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Abstract: This work was carried out to investigate the effect of carbonized eggshells (CES) and fly ash 

on the microstructure, mechanical properties, wear, and corrosion characteristics of Al-Si12. The weight 

fraction (wt.%) of the CES particles was kept constant at 2.5 wt.%, while that of fly ash was varied at 

2.5 wt.%, 5.0 wt.%, 7.5 wt.%, and 10.0 wt.%. The selected fabrication route was stir casting. The x-ray 

diffraction (XRD) analysis of the cast aluminum matrix composites (AMCs) revealed the presence of 

phases including α-aluminum, SiO2, and Si with the formation of the intermetallic CuAl2 phase. The 

microhardness of the cast samples increased with increasing weight fraction of the reinforcements up 

to the 7.5 wt.% fly ash sample. The tensile strength and compressive strength were highest for the 2.5 

wt.%/CES 2.5 wt.%. Tribology studies showed that the lowest wear rate of 4.91 × 10-5 mm3/Nmm was 

obtained for the 2.5 wt.% fly ash sample, while the corrosion studies showed that the corrosion rate of 

2.70 × 10-5 g/hr was lowest for the 2.5 wt.% fly ash as well. 
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1. Introduction 

The need for continuous improvements in the production and manufacturing of 

engineering components has received numerous attention. This ever-present need has led to the 

improvement of production processes, methods, and material selection processes. In the area 

of material selection, the major aim of the research currently being carried out is the fabrication 

of lightweight materials with improved corrosion and wear resistance while maintaining the 

required strength for adequate application in the required areas of interest. These desirable 

property improvements are achieved in composite materials. Composite materials, simply put, 

are materials engineered through the combination of 2 or more materials with dissimilar 

physical and chemical properties to enhance the properties of the selected base material. 

Composite materials are classified based on the matrix materials into metal matrix composites 

(MMCs), polymer matrix composites (PMCs), and ceramic matrix composites (CMCs) [1]. 

MMCs have received strong attention and have been applied to aerospace [2], automobile [3], 

marine, and sports [4]. Aluminum has received the most interest among the available metals 

already applied as base metals in MMCs, such as titanium, magnesium, copper, and iron [5]. 
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This is not only due to its availability but for its strength, lightweight, and good corrosion 

resistance. Aluminum is generally reinforced with specific particles to either improve or 

replace an existing application. The fabrication of aluminum matrix composites (AMCs) has 

led to the development of materials with improved weight, specific strength, stiffness, wear 

resistance, and corrosion resistance [6]. The fabrication of these MMCs is achieved through 

several production processes such as stir casting, powder metallurgy, and infiltration method. 

However, several researchers have generally preferred the stir casting route due to its relatively 

low cost, simplicity, and ability to produce complex geometries [7,8]. 

The recorded improvements in the properties of MMCs have resulted from the 

incorporation of a second phase into the fabrication process, generally referred to as 

reinforcements. Several researchers have used synthetic materials for this purpose. Such 

reinforcements include SiC, Al2O3, and B4C. There have been numerous researches with 

recorded merits in improving the mechanical, corrosion, and wear properties. Although this 

has been the case, there has been the issue of cost reduction in the fabrication process of MMCs. 

Although the introduction of stir casting has reduced an aspect of the cost, the high cost of 

synthetic reinforcements has led to research into more cost-effective alternatives. The search 

for alternatives has cultivated an interest in using materials perceived to be waste as 

reinforcements. These materials are categorized into agricultural and industrial wastes. 

Research into these waste materials, also regarded as sustainable materials, has identified 

constituents including SiO2, Al2O3, Fe2O3, CaCO3 [9–11], which are excellent candidates for 

reinforcement particulates.  

