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Abstract: Continuous Stirred Tank Reactor (CSTR) is an important system in the chemical and 

biological industries. It's characterized by a complex nonlinear behavior and is usually affected by faults 

and disturbances. Therefore, the states and faults estimation of a CSTR is always a challenging task for 

automated process researchers and engineers. This paper proposes an adaptive observer. This paper 

proposes an adaptive observer in order to estimate states and actuator and sensor faults simultaneously 

under unknown disturbance. Firstly, the approach of the Takagi-Sugeno multi-model is proposed to 

transform the complex nonlinear model into several simple linear sub-models. However, the states of 

the considered isotherm CSTR are not completely measurable, so the multi-model is represented with 

non-measurable premise variables. Then, in order to transform the considered system into a system with 

an unknown input, a mathematical transformation is introduced to describe the sensor faults as actuator 

faults. The proposed observer is designed, and the exponential stability conditions are studied with the 

Lyapunov theory and L2 optimization and formulated in terms of linear matrix inequalities. Finally, to 

improve the effectiveness of the proposed observer, a numerical simulation is carried out on a CSTR. 

Keywords: CSTR; nonlinear system; multi-model approach; state estimation; faults estimation; 
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1. Introduction 

Continuous Stirred Tank Reactor is used in biochemical and pharmaceutical processes 

in water treatment and several applications due to its appropriate mixing property. It is used for 

the perfect mixing of chemical components that are continuously added to the reactor in the 

chemical industry. The CSTR is characterized by complex nonlinear behavior and is exposed 

to faults and disturbances. 

The complete knowledge of a system's state is necessary to construct a control law or a 

diagnosis mechanism. But, the state cannot be directly measurable due to economic or technical 

reasons. Therefore, state estimation becomes a principal step in process engineering. Observers 

have been used to generate a state estimation. An observer is based on the input and the 

measurable output to obtain an estimate of the state. The observer has first been proposed by 

Luenberger [1] for linear systems and later constructed for nonlinear systems [2].  

Various approaches have been proposed to ensure the state estimation of a CSTR. In 

[3], a state estimation of a chemical reactor is proposed using the Extended Kalman Filter 

(EKF), Particle Filter (PF), and recently developed variational bayesian filter (VBF). In [4], the 
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Extended Kalman Filter (EKF) and the neural network (NN) based state filtering algorithm has 

been used to estimate the states variables of a CSTR. In [5], the states of a CSTR are estimated 

using Luenberger  Observer, Sliding  Mode Observers (SMO), and Kalman   Observers   (KO). 

However, these works are based directly on the nonlinear model of the CSTR, and from the 

mathematical point of view, an observed design based directly on the nonlinear model is very 

complex due to the high nonlinearity of the system behavior. The best solution to this problem 

is the Takagi-Sugeno (TS) multi-model approach [6]. It consists of representing the nonlinear 

model as an interpolation of simple linear models; each submodel presents the system's 

behavior on a limited part of the operating space.  

In industry, the CSTR is usually exposed to faults, affecting the system's input as an 

actuator fault or the system's output as a sensor fault. In practice, actuator faults and sensor 

faults can occur simultaneously. Thus, the fault sensor may destroy the actuator due to the 

wrong measurement. For that purpose, the control and diagnosis framework requires 

knowledge of all the system states and the faults affecting them. Consequently, an observer is 

important to estimate these signals simultaneously. 

Many works have been proposed observers for state estimation of a TS system under 

faults [7-24]. We can note some applications on chemical systems using the Fuzzy Luenberger 

observer [25,26], the Proportional-Integral observer (PIO) [27-29], the Unknown Input 

Observer (UIO) [30,31], the H∞ observer [32,33], and sliding mode observer [34].   Most of 

these works supposed that the variable premises are measurable or coped with actuator faults 

without reference to sensor faults, making these methods less applicable. 

This paper aims to design an adaptive observer for nonlinear systems described by 

Takagi-Sugeno with non-measurable decision variables and affected by the simultaneous 

actuator and sensor faults under unknown disturbances. The proposed technic is based on a 

proportional-integral observer with unknown input. Firstly, the multi-model structure is used 

to represent the nonlinear system by interpolating local linear models. Then, a mathematical 

transformation is used to rewrite the sensor fault as an actuator fault. The exponential stability 

conditions are synthesized using the Lyapunov function and L2 optimization and formulated 

in LMIs. To improve the efficacy of the proposed method, it is applied to a CSTR. 

