Boiling Point:	Boiling Point:
v apour Pressure: Enthelpu of Vanorization:	vapour Pressure: Enthelpy of Vaporization:
Elicitation vaporization: Elash Doint:	Enthalpy of vaporization.
Index of Refraction: 1742	Index of Refraction: 1746
Molar Refractivity: 146 8+0 5 cm3	Molar Refractivity: 135 8+0 5 cm3
#H bond acceptors: 9	#H bond acceptors: 11
#H bond donors: 1	#H bond donors: 2
#Freely Rotating Bonds: 12	#Freely Rotating Bonds: 9
#Rule of 5 Violations: 2	#Rule of 5 Violations: 2
ACD/LogP: 6.22	ACD/LogP: 3.81
ACD/LogD (pH 5.5): 4.76	ACD/LogD (pH 5.5): 2.97
ACD/BCF (pH 5.5): 2431.27	ACD/BCF (pH 5.5): 106.91
ACD/KOC (pH 5.5): 9159.74	ACD/KOC (pH 5.5): 981.69
ACD/LogD (pH 7.4): 4.28	ACD/LogD (pH 7.4): 2.63
ACD/BCF (pH 7.4): 806.65	ACD/BCF (pH 7.4): 47.98
ACD/KOC (pH /.4): 3039.03	ACD/KOC (pH /.4): 440.55
Polarizability: 58 2±0 5 10 24cm3	Polarizability: 53.8+0.5.10.24cm3
Surface Tension: 63.2 ± 0.5 To dyne/cm	Surface Tension: $69.4+7.0$ dyne/cm
Molar Volume: $363.1+7.0$ cm ³	Molar Volume: $3346+70$ cm3
T5	T6 -
Density: 1.7 ± 0.1 g/cm3	Density: 1.3 ± 0.1 g/cm3
Boiling Point:	Boiling Point: 748.0±70.0 °C at 760 mmHg
Vapour Pressure:	Vapour Pressure: 0.0±2.5 mmHg at 25°C
Enthalpy of Vaporization:	Enthalpy of Vaporization: 109.0±3.0 kJ/mol
Flash Point:	Flash Point: 406.2±35.7 °C
Index of Refraction: 1 779	Index of Refraction: 1.666
Molar Refractivity: 138.8±0.4 cm3	Molar Refractivity: 173.9±0.5 cm3
Molar Refractivity: 138.8±0.4 cm3 #H bond acceptors: 8	Molar Refractivity: 173.9±0.5 cm3 #H bond acceptors: 6
Molar Refractivity: 138.8±0.4 cm3 #H bond acceptors: 8 #H bond donors: 1	Molar Refractivity: 173.9±0.5 cm3 #H bond acceptors: 6 #H bond donors: 1
Molar Refractivity: 138.8±0.4 cm3 #H bond acceptors: 8 #H bond donors: 1 #Freely Rotating Bonds: 7 #Bule of 5 Vieletieng: 2	Molar Refractivity: 173.9±0.5 cm3 #H bond acceptors: 6 #H bond donors: 1 #Freely Rotating Bonds: 8 #Dule of 5 Violations: 2
Molar Refractivity: 138.8±0.4 cm3 #H bond acceptors: 8 #H bond donors: 1 #Freely Rotating Bonds: 7 #Rule of 5 Violations: 2 ACD/L ogP: 533	Molar Refractivity: 173.9±0.5 cm3 #H bond acceptors: 6 #H bond donors: 1 #Freely Rotating Bonds: 8 #Rule of 5 Violations: 2 ACD/L orP: 7.24
Molar Refractivity: 138.8±0.4 cm3 #H bond acceptors: 8 #H bond donors: 1 #Freely Rotating Bonds: 7 #Rule of 5 Violations: 2 ACD/LogP: 5.33 ACD/LogP (pH 5.5): 4.30	Molar Refractivity: 173.9±0.5 cm3 #H bond acceptors: 6 #H bond donors: 1 #Freely Rotating Bonds: 8 #Rule of 5 Violations: 2 ACD/LogP: 7.24 ACD/LogP (pH 5 5): 7.00
Molar Refractivity: 138.8±0.4 cm3 #H bond acceptors: 8 #H bond donors: 1 #Freely Rotating Bonds: 7 #Rule of 5 Violations: 2 ACD/LogP: 5.33 ACD/LogD (pH 5.5): 4.30 ACD/BCF (pH 5.5): 1079 61	Molar Refractivity: 173.9±0.5 cm3 #H bond acceptors: 6 #H bond donors: 1 #Freely Rotating Bonds: 8 #Rule of 5 Violations: 2 ACD/LogP: 7.24 ACD/LogD (pH 5.5): 7.00 ACD/BCF (pH 5.5): 121544 13
Molar Refractivity: 138.8±0.4 cm3 #H bond acceptors: 8 #H bond donors: 1 #Freely Rotating Bonds: 7 #Rule of 5 Violations: 2 ACD/LogP (pH 5.5): 4.30 ACD/LogD (pH 5.5): 1079.61 ACD/KOC (pH 5.5): 5152.38	Molar Refractivity: 173.9±0.5 cm3 #H bond acceptors: 6 #H bond donors: 1 #Freely Rotating Bonds: 8 #Rule of 5 Violations: 2 ACD/LogP: 7.24 ACD/LogD (pH 5.5): 7.00 ACD/BCF (pH 5.5): 121544.13 ACD/KOC (pH 5.5): 150499.83
Molar Refractivity: 138.8 ± 0.4 cm ³ #H bond acceptors: 8 #H bond donors: 1 #Freely Rotating Bonds: 7 #Rule of 5 Violations: 2 ACD/LogP: 5.33 ACD/LogD (pH 5.5): 4.30 ACD/BCF (pH 5.5): 1079.61 ACD/KOC (pH 5.5): 5152.38 ACD/LogD (pH 7.4): 4.13	Molar Refractivity: 173.9±0.5 cm3 #H bond acceptors: 6 #H bond donors: 1 #Freely Rotating Bonds: 8 #Rule of 5 Violations: 2 ACD/LogD (pH 5.5): 7.00 ACD/BCF (pH 5.5): 121544.13 ACD/KOC (pH 5.5): 150499.83 ACD/LogD (pH 7.4): 6.60