Research in AMCs has shifted from the production of binary materials to ternary 

materials. This has been the case to compensate for the cost, improve properties, and improve 

the machinability of these materials [12–15]. Ternary AMCs utilize hybrid reinforcements, i.e., 

the combination of 2 or more particulates to reinforce the base metal. The combination of 

synthetic and sustainable materials has been the most utilized hybrid reinforcement for AMC 

production. It is seen from reviewed works that more than 70% of research into the production 

of ternary AMCs has incorporated fly ash as the second reinforcing phase. This is due to its 

low density, availability, and cost [16]. Research, reported in [17–20], who have reinforced 

aluminum with hybrid reinforcements have recorded improvements in density, tensile strength, 

hardness, and tribocorrosive properties. Successful research involving the addition of fly ash 

as a 2nd reinforcing phase includes work reported [21] where A356 was reinforced with varying 

weight fractions of fly ash and SiC. Results of the investigation revealed improvements in 

tensile strength, hardness, and fatigue strength. In [22], the authors evaluated the sliding wear 

behavior of AA7075/B4C/fly ash hybrid AMC. The investigation reported a lower wear rate 

and coefficient of friction of the hybrid AMC in comparison to the base metal. In [23], the 

authors reinforced aluminum with 10 wt.% SiC and varying weight fraction of Fly ash (5%, 

10% and 15%). It was reported that there was a reduction in density with increasing weight 

fraction of Fly ash in the hybrid AMC. This was also the case for the evaluation of the hardness. 

It was also reported that the wear resistance of the hybrid AMC improved in comparison to the 

base metal.  

Eggshells are waste products obtained from agricultural and food production industries. 

They are predominately composed of CaCO3 and a trace amount of organic matter [20]. 

Carbonized eggshells have been considered as reinforcements for environmental sustainability 

and cost reduction. In addition, they have been successfully applied as reinforcements where 

there have been recorded improvements in mechanical and physical properties [25,26]. 
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Eggshells have also been effectively applied in the fabrication of ternary AMC as reported in 

[27], where AA 2014 was reinforced with eggshell and SiC in varying weight fractions. The 

investigation revealed an improvement in the specific strength, cost, density, and thermal 

expansion compared to the base metal and the single reinforced AMC. In  [28], the corrosion 

resistance properties of AA6063/CES/rice husk ash were evaluated. The results showed that 

the prevalent corrosion mechanism of the AMC was localized pitting formed due to the 

deposition of the corrosion products. 

Furthermore, an improvement in the corrosion rate was recorded with the increasing 

weight fraction of the hybrid reinforcements. Research by Durowoju et al. [29] showed that 

the addition of carbonized eggshells to aluminum reinforced with graphite and SiC decreased 

the density of the base metal. Analysis of the microhardness of the fabricated samples also 

showed that the ternary AMC improved by 19.9% compared to the Al/Gr composite and 

18.13% compared to the Al/SiC binary composite. They indicated that the addition of the 

carbonized eggshell phase is capable of improving the physical and mechanical properties of 

binary reinforced AMCs. 

From the literature survey, the utilization of both synthetic and sustainable 

reinforcements for the fabrication of ternary AMCs has been explored. The reviewed works 

have identified improvements to the characterized aluminum matrix. However, the effects of 

combining 2 sustainable materials as reinforcements in AMCs have received very little 

attention. This research attempts to fill this obvious research gap by exploring the possibility 

of fabricating a hybrid AMC by combining fly ash and carbonized eggshells to investigate their 

effect on the mechanical properties, wear resistance, and corrosion resistance properties of Al-

Si12. 

2. Materials and Methods 

2.1. Reinforcement preparation. 

For this study, fly ash and carbonized eggshells were selected as the reinforcing phases 

for the fabrication of the composites. The fly ash was sourced from Ash Resources in South 

Africa. Eggshells were sourced from eateries and bakeries around Auckland Park 

Johannesburg. These eggshells were subsequently washed and sundried to remove all traces of 

organic matter. The now sundried eggshells were further dried in an electric oven at 80°C for 

48 hours to remove any residual moisture. Ball milling of the eggshell commenced at a speed 

of 180 rpm for 7 hours to reduce the particles to microscale.  

 

 
Figure 1. Particulate reinforcements (a) Sourced eggshells; (b) Milled eggshells; (c) Carbonized eggshells at 

800°C; (d) Fly ash. 