The main contributions of this work are: 1) using the multi-model approach to 

circumvent the nonlinearity of the system; 2)  extending the adaptive observer to state and 

faults estimation for TS systems with unmeasurable premise variables; 3) the considered 

system is affected by the simultaneous actuator and sensor faults under unknown disturbances; 

4) new stability conditions are obtained based on the Lyapunov theory and L2 optimization, 

and formulated in terms of LMIs which can be solved easily in Matlab LMI Toolbox; finally 

5) application of the proposed method on a CSTR. 

This paper is organized as follows: the Takagi-Sugeno approach is presented in Section 

2, Section 3 concerns the problem statement and the adaptive observer synthesis, Section 4 

focuses on the application to the CSTR system, finally, the conclusion is given in section 5. 

2. Takagi-Sugeno multi-model approach 

The Takagi-Sugeno multi-model method aims to divide the nonlinear system into an 

interpolation of linear sub-models. The multiple models are presented in the following form:  

{
𝑥̇(𝑡) = ∑ 𝜇𝑖(𝜉(𝑡))(𝐴𝑖𝑥(𝑡) + 𝐵𝑖𝑢(𝑡))

𝑙
𝑖=1

𝑦(𝑡) = ∑ 𝜇𝑖(𝜉(𝑡))𝐶𝑖𝑥(𝑡)                      
𝑙
𝑖=1

                                (1) 
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where 𝑥(𝑡) ∈ ℝ𝑛 is the state vector, 𝑦(𝑡) ∈ ℝ𝑝 is the output, 𝑢(𝑡) ∈ ℝ𝑚 is the control. 𝑙 is the 

number of local models, 𝐴𝑖 ∈ ℝ
𝑛×𝑛, 𝐵𝑖 ∈ ℝ

𝑛×𝑚 and 𝐶𝑖 ∈ ℝ
𝑝×𝑛 are constant matrices of 

appropriate dimensions.  𝜇𝑖(𝜉(𝑡)) are the activation functions which define the activation 

degree of a local model and 𝜉(𝑡) is the decision variable. These functions satisfy the following 

convexity property: 

{
∑ 𝜇𝑖(𝜉(𝑡)) = 1, ∀𝑡
𝑙
𝑖=1                 

0 ≤ 𝜇𝑖(𝜉(𝑡)) ≤ 1, ∀𝑖 = 1… 𝑙
                                       (2) 

3. The design of the adaptive observer  

This section discusses the synthesis of an adaptive observer for a Takagi-Sugeno multi-

model system with non-measurable variables decision with simultaneous actuator and sensor 

faults. 

3.1. Problem statement.  

Let us consider a TS multi-model affected by actuator and sensor faults as follows: 

{
𝑥̇(𝑡) = ∑ 𝜇𝑖(𝑥(𝑡))(𝐴𝑖𝑥(𝑡) + 𝐵𝑖𝑢(𝑡) + 𝐸𝑖𝑓𝑎(𝑡) + wd(t))

𝑙
𝑖=1

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝑆𝑓𝑠(𝑡) + ωd(t)                                                  
                          (3) 

where 𝑓𝑎(𝑡) and 𝑓𝑠(𝑡) are respectively the actuator and sensor faults, and d(t) is an unknown 

disturbance. 𝐸𝑖 and 𝑆 are the faults distribution matrices that are supposed to be known. 

A new state 𝑞(𝑡) is introduced in order to rewrite the sensor faults as actuator faults. 

𝑞̇(𝑡) = ∑ 𝜇𝑖(𝑥(𝑡))(−𝐷𝑞(𝑡) + 𝐷𝑦(𝑡))
𝑙
𝑖=1                                  (4) 

The augmented system is presented as: 

{
𝑋̇(𝑡) = ∑ 𝜇𝑖(𝑥(t))(𝐴̅𝑖𝑥(𝑡) + 𝐵̅𝑖𝑢(𝑡) + 𝐸̅𝑖𝑓(𝑡) + 𝑤̅𝑑(𝑡))

𝑙
𝑖=1   

𝑌(𝑡) = 𝐶̅𝑥(𝑡)                                                                                     
      (5) 

where 𝑤̅ = [
w 0
0 𝐷ω

] 

The states of the considered system are supposed not completely measurable. 