Molar Refractivity: 138.8±0.4 cm3 #H bond acceptors: 8 #H bond donors: 1 #Freely Rotating Bonds: 7 #Rule of 5 Violations: 2 ACD/LogP: 5.33 ACD/LogD (pH 5.5): 4.30 ACD/BCF (pH 5.5): 1079.61 ACD/KOC (pH 5.5): 5152.38 ACD/LogD (pH 7.4): 4.13 ACD/BCF (pH 7.4): 742.89	Molar Refractivity: 173.9±0.5 cm3 #H bond acceptors: 6 #H bond donors: 1 #Freely Rotating Bonds: 8 #Rule of 5 Violations: 2 ACD/LogP: 7.24 ACD/LogD (pH 5.5): 7.00 ACD/BCF (pH 5.5): 121544.13 ACD/KOC (pH 5.5): 150499.83 ACD/LogD (pH 7.4): 6.60 ACD/BCF (pH 7.4): 48643.26
Molar Refractivity: 138.8±0.4 cm3 #H bond acceptors: 8 #H bond donors: 1 #Freely Rotating Bonds: 7 #Rule of 5 Violations: 2 ACD/LogP: 5.33 ACD/LogD (pH 5.5): 4.30 ACD/BCF (pH 5.5): 1079.61 ACD/KOC (pH 5.5): 5152.38 ACD/LogD (pH 7.4): 4.13 ACD/BCF (pH 7.4): 742.89 ACD/KOC (pH 7.4): 3545.40	Molar Refractivity: 173.9±0.5 cm3 #H bond acceptors: 6 #H bond donors: 1 #Freely Rotating Bonds: 8 #Rule of 5 Violations: 2 ACD/LogP: 7.24 ACD/LogD (pH 5.5): 7.00 ACD/BCF (pH 5.5): 121544.13 ACD/KOC (pH 5.5): 150499.83 ACD/LogD (pH 7.4): 6.60 ACD/BCF (pH 7.4): 48643.26 ACD/KOC (pH 7.4): 60231.64
Molar Refractivity: 138.8±0.4 cm3 #H bond acceptors: 8 #H bond donors: 1 #Freely Rotating Bonds: 7 #Rule of 5 Violations: 2 ACD/LogP: 5.33 ACD/LogD (pH 5.5): 4.30 ACD/BCF (pH 5.5): 1079.61 ACD/KOC (pH 5.5): 5152.38 ACD/LogD (pH 7.4): 4.13 ACD/BCF (pH 7.4): 742.89 ACD/KOC (pH 7.4): 3545.40 Polar Surface Area: 194 Å2	Molar Refractivity: 173.9±0.5 cm3 #H bond acceptors: 6 #H bond donors: 1 #Freely Rotating Bonds: 8 #Rule of 5 Violations: 2 ACD/LogP: 7.24 ACD/LogD (pH 5.5): 7.00 ACD/BCF (pH 5.5): 121544.13 ACD/KOC (pH 5.5): 150499.83 ACD/LogD (pH 7.4): 6.60 ACD/BCF (pH 7.4): 60231.64 Polar Surface Area: 111 Å2
Molar Refractivity: 138.8 ± 0.4 cm ³ #H bond acceptors: 8 #H bond donors: 1 #Freely Rotating Bonds: 7 #Rule of 5 Violations: 2 ACD/LogP: 5.33 ACD/LogD (pH 5.5): 4.30 ACD/BCF (pH 5.5): 1079.61 ACD/KOC (pH 5.5): 5152.38 ACD/LogD (pH 7.4): 4.13 ACD/BCF (pH 7.4): 742.89 ACD/KOC (pH 7.4): 3545.40 Polar Surface Area: 194 Å2 Polarizability: 55.0 \pm 0.5 10-24cm ³	Molar Refractivity: $173.9\pm0.5 \text{ cm3}$ #H bond acceptors: 6#H bond donors: 1#Freely Rotating Bonds: 8#Rule of 5 Violations: 2ACD/LogP: 7.24ACD/LogD (pH 5.5): 7.00ACD/BCF (pH 5.5): 121544.13ACD/KOC (pH 5.5): 150499.83ACD/LogD (pH 7.4): 6.60ACD/BCF (pH 7.4): 48643.26ACD/KOC (pH 7.4): 60231.64Polarizability: 69.0±0.5 10-24cm3
Molar Refractivity: 138.8 ± 0.4 cm ³ #H bond acceptors: 8 #H bond donors: 1 #Freely Rotating Bonds: 7 #Rule of 5 Violations: 2 ACD/LogP: 5.33 ACD/LogD (pH 5.5): 4.30 ACD/BCF (pH 5.5): 1079.61 ACD/KOC (pH 5.5): 5152.38 ACD/LogD (pH 7.4): 4.13 ACD/BCF (pH 7.4): 742.89 ACD/KOC (pH 7.4): 3545.40 Polar Surface Area: 194 Å2 Polarizability: 55.0 \pm 0.5 10-24cm3 Surface Tension: 96.1 \pm 5.0 dyne/cm	Molar Refractivity: $173.9\pm0.5 \text{ cm3}$ #H bond acceptors: 6#H bond donors: 1#Freely Rotating Bonds: 8#Rule of 5 Violations: 2ACD/LogP: 7.24ACD/LogD (pH 5.5): 7.00ACD/BCF (pH 5.5): 121544.13ACD/KOC (pH 5.5): 150499.83ACD/LogD (pH 7.4): 6.60ACD/BCF (pH 7.4): 60231.64Polar Surface Area: 111 Å2Polarizability: 69.0±0.5 10-24cm3Surface Tension: 49.4±7.0 dyne/cm