The milled eggshells were carbonized at a temperature of 800°C for 2 hours to remove 

volatile matter, increase the carbon content of the eggshell particles, reduce moisture content 
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and improve interfacial bonding between the eggshell particles and the matrix phase [30]. The 

fly ash and carbonized eggshell samples were screened using the Filtra vibration S.L Model 

FTL-0200 sieve shaker for 30 minutes. The selected fly ash and carbonized eggshells for the 

fabrication of the composites had a particle size range of ≤75µm. The particulate 

reinforcements selected for this study are shown in Figure 1. 

2.2. Composite fabrication. 

The aluminum alloy selected for this study was Al-Si12. Al-Si12 is an aluminum cast 

alloy with excellent corrosion resistance, excellent ductility, and medium strength. Its high 

silicon content decreases its machinability. Al-Si12 was selected as the base metal for this study 

due to its excellent casting properties, including high fluidity and low susception to hot-tearing.  

The elemental composition of the aluminum alloy used for this study is shown in table 1.  

Table 1. Elemental composition of the aluminum matrix. 

Element Al Si Fe Cu Mn Zn Co Sn Ti 

% Composition 84.01 6.23 0.35 3.33 0.14 5.85 0.01 0.05 0.03 

 

The AMC was fabricated via the stir casting liquid metallurgy route. To produce the 

composites, the matrix to reinforcement proportions specified in table 2 were used. Keeping 

the weight fraction of CES constant, the Fly ash was varied from 2.5 wt.% to 10 wt.% in 

increments of 2.5 wt.%. The objective of this weight fraction distribution was to ensure that 

the maximum reinforcement composition was not greater than 12.5%. This was necessary 

because from previous experiments, the increase in the weight fraction above 12.5 wt.% results 

in an increase in the viscosity of the melt to a point where the uniform dispersal of the 

reinforcements becomes difficult to achieve.  

Table 2. Designation and proportions of the matrix and hybrid reinforcements. 

Designation Aluminium 

(wt.%) 

Carbonized Eggshell 

(CES) (wt.%) 

Fly ash 

(wt.%) 

CES + Fly ash 

(wt.%) 

L0 100 0.0 0.0 0.0 

L1 95 2.5 2.5 5.0 

L2 92.5 2.5 5.0 7.5 

L3 90 2.5 7.5 10.0 

L4 87.5 2.5 10.0 12.5 

 

The Al-Si12 base metal sourced from the Foundry laboratory in the University of 

Johannesburg DFC campus was used. The Al alloy which was received as blocks were 

subsequently cut and weighed based on the designed weight fractions. The base metal was then 

charged into a preheated graphite crucible, and the temperature of the electric furnace was set 

to 760°C. The permanent die and steel stirrer were also preheated but to a temperature of 350°C 

± 20°C. This was done to ensure uniform flow and solidification of the melt during cooling and 

avoid the temperature differential between the stirrer and the aluminum melt. The weighed 

hybrid reinforcements (fly ash and CES) were charged in a preheated ceramic crucible, and the 

temperature of the muffle furnace was increased to 400°C and preheated for 1 hour. 1 wt.% 

magnesium was introduced after the reinforcement was charged into the melt to improve 

wettability and interfacial bonding between the reinforcing particles and the matrix. 

Mechanical stirring was done in 2 steps to ensure adequate dispersal of the reinforcement 

particles in the aluminum matrix. The 1st stirring was done immediately after introducing the 
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reinforcements and the magnesium, while the 2nd stage was done just before casting the molten 

AMC. 