Therefore. (5) is rewritten as a multi-model with estimated variables decision. 

{
𝑋̇(𝑡) = ∑ 𝜇𝑖(x̂(t))(𝐴̅𝑖𝑥(𝑡) + 𝐵̅𝑖𝑢(𝑡) + 𝐸̅𝑖𝑓(𝑡) + 𝑤̅𝑑(𝑡)) + Δ(𝑡)

𝑙
𝑖=1

𝑌(𝑡) = 𝐶̅𝑥(𝑡)                                                                                                
                   (6) 

where x̂(t) is the estimated 𝑥(t) by the proposed observer and 𝛷(𝑡) given by: 

Δ(𝑡) = ∑ (μi(𝑥(t)) − μi(x̂(t)))(𝐴̅𝑖𝑥(𝑡) + 𝐵̅𝑖𝑢(𝑡) + 𝐸̅𝑖𝑓(𝑡) + 𝑤̅𝑑(𝑡))
𝑙
𝑖=1                                     (7) 

The system (6) can be rewritten as a faulty multi-model with unknown input. 

{
𝑋̇(𝑡) = ∑ 𝜇𝑖(x̂(t))(𝐴̅𝑖𝑥(𝑡) + 𝐵̅𝑖𝑢(𝑡) + 𝐸̅𝑖𝑓(𝑡)) + 𝑊̅ϕ(𝑡)

𝑙
𝑖=1

𝑌(𝑡) = 𝐶̅𝑥(𝑡)                                                                                     
                                              (8) 

with 

𝐴̅𝑖=[
𝐴𝑖 0
𝐷𝐶 −𝐷

]  ;  𝐵̅𝑖 = [
𝐵𝑖
0
]  ;  𝐸̅𝑖=[

𝐸𝑖 0
0 𝐷𝑆

] ; 𝐶̅=[
C 0
0 𝐼

] ; 𝑋(𝑡) = [
𝑥(𝑡)
𝑞(𝑡)

]  ;  𝑓(𝑡) = [
𝑓𝑎(𝑡)
𝑓𝑠(𝑡)

]; 

𝑊̅ = [𝑤̅ I]; ϕ(𝑡) = [
𝑑(𝑡)
Δ(𝑡)

]. 

3.2. Design and stability conditions of the adaptive observer. 

The proposed observer is structured as follows: 
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{

𝑧̇(𝑡) = ∑ 𝜇𝑖(𝑥̂(𝑡))(𝑅𝑖𝑧(𝑡) + 𝑇𝐵̅𝑖𝑢(𝑡) + 𝑇𝐸̅𝑖𝑓(𝑡) + 𝐾𝑃𝑖𝑦(𝑡))
𝑙
𝑖=1

𝑓̇(𝑡) = ∑ 𝜇𝑖(𝑥̂(𝑡))𝐾𝐼𝑖(𝑌 − 𝐶̅𝑋̂)
𝑙
𝑖=1                                                      

𝑋̂(𝑡) = 𝑧(𝑡) + 𝐻𝑌(𝑡)                                                                                

                                     (9) 

where 𝑥̂(𝑡) is the estimated system state, 𝑧(𝑡) is an intermediate variable and f̂(𝑡) is the 

estimated faults. The variables 𝑅𝑖, 𝑇, 𝐾𝑃𝑖, 𝐾𝐼𝑖 and 𝐻 are the observer gains. 

Stability conditions are obtained in the following theorem. 