Molar Refractivity: $138.8\pm0.4 \text{ cm}^3$ #H bond acceptors: 8 #H bond donors: 1 #Freely Rotating Bonds: 7 #Rule of 5 Violations: 2 ACD/LogP: 5.33 ACD/LogD (pH 5.5): 4.30 ACD/BCF (pH 5.5): 1079.61 ACD/LogD (pH 7.4): 5152.38 ACD/LogD (pH 7.4): 4.13 ACD/BCF (pH 7.4): 742.89 ACD/KOC (pH 7.4): 3545.40 Polar Surface Area: 194 Å2 Polarizability: 55.0±0.5 10-24cm3 Surface Tension: 96.1±5.0 dyne/cm Molar Volume: 331.2±5.0 cm3	Molar Refractivity: $173.9\pm0.5 \text{ cm3}$ #H bond acceptors: 6 #H bond donors: 1 #Freely Rotating Bonds: 8 #Rule of 5 Violations: 2 ACD/LogD (pH 5.5): 7.00 ACD/BCF (pH 5.5): 121544.13 ACD/KOC (pH 5.5): 150499.83 ACD/LogD (pH 7.4): 6.60 ACD/BCF (pH 7.4): 60231.64 Polar Surface Area: 111 Å2 Polarizability: 69.0±0.5 10-24cm3 Surface Tension: 49.4±7.0 dyne/cm Molar Volume: 467.8±7.0 cm3
Molar Refractivity: 138.8 ± 0.4 cm ³ #H bond acceptors: 8 #H bond donors: 1 #Freely Rotating Bonds: 7 #Rule of 5 Violations: 2 ACD/LogP: 5.33 ACD/LogD (pH 5.5): 4.30 ACD/BCF (pH 5.5): 1079.61 ACD/KOC (pH 5.5): 5152.38 ACD/LogD (pH 7.4): 4.13 ACD/BCF (pH 7.4): 742.89 ACD/KOC (pH 7.4): 3545.40 Polar Surface Area: 194 Å2 Polarizability: 55.0 \pm 0.5 10-24cm3 Surface Tension: 96.1 \pm 5.0 dyne/cm Molar Volume: 331.2 \pm 5.0 cm3 T7. -	Molar Refractivity: $173.9\pm0.5 \text{ cm}3$ #H bond acceptors: 6 #H bond donors: 1 #Freely Rotating Bonds: 8 #Rule of 5 Violations: 2 ACD/LogP: 7.24 ACD/LogD (pH 5.5): 7.00 ACD/BCF (pH 5.5): 121544.13 ACD/KOC (pH 5.5): 150499.83 ACD/LogD (pH 7.4): 6.60 ACD/BCF (pH 7.4): 6.60 ACD/BCF (pH 7.4): 60231.64 Polar Surface Area: 111 Å2 Polarizability: 69.0±0.5 10-24cm3 Surface Tension: 49.4±7.0 dyne/cm Molar Volume: 467.8±7.0 cm3 T8. -
Molar Refractivity: 138.8 ± 0.4 cm ³ #H bond acceptors: 8 #H bond donors: 1 #Freely Rotating Bonds: 7 #Rule of 5 Violations: 2 ACD/LogP: 5.33 ACD/LogD (pH 5.5): 4.30 ACD/BCF (pH 5.5): 1079.61 ACD/KOC (pH 5.5): 5152.38 ACD/LogD (pH 7.4): 4.13 ACD/BCF (pH 7.4): 742.89 ACD/KOC (pH 7.4): 3545.40 Polar Surface Area: 194 Å2 Polarizability: 55.0 \pm 0.5 10-24cm3 Surface Tension: 96.1 \pm 5.0 dyne/cm Molar Volume: 331.2 \pm 5.0 cm3 T7. - Density: 1.5 \pm 0.1 g/cm3 Boiling Point:	Molar Refractivity: $173.9\pm0.5 \text{ cm}3$ #H bond acceptors: 6 #H bond donors: 1 #Freely Rotating Bonds: 8 #Rule of 5 Violations: 2 ACD/LogD (pH 5.5): 7.00 ACD/BCF (pH 5.5): 121544.13 ACD/KOC (pH 5.5): 150499.83 ACD/LogD (pH 7.4): 6.60 ACD/BCF (pH 7.4): 6.60 ACD/BCF (pH 7.4): 60231.64 Polar Surface Area: 111 Å2 Polarizability: 69.0\pm0.5 10-24 cm3 Surface Tension: 49.4 \pm 7.0 dyne/cm Molar Volume: 467.8 \pm 7.0 cm3 T8 Density: 1.5 \pm 0.1 g/cm3 Boiling Point:
Molar Refractivity: 138.8 ± 0.4 cm ³ #H bond acceptors: 8 #H bond donors: 1 #Freely Rotating Bonds: 7 #Rule of 5 Violations: 2 ACD/LogP: 5.33 ACD/LogD (pH 5.5): 4.30 ACD/BCF (pH 5.5): 1079.61 ACD/KOC (pH 5.5): 5152.38 ACD/LogD (pH 7.4): 4.13 ACD/BCF (pH 7.4): 742.89 ACD/KOC (pH 7.4): 3545.40 Polar Surface Area: 194 Å2 Polarizability: 55.0 \pm 0.5 10-24cm3 Surface Tension: 96.1 \pm 5.0 dyne/cm Molar Volume: 331.2 \pm 5.0 cm3 T7. - Density: 1.5 \pm 0.1 g/cm3 Boiling Point: Vanour Pressure:	Molar Refractivity: 173.9 \pm 0.5 cm3 #H bond acceptors: 6 #H bond donors: 1 #Freely Rotating Bonds: 8 #Rule of 5 Violations: 2 ACD/LogP: 7.24 ACD/LogD (pH 5.5): 7.00 ACD/BCF (pH 5.5): 121544.13 ACD/KOC (pH 5.5): 150499.83 ACD/LogD (pH 7.4): 6.60 ACD/BCF (pH 7.4): 6.60 ACD/BCF (pH 7.4): 60231.64 Polar Surface Area: 111 Å2 Polarizability: 69.0 \pm 0.5 10-24cm3 Surface Tension: 49.4 \pm 7.0 dyne/cm Molar Volume: 467.8 \pm 7.0 cm3 T8 Density: 1.5 \pm 0.1 g/cm3 Boiling Point: Vapour Pressure:
Molar Refractivity: 138.8 ± 0.4 cm ³ #H bond acceptors: 8 #H bond donors: 1 #Freely Rotating Bonds: 7 #Rule of 5 Violations: 2 ACD/LogP: 5.33 ACD/LogD (pH 5.5): 4.30 ACD/BCF (pH 5.5): 1079.61 ACD/KOC (pH 5.5): 5152.38 ACD/LogD (pH 7.4): 4.13 ACD/BCF (pH 7.4): 742.89 ACD/KOC (pH 7.4): 3545.40 Polar Surface Area: 194 Å2 Polarizability: 55.0 \pm 0.5 10-24cm3 Surface Tension: 96.1 \pm 5.0 dyne/cm Molar Volume: 331.2 \pm 5.0 cm3 T7. - Density: 1.5 \pm 0.1 g/cm3 Boiling Point: Vapour Pressure: Enthalpy of Vaporization:	Molar Refractivity: $173.9\pm0.5 \text{ cm}3$ #H bond acceptors: 6 #H bond donors: 1 #Freely Rotating Bonds: 8 #Rule of 5 Violations: 2 ACD/LogP: 7.24 ACD/LogD (pH 5.5): 7.00 ACD/BCF (pH 5.5): 121544.13 ACD/KOC (pH 5.5): 150499.83 ACD/LogD (pH 7.4): 6.60 ACD/BCF (pH 7.4): 6.60 ACD/BCF (pH 7.4): 60231.64 Polar Surface Area: 111 Å2 Polarizability: 69.0±0.5 10-24cm3 Surface Tension: 49.4±7.0 dyne/cm Molar Volume: 467.8±7.0 cm3 T8 Density: 1.5±0.1 g/cm3 Boiling Point: Vapour Pressure: Enthalpy of Vanorization:
Molar Refractivity: 138.8 ± 0.4 cm ³ #H bond acceptors: 8 #H bond donors: 1 #Freely Rotating Bonds: 7 #Rule of 5 Violations: 2 ACD/LogP: 5.33 ACD/LogD (pH 5.5): 4.30 ACD/BCF (pH 5.5): 1079.61 ACD/KOC (pH 5.5): 5152.38 ACD/LogD (pH 7.4): 4.13 ACD/BCF (pH 7.4): 742.89 ACD/KOC (pH 7.4): 3545.40 Polar Surface Area: 194 Å2 Polarizability: 55.0 \pm 0.5 10-24cm3 Surface Tension: 96.1 \pm 5.0 dyne/cm Molar Volume: 331.2 \pm 5.0 cm3 T7. - Density: 1.5 \pm 0.1 g/cm3 Boiling Point: Vapour Pressure: Enthalpy of Vaporization: Flash Point:	Molar Refractivity: $173.9\pm0.5 \text{ cm}3$ #H bond acceptors: 6 #H bond donors: 1 #Freely Rotating Bonds: 8 #Rule of 5 Violations: 2 ACD/LogP: 7.24 ACD/LogD (pH 5.5): 7.00 ACD/BCF (pH 5.5): 121544.13 ACD/KOC (pH 5.5): 150499.83 ACD/LogD (pH 7.4): 6.60 ACD/BCF (pH 7.4): 6.60 ACD/BCF (pH 7.4): 60231.64 Polar Surface Area: 111 Å2 Polarizability: 69.0 \pm 0.5 10-24cm3 Surface Tension: 49.4 \pm 7.0 dyne/cm Molar Volume: 467.8 \pm 7.0 cm3 T8 Density: 1.5 \pm 0.1 g/cm3 Boiling Point: Vapour Pressure: Enthalpy of Vaporization: Flash Point:
Molar Refractivity: 138.8 ± 0.4 cm ³ #H bond acceptors: 8 #H bond donors: 1 #Freely Rotating Bonds: 7 #Rule of 5 Violations: 2 ACD/LogP: 5.33 ACD/LogD (pH 5.5): 4.30 ACD/BCF (pH 5.5): 1079.61 ACD/KOC (pH 5.5): 5152.38 ACD/LogD (pH 7.4): 4.13 ACD/BCF (pH 7.4): 742.89 ACD/KOC (pH 7.4): 3545.40 Polar Surface Area: 194 Å2 Polarizability: 55.0 \pm 0.5 10-24cm3 Surface Tension: 96.1 \pm 5.0 dyne/cm Molar Volume: 331.2 \pm 5.0 cm3 T7 Density: 1.5 \pm 0.1 g/cm3 Boiling Point: Vapour Pressure: Enthalpy of Vaporization: Flash Point: Index of Refraction: 1.734	Molar Refractivity: $173.9\pm0.5 \text{ cm}3$ #H bond acceptors: 6#H bond donors: 1#Freely Rotating Bonds: 8#Rule of 5 Violations: 2ACD/LogP: 7.24ACD/LogD (pH 5.5): 7.00ACD/BCF (pH 5.5): 121544.13ACD/KOC (pH 5.5): 150499.83ACD/LogD (pH 7.4): 6.60ACD/BCF (pH 7.4): 48643.26ACD/KOC (pH 7.4): 60231.64Polar Surface Area: 111 Å2Polarizability: 69.0 \pm 0.5 10-24 cm3Surface Tension: 49.4 \pm 7.0 dyne/cmMolar Volume: 467.8 \pm 7.0 cm3T8Density: 1.5 \pm 0.1 g/cm3Boiling Point:Vapour Pressure:Enthalpy of Vaporization:Flash Point:Index of Refraction: 1.719
Molar Refractivity: 138.8 ± 0.4 cm ³ #H bond acceptors: 8 #H bond donors: 1 #Freely Rotating Bonds: 7 #Rule of 5 Violations: 2 ACD/LogP: 5.33 ACD/LogD (pH 5.5): 4.30 ACD/KOC (pH 5.5): 1079.61 ACD/KOC (pH 5.5): 5152.38 ACD/LogD (pH 7.4): 4.13 ACD/BCF (pH 7.4): 742.89 ACD/KOC (pH 7.4): 3545.40 Polar Surface Area: 194 Å2 Polarizability: 55.0 \pm 0.5 10-24cm3 Surface Tension: 96.1 \pm 5.0 dyne/cm Molar Volume: 331.2 \pm 5.0 cm3 T7 Density: 1.5 \pm 0.1 g/cm3 Boiling Point: Vapour Pressure: Enthalpy of Vaporization: Flash Point: Index of Refraction: 1.734 Molar Refractivity: 140.2 \pm 0.5 cm3	Molar Refractivity: $173.9\pm0.5 \text{ cm}3$ #H bond acceptors: 6 #H bond donors: 1 #Freely Rotating Bonds: 8 #Rule of 5 Violations: 2 ACD/LogP: 7.24 ACD/LogD (pH 5.5): 7.00 ACD/BCF (pH 5.5): 121544.13 ACD/KOC (pH 5.5): 150499.83 ACD/LogD (pH 7.4): 6.60 ACD/BCF (pH 7.4): 60231.64 Polar Surface Area: 111 Å2 Polarizability: 69.0 \pm 0.5 10-24 cm3 Surface Tension: 49.4 \pm 7.0 dyne/cm Molar Volume: 467.8 \pm 7.0 cm3 T8. - Density: 1.5 \pm 0.1 g/cm3 Boiling Point: Vapour Pressure: Enthalpy of Vaporization: Flash Point: Index of Refraction: 1.719 Molar Refractivity: 179.4 \pm 0.4 cm3