2.3. Experimental procedure. 

 The D8, Discover, make (Bruker US) with CuKa radiation of 1.54181 Â wavelength 

generated at 40mA and 40KV was used to conduct fly ash's X-ray diffraction (XRD) analysis, 

CES, and cast composite samples. A continuous scan mode and scan range of 5° to 90° degrees 

were chosen for the XRD analysis of all the samples under investigation. The XRD for the 

composites was conducted to identify the phases present and investigate the presence of 

intermetallic compounds. The metallographic analysis was used to determine and analyze the 

level of dispersion of the reinforcements in the aluminum matrix and identify the presence of 

anomalies. To study the corrosion and wear mechanisms, metallography studies were also 

conducted. All these were done using the TESCAN model type VEGA 3 LMH scanning 

electron microscope.  

For this study, the mechanical properties under investigation were microhardness, tensile 

strength, and compressive test. The microhardness was obtained using the Times Vickers 

microhardness tester. A diamond indenter was used to make the necessary indentations. These 

indentations for repeatability were taken at 5 points 1mm apart. The average microhardness 

was obtained based on the indentations made. The test force selected for this study was 3N 

with a dwell time of 15 seconds per indentation. The average microhardness was obtained for 

each of the samples. The tensile strength test was carried out on the MKS Universal tensile 

testing machine with a frame capacity of 1000KN per the ASTM E8 standard, while the 

compressive strength was carried out on the Zwick/Roell Universal tensile testing machine. 3 

cylindrical specimens of 20mm X 30mm were employed for this study. All tests related to the 

determination of the mechanical properties of the samples under consideration were done at 

20°C. The examination of the density and porosity of the base metal and cast AMC were also 

objectives of this investigation. The experimental density was obtained using the Archimedes 

principle shown in equation 1, while the theoretical density was obtained via the rule of mixture 

shown in equation 2.  

ρe =
m

v
                                                                 (1) 

where ρe is the experimental density, m is the mass of the sample, and v is the displaced 

volume.  

ρt = ρm(wt%m) + ρf(wt%f) + ρc(wt%c)        (2) 

where ρt is the theoretical density of the composite sample, ρm is the density of the matrix, 

wt%m is the weight fraction of the matrix, ρf is the density of the fly ash, wt%f is the weight 

fraction of the fly ash, ρc is the density of the carbonized eggshell and wt%c is the weight 

fraction of the carbonized eggshells. 

The porosity study was used to analyze the formation of pores in the cast AMC. This is 

an important aspect of the studies as the behavior of the pores affects the properties of the 

fabricated composite. The porosity of the cast AMCs was calculated using equation 3. 

 

P = (1 −
ρe

ρt
) × 100%                                           (3) 

where P is the percentage porosity and ρe is the experimental density of the cast AMC.  

The Rtec MTF 5000 Universal ball-on-disc tribometer was used to determine the 

coefficient of friction and the wear volume. The ball selected for this study was an E521000 
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steel alloy grade 25 of 6 mm diameter. The wear rate was obtained using the Archard equation 

shown in equation 4,  

K =
V

ws
                                                                      (4) 

where K is the wear rate, V is the worn volume, w is the normal load, and s is the sliding 

distance. For the tribology studies, Keeping the load constant at 30 N, the coefficient of friction 

(COF) and wear rate were obtained to ascertain the influence of the reinforcement on the 

aluminum matrix for wear-resistant applications. Table 3 shows the parameters selected for 

this study.   

Table 3. Tribology analysis parameters. 

Parameters Values 

Sliding distance 120 mm 

Sliding time 120 secs 

Sliding velocity 1 mm/s 

The corrosion behavior of the cast samples was investigated with the aid of the HCH 

Instruments electrochemical analyzer equipped with a Silver/Silver chloride reference 

electrode stored in KCl and platinum counter electrode. The samples for this study were used 

as the working electrode. To study the corrosion behavior, each sample with an insulated 

copper wire attached with aluminum conductive tape was cold mounted in resin and left to cure 

for 20 mins. The samples were prepared by grinding the surface to be exposed progressively 

with waterproof SiC paper up to 4000 grits. The exposed surfaces were subsequently washed 

in distilled water and degreased with acetone to remove any trace of contaminants that could 

impede the accuracy of the obtained results. The medium for this electrochemical study was 

3.5% NaCl. All the experiments were conducted at room temperature. The potentiodynamic 

polarization analysis was conducted at a polarization range of -1.5 V to 1.5 V and a scan rate 

of 0.0002 V/s. The corrosion medium was replaced after each experiment to ensure the validity 

of the results obtained. The corroded samples after each run were stored carefully for 

microstructural examination to investigate the corrosion mechanisms. 