Theorem  

The convergence of the state estimation error between the system (6) and the adaptive 

observer (9) is verified and the L2-gain of the transfer from 𝛷(𝑡) to the estimation error is 

bounded if there exists 𝑃 = 𝑃𝑇 > 0 and matrix 𝑀𝑖 and positive scalars 𝛾̅ the solution to the 

following optimization problem: 

min 𝛾̅ 

P, 𝑀𝑖, 𝛾̅ 

and the following conditions hold: 

 [
𝐴̅𝑎𝑖
𝑇 𝑃 + 𝑃𝐴̅𝑎𝑖 − 𝐶𝑎̅

𝑇
𝑀𝑖
𝑇 −𝑀𝑖𝐶𝑎̅ + 2𝛼𝑃 + 𝐼 𝑃𝛤

𝛤𝑇𝑃 −𝛾̅𝐼
] < 0  𝑖 =  1,  … ,  𝑙                 (10) 

with 𝛼 > 0  and: 

                         [𝑇 𝐻] = [
𝐼𝑛
𝐶̅
]
+

                                                                                 (11) 

                      [
𝐹𝑖
𝐾𝐼𝑖
] = 𝐾𝑖 = 𝑋

−1𝑀𝑖                                                                             (12) 

                        𝑅𝑖 = T𝐴̅𝑖 − 𝐹𝑖𝐶̅                                                                                  (13) 

                       𝐾𝑃𝑖 = 𝐹𝑖 + 𝑅𝑖𝑀                                                                                   (14) 

and the L2-gain of the transfer is calculated by: 𝛾 = √𝛾̅  

Proof 

𝑒(𝑡) and 𝑒𝑓(𝑡) represent the state  and the fault estimation error respectively: 

  𝑒(𝑡) = 𝑋(𝑡) − 𝑋̂(𝑡)                                                        (15) 

  𝑒𝑓(𝑡) = 𝑓(𝑡) − 𝑓(𝑡)                                            (16) 

The dynamics of the state estimation error is obtained as: 

𝑒̇(𝑡) = 𝑋̇(𝑡) − 𝑋̇̂(𝑡)   = ∑ 𝜇𝑖(𝑥̂(𝑡))((𝑃𝐴̅𝑖 − 𝑅𝑖 − 𝐹𝑖𝐶̅)𝑋(𝑡) + (Ω𝐵̅𝑖 − 𝑇𝐵̅𝑖)𝑢(𝑡) +
𝑙
𝑖=1

(Ω𝐸̅𝑖 − 𝑇𝐸̅𝑖)𝑓(𝑡) + Ω𝑊̅𝛷(𝑡) + 𝑅𝑖𝑒(𝑡)) + 𝑇𝐸̅𝑖𝑒𝑓(𝑡))                                                     (17) 

where 

Ω = 𝐼 − 𝐻𝐶̅                                                 (18) 

𝐹𝑖 = 𝐾𝑃𝑖 − 𝑅𝑖𝐻                                             (19) 

 

If the following conditions are verified 

𝑅𝑖 = Ω𝐴̅𝑖 − 𝐹𝑖𝐶̅                                              (20) 

Ω = 𝑇                                                       (21) 

The state estimation error can be rewritten as: 

 𝑒̇(𝑡) = 𝑅𝑖𝑒(𝑡) + 𝑇𝐸̅𝑖𝑒𝑓(𝑡) + Ω𝑊̅𝛷(𝑡)                         (22) 

The dynamics of the fault estimation error is obtained by: 

𝑒̇𝑓 = − 𝑢̇̂̅(𝑡) = −∑ 𝜇𝑖(𝑥̂(𝑡))𝐾𝐼𝑖(𝑌 − 𝐶̅𝑋̂) = −∑ 𝜇𝑖(𝑥̂(𝑡))𝐾𝐼𝑖𝐶̅𝑒(𝑡)
𝑙
𝑖=1

𝑙
𝑖=1                            (23) 

The augmented form of 𝑒̇(𝑡) and 𝑒̇𝑓(𝑡) is given by: 
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𝑒̇𝑎(𝑡) = [
𝑅𝑖 𝑇𝐸̅𝑖

−𝐾𝐼𝑖𝐶̅ 0
] 𝑒𝑎(𝑡) + [

Ω𝑊̅
0
]𝛷(t)                              (24) 

where 𝑒𝑎(𝑡)=[
𝑒(𝑡)

𝑒𝑢(𝑡)
] 

The estimation error 𝑒𝑎(𝑡) is reduced to: 