Molar Refractivity: $138.8\pm0.4 \text{ cm}^3$ #H bond acceptors: 8 #H bond donors: 1 #Freely Rotating Bonds: 7 #Rule of 5 Violations: 2 ACD/LogP: 5.33 ACD/LogD (pH 5.5): 4.30 ACD/BCF (pH 5.5): 1079.61 ACD/KOC (pH 5.5): 5152.38 ACD/LogD (pH 7.4): 4.13 ACD/BCF (pH 7.4): 742.89 ACD/KOC (pH 7.4): 3545.40 Polar Surface Area: 194 Å2 Polarizability: 55.0 \pm 0.5 10-24cm3 Surface Tension: 96.1 \pm 5.0 dyne/cm Molar Volume: 331.2 \pm 5.0 cm3 T7. - Density: 1.5 \pm 0.1 g/cm3 Boiling Point: Vapour Pressure: Enthalpy of Vaporization: Flash Point: Index of Refraction: 1.734 Molar Refractivity: 140.2 \pm 0.5 cm3 #H bond acceptors: 11	Molar Refractivity: $173.9\pm0.5 \text{ cm}3$ #H bond acceptors: 6 #H bond donors: 1 #Freely Rotating Bonds: 8 #Rule of 5 Violations: 2 ACD/LogP: 7.24 ACD/LogD (pH 5.5): 7.00 ACD/BCF (pH 5.5): 121544.13 ACD/KOC (pH 5.5): 150499.83 ACD/LogD (pH 7.4): 6.60 ACD/BCF (pH 7.4): 60231.64 Polar Surface Area: 111 Å2 Polarizability: 69.0 \pm 0.5 10-24cm3 Surface Tension: 49.4 \pm 7.0 dyne/cm Molar Volume: 467.8 \pm 7.0 cm3 T8. - Density: 1.5 \pm 0.1 g/cm3 Boiling Point: Vapour Pressure: Enthalpy of Vaporization: Flash Point: Index of Refraction: 1.719 Molar Refractivity: 179.4 \pm 0.4 cm3 #H bond acceptors: 10
Molar Refractivity: 138.8 ± 0.4 cm ³ #H bond acceptors: 8 #H bond donors: 1 #Freely Rotating Bonds: 7 #Rule of 5 Violations: 2 ACD/LogP: 5.33 ACD/LogD (pH 5.5): 4.30 ACD/BCF (pH 5.5): 1079.61 ACD/KOC (pH 5.5): 5152.38 ACD/LogD (pH 7.4): 4.13 ACD/BCF (pH 7.4): 742.89 ACD/KOC (pH 7.4): 3545.40 Polar Surface Area: 194 Å2 Polarizability: 55.0 ± 0.5 10-24cm3 Surface Tension: 96.1 ± 5.0 dyne/cm Molar Volume: 331.2 ± 5.0 cm3 T7 Density: 1.5 ± 0.1 g/cm3 Boiling Point: Vapour Pressure: Enthalpy of Vaporization: Flash Point: Index of Refraction: 1.734 Molar Refractivity: 140.2 ± 0.5 cm ³ #H bond acceptors: 11 #H bond donors: 2	Molar Refractivity: $173.9\pm0.5 \text{ cm}3$ #H bond acceptors: 6 #H bond donors: 1 #Freely Rotating Bonds: 8 #Rule of 5 Violations: 2 ACD/LogP: 7.24 ACD/LogD (pH 5.5): 7.00 ACD/BCF (pH 5.5): 121544.13 ACD/KOC (pH 5.5): 150499.83 ACD/LogD (pH 7.4): 6.60 ACD/BCF (pH 7.4): 6.60 ACD/BCF (pH 7.4): 60231.64 Polar Surface Area: 111 Å2 Polarizability: 69.0±0.5 10-24cm3 Surface Tension: 49.4±7.0 dyne/cm Molar Volume: 467.8±7.0 cm3 T8 Density: 1.5±0.1 g/cm3 Boiling Point: Vapour Pressure: Enthalpy of Vaporization: Flash Point: Index of Refraction: 1.719 Molar Refractivity: 179.4±0.4 cm3 #H bond acceptors: 10 #H bond donors: 2
Molar Refractivity: 138.8 ± 0.4 cm ³ #H bond acceptors: 8 #H bond donors: 1 #Freely Rotating Bonds: 7 #Rule of 5 Violations: 2 ACD/LogP: 5.33 ACD/LogD (pH 5.5): 4.30 ACD/BCF (pH 5.5): 1079.61 ACD/KOC (pH 5.5): 5152.38 ACD/LogD (pH 7.4): 4.13 ACD/BCF (pH 7.4): 742.89 ACD/KOC (pH 7.4): 3545.40 Polar Surface Area: 194 Å2 Polarizability: 55.0 \pm 0.5 10-24cm3 Surface Tension: 96.1 \pm 5.0 dyne/cm Molar Volume: 331.2 \pm 5.0 cm3 T7 Density: 1.5 \pm 0.1 g/cm3 Boiling Point: Vapour Pressure: Enthalpy of Vaporization: Flash Point: Index of Refraction: 1.734 Molar Refractivity: 140.2 \pm 0.5 cm3 #H bond acceptors: 11 #H bond donors: 2 #Freely Rotating Bonds: 9	Molar Refractivity: $173.9\pm0.5 \text{ cm}3$ #H bond acceptors: 6 #H bond donors: 1 #Freely Rotating Bonds: 8 #Rule of 5 Violations: 2 ACD/LogP: 7.24 ACD/LogD (pH 5.5): 7.00 ACD/BCF (pH 5.5): 121544.13 ACD/KOC (pH 5.5): 150499.83 ACD/LogD (pH 7.4): 6.60 ACD/BCF (pH 7.4): 48643.26 ACD/KOC (pH 7.4): 60231.64 Polar Surface Area: 111 Å2 Polarizability: 69.0 \pm 0.5 10-24cm3 Surface Tension: 49.4 \pm 7.0 dyne/cm Molar Volume: 467.8 \pm 7.0 cm3 T8 Density: 1.5 \pm 0.1 g/cm3 Boiling Point: Vapour Pressure: Enthalpy of Vaporization: Flash Point: Index of Refraction: 1.719 Molar Refractivity: 179.4 \pm 0.4 cm3 #H bond acceptors: 10 #H bond donors: 2 #Freely Rotating Bonds: 13