3. Results and Discussion 

3.1. Microstructural characterization. 

The microstructural characterization of the individual reinforcing phases and the cast 

composites was conducted.  

 
Figure 2. SEM micrographs for (a) carbonized eggshell; (b) fly ash. 

https://doi.org/10.33263/BRIAC124.49004919
https://biointerfaceresearch.com/


https://doi.org/10.33263/BRIAC124.49004919  

 https://biointerfaceresearch.com/ 4906 

The microstructural characterization of fly ash particles revealed the presence of mostly 

spherically shaped particles, usually in the form of hollow spheres. The extended ball milling 

time of the samples altered the morphology of the fly ash particles by plastically deforming 

some of the particles. As evident in Figure 2 (a), this plastic deformation resulted in irregularly 

shaped particles [31]. The average particle size of the fly ash particles is 19.18 µm2. As evident 

in Figure 2 (b), the morphology of the CES particles showed predominantly irregularly shaped 

particles. The average particle size of the CES samples was 27.48µm2. 

The examination of the morphology of the cast samples shows the formation of an inter-

dendritic α-aluminum phase. This was formed during the solidification of the casts. In the case 

of the composites, sample L1 revealed uniform dispersion of both reinforcements in the 

aluminum matrix pool, which signifies proper stirring action during the fabrication of the 

composites. Further analysis of the micrographs of sample L1 shows no visible presence of 

pores which signifies proper casting and uniform cooling of the sample. Sample L2 reported a 

fairly uniform dispersion of the hybrid reinforcements in the matrix pool, although both 

reinforcements had a slight agglomeration. Sample L3 and L4, as seen in the micrographs 

shown in Figure 3, revealed the presence of agglomerations and clustering of the reinforcing 

particles. Although the dispersion of the reinforcements for sample L3 was fairly uniform, the 

eggshells showed some agglomeration and segregation. The fly ash particles, on the other hand, 

showed minimal segregation.  

 
Figure 3. SEM micrographs for samples (a) L1; (b) L2; (c) L3; (d) L4. 
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The formed cluster could also be a result of the difference in thermal properties between 

the reinforcing phase and the aluminum matrix during the fabrication process.  Sample L4 

showed an extreme presence of pores and agglomeration of the fly ash particles. This could be 

due to the increased viscosity of the melt and the difference in densities of both reinforcement 

particles.  Another reason for the extensive segregation and agglomeration in sample L4 is due 

to the difference in melting temperature between the reinforcing particles and the matrix and 

the delay in the solidification rate due to the increased weight fraction of the reinforcements 

[32]. The SEM micrographs for sample L4 also showed the presence of pockets of air in the 

form of pores as a result of the clustering of the reinforcing particles [33]. The morphological 

characterization of the cast samples showed the formation of agglomerations, segregations, and 

porosity as a function of increasing the weight fraction of both reinforcements. 

The XRD analysis of the fly ash samples identified mullite (3Al2O3SiO2), quartz (SiO2), 

alumina (Al2O3), wustite (FeO), and hematite (Fe2O3) as major crystalline phases. The 

qualitative analysis of the fly ash particles, as shown in Table 4, shows mullite and quartz as 

the predominant phases. Analysis of the CES particles revealed that eggshell contains 

predominantly CaCO3.  The quantitative analysis shows the presence of CaCO3 in the form of 

aragonite. Quantitative analysis of the fly ash and CES as revealed via the XRD is summarized 

in Table 4. The XRD spectrum of the fly ash and CES reinforcements is depicted in Figure 4. 

Table 4. Quantitative analysis of the carbonized eggshells and fly ash obtained via XRD analysis. 