𝑒̇𝑎(𝑡) = ( 𝐴̅𝑎𝑖 − 𝐾𝑖𝐶𝑎̅)𝑒𝑎(𝑡) + 𝛤Φ(𝑡)                                    (25) 

with: 𝐴̅𝑎𝑖 = [Ω𝐴
̅
𝑖 𝑇𝐸̅𝑖

0 0
] ; 𝐾𝑖 = [

𝐹𝑖
𝐾𝐼𝑖
] ; 𝐶𝑎̅ = [𝐶̅ 0]; 𝛤 = [

Ω𝑊̅
0
] 

Tacking account of (18) and (21), we can write the following equation: 

 I = T +𝑀𝐶̅ = [𝑇 𝑀] [
𝐼𝑛
𝐶̅
]                                    (26) 

The matrix 𝐼𝑛 is an identity matrix with appropriate dimension. Therefore, the gains 𝑇 

an 𝐻 can be obtained as: 

[𝑇 𝐻] = [
𝐼𝑛
𝐶̅
]
+

                                              (27) 

where [
𝐼𝑛
𝐶̅
]
+

 the pseudo-inverse of [
𝐼𝑛
𝐶̅
]. 

Let's consider the following Lyapunov function: 

 𝑉(𝑡) = 𝑒𝑎
𝑇(𝑡)𝑃𝑒𝑎(𝑡)                                       (28) 

𝑒𝑎(𝑡) converge exponentially to zero if: 

∃𝑋 = 𝑋𝑇 > 0,  𝛼 > 0: 𝑉̇(𝑡) + 2𝛼𝑉(𝑡) < 0                                     (29) 

The time derivative of 𝑉(𝑡) is calculated as: 

𝑉̇(𝑡) = ∑ μi(x̂(t))(𝑒𝑎
𝑇(𝑡)((𝐴̅𝑎𝑖 − 𝐾𝑖𝐶𝑎̅)

𝑇𝑃 + 𝑋(𝐴̅𝑎𝑖 − 𝐾𝑖𝐶𝑎̅)+2𝛼𝑃)𝑒𝑎(𝑡) +
l
i=1

𝛷 𝑇(𝑡)𝛤𝑇𝑃𝑒𝑎(𝑡) + 𝑒𝑎
𝑇(𝑡)P𝛤𝛷(𝑡) ))                           (30) 

The minimization of L2-gain of transfer from 𝛷(𝑡) to the estimation error 𝑒𝑎(𝑡) is given 

by: 

 
‖𝑒𝑎(𝑡)‖2

‖𝛷(𝑡)‖2
< 𝛾, ‖𝛷(𝑡)‖2 ≠ 0                                  (31) 

The estimation error converges exponentially toward zero and the L2-gain of transfer 

from 𝛷(𝑡) to the estimation error 𝑒𝑎(𝑡) is bounded if the following condition is verified: 

𝑉̇(𝑡) + 𝑒𝑎
𝑇(𝑡)𝑒𝑎(𝑡) − 𝛾

2𝛷 𝑇(𝑡)𝛷(𝑡) + 2𝛼𝑉(𝑡) < 0                   (32) 

By replacing  𝑉(𝑡) in (31) by its definition, the following inequality is obtained: 

[
𝐴̅𝑎𝑖
𝑇 𝑃 + 𝑃𝐴̅𝑎𝑖 − 𝐶𝑎̅

𝑇
𝑀𝑖
𝑇 −𝑀𝑖𝐶𝑎̅ + 2𝛼𝑃 + 𝐼 𝑃𝛤

𝛤𝑇𝑃 −𝛾̅𝐼
] < 0  𝑖 =  1,  … ,  𝑙                           (33) 

4. Simulation results  

4.1. CSTR system description. 

Consider an isothermal CSTR with series-parallel reaction (Van der Vusse reaction) 

described by the following reactions [35]:  

 
Figure 1. Isothermal Continuous Stirred-Tank Reactor. 
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The volume of the reactor 𝑉 is assumed constant, and the feed stream contains only the 

component 𝐴. 𝑘1, 𝑘2 and 𝑘3 are the reaction rate constants, 𝐶𝐴𝑓 is the inlet concentration of the 

product 𝐴 which will be converted to the desired product B. 