Molar Refractivity: 138.8 ± 0.4 cm ³ #H bond acceptors: 8 #H bond donors: 1 #Freely Rotating Bonds: 7 #Rule of 5 Violations: 2 ACD/LogP: 5.33 ACD/LogD (pH 5.5): 4.30 ACD/BCF (pH 5.5): 1079.61 ACD/KOC (pH 5.5): 5152.38 ACD/LogD (pH 7.4): 4.13 ACD/BCF (pH 7.4): 742.89 ACD/KOC (pH 7.4): 3545.40 Polar Surface Area: 194 Å2 Polarizability: 55.0 \pm 0.5 10-24cm3 Surface Tension: 96.1 \pm 5.0 dyne/cm Molar Volume: 331.2 \pm 5.0 cm3 T7. - Density: 1.5 \pm 0.1 g/cm3 Boiling Point: Vapour Pressure: Enthalpy of Vaporization: Flash Point: Index of Refraction: 1.734 Molar Refractivity: 140.2 \pm 0.5 cm3 #H bond acceptors: 11 #H bond donors: 2 #Freely Rotating Bonds: 9 #Rule of 5 Violations: 2	Molar Refractivity: $173.9\pm0.5 \text{ cm}3$ #H bond acceptors: 6 #H bond donors: 1 #Freely Rotating Bonds: 8 #Rule of 5 Violations: 2 ACD/LogP: 7.24 ACD/LogD (pH 5.5): 7.00 ACD/BCF (pH 5.5): 121544.13 ACD/KOC (pH 5.5): 150499.83 ACD/LogD (pH 7.4): 6.60 ACD/BCF (pH 7.4): 48643.26 ACD/KOC (pH 7.4): 60231.64 Polar Surface Area: 111 Å2 Polarizability: 69.0 \pm 0.5 10-24cm3 Surface Tension: 49.4 \pm 7.0 dyne/cm Molar Volume: 467.8 \pm 7.0 cm3 T8 Density: 1.5 \pm 0.1 g/cm3 Boiling Point: Vapour Pressure: Enthalpy of Vaporization: Flash Point: Index of Refraction: 1.719 Molar Refractivity: 179.4 \pm 0.4 cm3 #H bond acceptors: 10 #H bond donors: 2 #Freely Rotating Bonds: 13 #Rule of 5 Violations: 2
Molar Refractivity: 138.8 ± 0.4 cm ³ #H bond acceptors: 8 #H bond donors: 1 #Freely Rotating Bonds: 7 #Rule of 5 Violations: 2 ACD/LogP: 5.33 ACD/LogD (pH 5.5): 4.30 ACD/BCF (pH 5.5): 1079.61 ACD/KOC (pH 5.5): 5152.38 ACD/LogD (pH 7.4): 4.13 ACD/BCF (pH 7.4): 742.89 ACD/KOC (pH 7.4): 3545.40 Polar Surface Area: 194 Å2 Polarizability: 55.0 \pm 0.5 10-24cm3 Surface Tension: 96.1 \pm 5.0 dyne/cm Molar Volume: 331.2 \pm 5.0 cm3 T7. - Density: 1.5 \pm 0.1 g/cm3 Boiling Point: Vapour Pressure: Enthalpy of Vaporization: Flash Point: Index of Refraction: 1.734 Molar Refractivity: 140.2 \pm 0.5 cm3 #H bond acceptors: 11 #H bond donors: 2 #Freely Rotating Bonds: 9 #Rule of 5 Violations: 2 ACD/LogP: 4.27 ACD/LogP: 4.27	Molar Refractivity: $173.9\pm0.5 \text{ cm}3$ #H bond acceptors: 6 #H bond donors: 1 #Freely Rotating Bonds: 8 #Rule of 5 Violations: 2 ACD/LogP: 7.24 ACD/LogD (pH 5.5): 7.00 ACD/BCF (pH 5.5): 121544.13 ACD/KOC (pH 5.5): 150499.83 ACD/LogD (pH 7.4): 6.60 ACD/BCF (pH 7.4): 6.60 ACD/BCF (pH 7.4): 60231.64 Polar Surface Area: 111 Å2 Polarizability: 69.0 \pm 0.5 10-24cm3 Surface Tension: 49.4 \pm 7.0 dyne/cm Molar Volume: 467.8 \pm 7.0 cm3 T8. Density: 1.5 \pm 0.1 g/cm3 Boiling Point: Vapour Pressure: Enthalpy of Vaporization: Flash Point: Index of Refraction: 1.719 Molar Refractivity: 179.4 \pm 0.4 cm3 #H bond acceptors: 10 #H bond acceptors: 10 #H bond donors: 2 #Freely Rotating Bonds: 13 #Rule of 5 Violations: 2 ACD/LogP: 1.92