The following set of differential equations describe the van der Vusse reaction scheme 

in an isothermal CSTR with actuator and sensor faults under unknown disturbances:  

{

𝑑𝐶𝐴

𝑑𝑡
= (

𝐹

𝑉
+ 𝑓𝑎(𝑡)) (𝐶𝐴𝑓 − 𝐶𝐴) − 𝑘1𝐶𝐴 − 𝑘3𝐶𝐴

2 + w1d(t)

𝑑𝐶𝐵

𝑑𝑡
= −(

𝐹

𝑉
+ 𝑓𝑎(𝑡))𝐶𝐵 − 𝑘1𝐶𝐴 − 𝑘2𝐶𝐵 + w2d(t)            

                                 (34)   

𝑦(𝑡) = 𝐶𝐵 + 𝑆𝑓𝑠(𝑡) + ωd(t)                                          (35)

    

The equations for 𝐶𝐶 and 𝐶𝐷 are neglected because 𝐶𝐵 is independent of them. The 

manipulated input in this system is the dilution rate  
𝐹

𝑉
, and the controlled output variable is the 

product concentration 𝐶𝐵. The state representation of the system is as follows: 

 

[
𝐶̇𝐴
𝐶̇𝐵
] = [

−𝑘1−𝑘3𝐶𝐴 0
𝑘1 −𝑘2

] [
𝐶𝐴
𝐶𝐵
] + [

𝐶𝐴𝑓 − 𝐶𝐴
−𝐶𝐵

]
𝐹

𝑉
+ [
𝐶𝐴𝑓 − 𝐶𝐴
−𝐶𝐵

] 𝑓𝑎(𝑡) + [
𝑤1
𝑤2
] d(t)                  (36) 

 Equation (36) can be written as:  

 {
𝑥̇(𝑡) = 𝐴(𝑥(𝑡))𝑥(𝑡) + 𝐵(𝑥(𝑡))𝑢(𝑡) + 𝐵(𝑥(𝑡))𝑓𝑎(𝑡) + 𝑤𝑑(𝑡)

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝑆𝑓𝑠(𝑡) + ωd(t)                                                        
                              (37) 

where 𝑤(𝑡) = [
𝑤1
𝑤2
] 

The parameters values are given in Table 1. 

Table 1. Parameters values. 

Parameters Values 

𝑘1 
5

6
𝑚𝑖𝑛−1 

𝑘2 
5

3
𝑚𝑖𝑛−1 

𝑘3 

1

6
 𝑚𝑜𝑙/𝑙. 𝑚𝑖𝑛 

 

𝐶𝐴𝑓 10 𝑚𝑜𝑙/𝑙 

4.2. Isothermal CSTR Takagi-Sugeno model design. 

In the state representation (37), 𝐶𝐴 and 𝐶𝐵 are nonlinear terms, so we make them as our 

fuzzy variables. Generally, they are denoted by 𝑧𝑖(𝑡), and are known as premise variables. 

Therefore, 𝑧1(𝑡) = 𝐶𝐴  and 𝑧2(𝑡) = 𝐶𝐵, 𝑧𝑖(𝑡) can be represented by membership 

functions 𝐹𝑖 , 𝑓𝑖, the maximums 𝑀𝑖 and the minimums 𝑚𝑖 of 𝑧𝑖(𝑡) as follows: 

{
𝑧1(𝑡) = 𝐹1(𝑧1(𝑡))𝑀1 + 𝑓1(𝑧1(𝑡))𝑚1

𝑧2(𝑡) = 𝐹2(𝑧2(𝑡))𝑀2 + 𝑓2(𝑧2(𝑡))𝑚2

                                                  (38) 

According to (38), the membership functions can be calculated as follows: 

{
𝐹1(𝑧1(𝑡)) =

𝑧1(𝑡)−𝑚1

𝑀1−𝑚1
,     𝑓1(𝑧1(𝑡)) =

𝑀1−𝑧1(𝑡)

𝑀1−𝑚1

𝐹2(𝑧2(𝑡)) =
𝑧2(𝑡)−𝑚2

𝑀2−𝑚2
,    𝑓2(𝑧2(𝑡)) =

𝑀2−𝑧2(𝑡)

𝑀2−𝑚2

                             (39) 

and the activations function are: 
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{
 
 

 
 
𝜇1(𝑧(𝑡)) = 𝐹1(𝑧1(𝑡))𝐹2(𝑧2(𝑡))

𝜇2(𝑧(𝑡)) = 𝑓1(𝑧1(𝑡))𝐹2(𝑧2(𝑡))

𝜇3(𝑧(𝑡)) = 𝐹1(𝑧1(𝑡))𝑓2(𝑧2(𝑡))

𝜇4(𝑧(𝑡)) = 𝑓1(𝑧1(𝑡))𝑓2(𝑧2(𝑡))

                                               (40) 

The subsystems are determined as: 

 {
𝑥̇(𝑡) = ∑ 𝜇𝑖(𝑧(𝑡))[𝐴𝑖𝑥(𝑡) + 𝐵𝑖𝑢(𝑡) + 𝐸𝑖𝑓𝑎(𝑡) + 𝑤𝑑(𝑡)]

4
𝑖=1

𝑦(𝑡) = Cx(t) + 𝑆𝑓𝑠(𝑡) + ωd(t)                                                    
                      (41) 

where 𝐸𝑖 = 𝐵𝑖  and matrices 𝐴𝑖, 𝐵𝑖  and C are given in Table 2. 

Table 2.  Sub-models of CSTR. 

Sub-model 𝑖 𝐴𝑖  𝐵𝑖 𝐶 

1 
[
−𝑘1−𝑘3𝑀1 0

𝑘1 −𝑘2
] [
𝐶𝐴𝑓 −𝑀1
−𝑀2

] 
 

 

 
 

[0 1] 

2 
[
−𝑘1−𝑘3𝑚1 0

𝑘1 −𝑘2
] [
𝐶𝐴𝑓 −𝑚1

−𝑀2
] 

3 
[
−𝑘1−𝑘3𝑀1 0

𝑘1 −𝑘2
] [
𝐶𝐴𝑓 −𝑀1
−𝑚2

] 

4 
[
−𝑘1−𝑘3𝑚1 0

𝑘1 −𝑘2
] [
𝐶𝐴𝑓 −𝑚1

−𝑚2
] 

4.3. Simulations results and discussions.  

The acting faults appear and disappear during an interval time as follows: 

𝑓𝑎 = {
0.4,   20 ≤ 𝑡 ≤ 50
0         elsewhere

 ;  𝑓𝑠 = {
0.3sin (0.06𝜋𝑡),   35 ≤ 𝑡 ≤ 70   
0                                  elsewhere

 

The unknown disturbances are presented by zero-mean noise with standard deviations 

equal to 0.05. The distribution matrices 𝑆, 𝑊 and 𝜔 are given by: 

𝑆 = 0.75; 𝑊 = 1.2 and 𝜔 = [
0.8
0.9
] 

 

Figure 2. Time-evolution of the weighting functions. 

The LMI elaborated in the proposed theorem is solved using the Matlab Yalmip 

toolbox, and the gains of the adaptive observer are calculated. States and faults estimations are 

presented in Figure 5 and Figure 6. 
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Figure 3. The control input. 

 
Figure 4. Unknown disturbance signal. 

 
Figure 5. States estimation. 

 
Figure 6. Actuator and sensor faults with their 

estimates. 

The weighting functions for each sub-model are presented in Figure 2, always close to 

the dynamic behavior of the nonlinear system according to the considered operating regimes. 

Figure 3 and Figure 4 present the control input and the unknown disturbance signals, 

respectively. Figure 5 shows that from moment zero, the estimated states converge rapidly to 

their real signals. Figure 6 presents a good estimation of the actuator and sensor faults, 

respectively. According to the simulation results, we can clearly see that the proposed observer 

ensures the estimation of states and the simultaneous actuator and sensor faults despite 

unknown disturbances. 

 5. Conclusions 

In this work, an adaptive observer is proposed to estimate the states and simultaneous 

actuator and sensor faults of a CSTR with unknown disturbances. Firstly, the Takagi-Sugeno 

method is proposed to represent the complex nonlinear system as a multi-model with 

unmeasurable variables decision. Secondly, a mathematical transformation is used to rewrite 

all faults as actuator faults. The exponential stability conditions are studied with Lyapunov 

theory and L2 optimization and given in linear matrix inequalities form. Finally, a simulation 

example is carried out on a CSTR. From the results, states, actuator, and sensor faults are 

successfully estimated in the presence of the unknown disturbances by minimizing the effects 

of these last. 
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