Molar Refractivity: 138.8 ± 0.4 cm ³ #H bond acceptors: 8 #H bond donors: 1 #Freely Rotating Bonds: 7 #Rule of 5 Violations: 2 ACD/LogD (pH 5.5): 4.30 ACD/LogD (pH 5.5): 1079.61 ACD/KOC (pH 5.5): 5152.38 ACD/LogD (pH 7.4): 4.13 ACD/BCF (pH 7.4): 742.89 ACD/KOC (pH 7.4): 3545.40 Polar Surface Area: 194 Å2 Polarizability: 55.0\pm0.5 10-24cm3 Surface Tension: 96.1\pm5.0 dyne/cm Molar Volume: 331.2\pm5.0 cm3 T7. - Density: 1.5\pm0.1 g/cm3 Boiling Point: Vapour Pressure: Enthalpy of Vaporization: Flash Point: Index of Refraction: 1.734 Molar Refractivity: 140.2\pm0.5 cm ³ #H bond acceptors: 11 #H bond acceptors: 11 #H bond acceptors: 2 #Freely Rotating Bonds: 9 #Rule of 5 Violations: 2 ACD/LogD (pH 5.5): 3.08 ACD/LogD (pH 5.5): 3.08	Molar Refractivity: 173.9 \pm 0.5 cm3 #H bond acceptors: 6 #H bond donors: 1 #Freely Rotating Bonds: 8 #Rule of 5 Violations: 2 ACD/LogP: 7.24 ACD/LogD (pH 5.5): 7.00 ACD/BCF (pH 5.5): 121544.13 ACD/KOC (pH 5.5): 150499.83 ACD/LogD (pH 7.4): 6.60 ACD/BCF (pH 7.4): 6.60 ACD/BCF (pH 7.4): 60231.64 Polar Surface Area: 111 Å2 Polarizability: 69.0 \pm 0.5 10-24cm3 Surface Tension: 49.4 \pm 7.0 dyne/cm Molar Volume: 467.8 \pm 7.0 cm3 T8 Density: 1.5 \pm 0.1 g/cm3 Boiling Point: Vapour Pressure: Enthalpy of Vaporization: Flash Point: Index of Refractivity: 179.4 \pm 0.4 cm3 #H bond acceptors: 10 #H bond donors: 2 #Freely Rotating Bonds: 13 #Rule of 5 Violations: 2 ACD/LogP: 1.92 ACD/LogP (pH 5.5): 2.15 ACD/LogP (pH 5.5): 2.15
Molar Refractivity: 138.8 ± 0.4 cm ³ #H bond acceptors: 8 #H bond donors: 1 #Freely Rotating Bonds: 7 #Rule of 5 Violations: 2 ACD/LogP: 5.33 ACD/LogD (pH 5.5): 4.30 ACD/BCF (pH 5.5): 1079.61 ACD/KOC (pH 5.5): 5152.38 ACD/LogD (pH 7.4): 742.89 ACD/CogP (pH 7.4): 742.89 ACD/KOC (pH 7.4): 3545.40 Polar Surface Area: 194 Å2 Polarizability: 55.0 \pm 0.5 10-24cm3 Surface Tension: 96.1 \pm 5.0 dyne/cm Molar Volume: 331.2 \pm 5.0 cm3 T7. - Density: 1.5 \pm 0.1 g/cm3 Boiling Point: Vapour Pressure: Enthalpy of Vaporization: Flash Point: Index of Refraction: 1.734 Molar Refractivity: 140.2 \pm 0.5 cm3 #H bond acceptors: 11 #H bond donors: 2 #Freely Rotating Bonds: 9 #Rule of 5 Violations: 2 ACD/LogP: 4.27 ACD/LogD (pH 5.5): 3.08 ACD/BCF (pH 5.5): 127.88 ACD/KOF (pH 5.5): 127.88	Molar Refractivity: 173.9 \pm 0.5 cm3 #H bond acceptors: 6 #H bond donors: 1 #Freely Rotating Bonds: 8 #Rule of 5 Violations: 2 ACD/LogP: 7.24 ACD/LogD (pH 5.5): 7.00 ACD/BCF (pH 5.5): 121544.13 ACD/KOC (pH 5.5): 150499.83 ACD/LogD (pH 7.4): 6.60 ACD/BCF (pH 7.4): 6.60 ACD/BCF (pH 7.4): 60231.64 Polar Surface Area: 111 Å2 Polarizability: 69.0 \pm 0.5 10-24cm3 Surface Tension: 49.4 \pm 7.0 dyne/cm Molar Volume: 467.8 \pm 7.0 cm3 T8 Density: 1.5 \pm 0.1 g/cm3 Boiling Point: Vapour Pressure: Enthalpy of Vaporization: Flash Point: Index of Refraction: 1.719 Molar Refractivity: 179.4 \pm 0.4 cm3 #H bond acceptors: 10 #H bond donors: 2 #Freely Rotating Bonds: 13 #Rule of 5 Violations: 2 ACD/LogP: 1.92 ACD/LogP: 1.92 ACD/LogP: 1.92 ACD/LogP (pH 5.5): 2.15 ACD/BCF (pH 5.5): 25.27 ACD/BCF (pH 5.5): 25.27
Molar Refractivity: 138.8 ± 0.4 cm ³ #H bond acceptors: 8 #H bond donors: 1 #Freely Rotating Bonds: 7 #Rule of 5 Violations: 2 ACD/LogD (pH 5.5): 4.30 ACD/LogD (pH 5.5): 5152.38 ACD/LogD (pH 7.4): 4.13 ACD/KOC (pH 7.4): 742.89 ACD/KOC (pH 7.4): 3545.40 Polar Surface Area: 194 Å2 Polarizability: 55.0\pm0.5 10-24cm3 Surface Tension: 96.1\pm5.0 dyne/cm Molar Volume: 331.2\pm5.0 cm3 T7 Density: 1.5\pm0.1 g/cm3 Boiling Point: Vapour Pressure: Enthalpy of Vaporization: Flash Point: Index of Refraction: 1.734 Molar Refractivity: 140.2\pm0.5 cm3 #H bond acceptors: 11 #H bond donors: 2 #Freely Rotating Bonds: 9 #Rule of 5 Violations: 2 ACD/LogD (pH 5.5): 3.08 ACD/LogD (pH 5.5): 127.88 ACD/KOC (pH 5.5): 1115.89 ACD/KOC (pH 5.5): 1115.89 ACD/KOC (pH 7.4): 2.73	Molar Refractivity: 173.9 \pm 0.5 cm3 #H bond acceptors: 6 #H bond donors: 1 #Freely Rotating Bonds: 8 #Rule of 5 Violations: 2 ACD/LogP: 7.24 ACD/LogD (pH 5.5): 7.00 ACD/BCF (pH 5.5): 121544.13 ACD/KOC (pH 5.5): 150499.83 ACD/LogD (pH 7.4): 6.60 ACD/BCF (pH 7.4): 60231.64 Polar Surface Area: 111 Å2 Polarizability: 69.0 \pm 0.5 10-24cm3 Surface Tension: 49.4 \pm 7.0 dyne/cm Molar Volume: 467.8 \pm 7.0 cm3 T8 Density: 1.5 \pm 0.1 g/cm3 Boiling Point: Vapour Pressure: Enthalpy of Vaporization: Flash Point: Index of Refraction: 1.719 Molar Refractivity: 179.4 \pm 0.4 cm3 #H bond acceptors: 10 #H bond acceptors: 10 #H bond donors: 2 #Freely Rotating Bonds: 13 #Rule of 5 Violations: 2 ACD/LogP (pH 5.5): 2.15 ACD/BCF (pH 7.4): 2.15
Molar Refractivity: $138.8\pm0.4 \text{ cm}^3$ #H bond acceptors: 8 #H bond donors: 1 #Freely Rotating Bonds: 7 #Rule of 5 Violations: 2 ACD/LogP: 5.33 ACD/LogD (pH 5.5): 4.30 ACD/BCF (pH 5.5): 1079.61 ACD/KOC (pH 5.5): 5152.38 ACD/LogD (pH 7.4): 4.13 ACD/BCF (pH 7.4): 742.89 ACD/KOC (pH 7.4): 742.89 ACD/KOC (pH 7.4): 3545.40 Polar Surface Area: 194 Å2 Polarizability: 55.0\pm0.5 10-24cm3 Surface Tension: 96.1\pm5.0 dyne/cm Molar Volume: 331.2\pm5.0 cm3 T7. - Density: 1.5\pm0.1 g/cm3 Boiling Point: Vapour Pressure: Enthalpy of Vaporization: Flash Point: Index of Refraction: 1.734 Molar Refractivity: 140.2\pm0.5 cm3 #H bond acceptors: 11 #H bond donors: 2 #Freely Rotating Bonds: 9 #Rule of 5 Violations: 2 ACD/LogP (pH 5.5): 3.08 ACD/LogD (pH 5.5): 117.89 ACD/LogD (pH 7.4): 2.73 ACD/LogD (pH 7.4): 2.73 ACD/LogD (pH 7.4): 2.73 ACD/LogD (pH 7.4): 2.73	Molar Refractivity: 173.9 ± 0.5 cm3 #H bond acceptors: 6 #H bond donors: 1 #Freely Rotating Bonds: 8 #Rule of 5 Violations: 2 ACD/LogP: 7.24 ACD/LogD (pH 5.5): 7.00 ACD/BCF (pH 5.5): 121544.13 ACD/KOC (pH 5.5): 150499.83 ACD/LogD (pH 7.4): 6.60 ACD/BCF (pH 7.4): 6.60 ACD/BCF (pH 7.4): 60231.64 Polar Surface Area: 111 Å2 Polarizability: 69.0 \pm 0.5 10-24cm3 Surface Tension: 49.4 \pm 7.0 dyne/cm Molar Volume: 467.8 \pm 7.0 cm3 T8. Density: 1.5 \pm 0.1 g/cm3 Boiling Point: Vapour Pressure: Enthalpy of Vaporization: Flash Point: Index of Refraction: 1.719 Molar Refractivity: 179.4 \pm 0.4 cm3 #H bond acceptors: 10 #H bond donors: 2 #Freely Rotating Bonds: 13 #Rule of 5 Violations: 2 ACD/LogP (pH 5.5): 2.15 ACD/LogD (pH 5.5): 25.27 ACD/LogD (pH 7.4): 2.15 ACD/LogD (pH 7.4): 2.15

https://biointerfaceresearch.com/

ACD/KOC (pH 7.4): 501.71	ACD/KOC (pH 7.4): 351.20
Polar Surface Area: 201 Å2	Polar Surface Area: 232 Å2
Polarizability: 55.6±0.5 10-24cm3	Polarizability: 71.1±0.5 10-24cm3
Surface Tension: 66.0±7.0 dyne/cm	Surface Tension: 83.2±5.0 dyne/cm
Molar Volume: 349.8±7.0 cm3	Molar Volume: 454.5±5.0 cm3
Т9	T10
Density: 1.3±0.1 g/cm3	Density: 1.5±0.1 g/cm3
Boiling Point:	Boiling Point:
Vapour Pressure:	Vapour Pressure:
Enthalpy of Vaporization:	Enthalpy of Vaporization:
Flash Point:	Flash Point:
Index of Refraction: 1.665	Index of Refraction: 1.722
Molar Refractivity: 140.9±0.5 cm3	Molar Refractivity: 144.8±0.5 cm3
#H bond acceptors: 7	#H bond acceptors: 11
#H bond donors: 1	#H bond donors: 2
#Freely Rotating Bonds: 9	#Freely Rotating Bonds: 10
#Rule of 5 Violations: 1	#Rule of 5 Violations: 2
ACD/LogP: 6.53	ACD/LogP: 4.80
ACD/LogD (pH 5.5): 5.66	ACD/LogD (pH 5.5): 3.46
ACD/BCF (pH 5.5): 11774.76	ACD/BCF (pH 5.5): 249.42
ACD/KOC (pH 5.5): 28410.28	ACD/KOC (pH 5.5): 1800.23
ACD/LogD (pH 7.4): 5.31	ACD/LogD (pH 7.4): 3.12
ACD/BCF (pH 7.4): 5195.31	ACD/BCF (pH 7.4): 113.07
ACD/KOC (pH 7.4): 12535.32	ACD/KOC (pH 7.4): 816.09
Polar Surface Area: 135 Å2	Polar Surface Area: 201 Å2
Polarizability: 55.8±0.5 10-24cm3	Polarizability: 57.4±0.5 10-24cm3
Surface Tension: 49.7±7.0 dyne/cm	Surface Tension: 64.2±7.0 dyne/cm
Molar Volume: 379.5 ± 7.0 cm3	Molar Volume: 365.8±7.0 cm3