Carbonized eggshell (CES) Fly ash 

Constituent % Constituent % 

Calcium 8.67 Mullite (3Al2O3SiO2) 50.63 

Aragonite 91.33 Quartz (SiO2) 41.05 

  Hematite (Fe2O3) 4.23 

  Wustite (FeO) 0.65 

  Alumina (Al2O3) 3.25 

 

Figure 4. XRD patterns of the (a) carbonized eggshells and (b) fly ash. 

The X-ray diffractometry analysis was conducted to ascertain the present phases in the 

cast composites. The XRD spectrum of the cast composites is shown in Figure 5. The XRD 

results of sample L1 show the different phases at various peaks. SiO2 and aluminum are the 

dominant peaks in the aforementioned sample. There is an increase in the number of phases 

present in the hybrid AMCs, which can be attributed to the addition of hybrid reinforcements. 

The SiO2 phases present and their different peak intensities are significant in the XRD plot. 

The XRD analysis recorded the formation of the CuAl2 intermetallic phase. The copper 
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aluminide (CuAl2) phase is an intermetallic compound formed during the gradual cooling of 

the single solid α -phase to room temperature. The presence of the intermetallic CuAl2 phase 

is responsible for the increased brittleness of the cast composites. The plots also showed that 

the peak intensity of the CuAl2 phase decreased with the increasing weight fraction of the 

reinforcements.  

 
Figure 5. XRD Patterns of the cast AMCs. 

The four crystal planes of Al (111), (200), (220), and (311) with the dominant (111) 

orientation are found in the AMC samples under consideration. The peak strength of the four 

crystal planes of each sample is very weak, as presented in the graph. This seems to be due to 

the fly ash contents, which results in the reinforcement's better coverage of the aluminum alloy 

matrix. As shown in the graph, the peaks of the unreinforced Al (111) crystal planes are 

significantly enhanced. The peaks of the other three crystal planes, on the other hand, remained 

unchanged. The formation of CuAl2 groups in self-assembled molecules on the Al (111) plane 

is responsible for this. There were no discernible peaks of Ca in the XRD patterns of the hybrid 

AMCs. This could be due to the dissolution of the calcium atoms during the fabrication phase 

of the AMC production. 

3.2. Density and Porosity. 

The effect of the reinforcements on the density and porosity of the cast samples was 

investigated. From Figure 6 (a), it can be inferred that the density of the samples decreased 

with the increasing weight fraction of the reinforcements. The density of the cast samples was 

2.68 g/cm3, 2.63 g/cm3, 2.59 g/cm3, 2.52 g/cm3, and 2.42 g/cm3 for samples L0, L1, L2, L3, 

and L4, respectively. The reduction in the density was attributed to the presence of 

reinforcements that are less dense than the aluminum matrix. The results indicate that the 

hybrid reinforcements are ideal for achieving weight reduction of the aluminum alloy. An 

indication of the presence of pores in the cast AMC samples is the difference between the 

experimental density and the theoretical density. This result is summarized in Figure 6 (b). The 

percentage porosity obtained via equation 3 was used to mathematically quantify the cast 

hybrid AMC samples' porosity. It was shown that increasing the weight fraction of the 

reinforcements steadily increased the level of porosity of the aluminum matrix composite. The 

increased porosity of samples with increasing weight fraction of the reinforcements could be 
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attributed to the formation of pores caused by the trapped air bubbles during the fabrication 

process. The increased porosity is also a result of the segregation of the reinforcing particles, 

leading to voids' formation.  

 
Figure 6. (a) Experimental vs. theoretical densities of the samples; (b) Porosity of the hybrid AMCs. 

3.3. Mechanical properties. 

Figure 6 shows the microhardness of the cast samples. The hardness analysis was 

characterized by the development of a trend that saw the microhardness of the cast AMCs 

increase with increasing weight fraction of the hybrid reinforcements up to sample L3 (fly ash 

7.5 wt.% and CES 2.5 wt.%). A decline in the microhardness was reported for sample L4 (fly 

ash 10 wt.% and CES 2.5 wt.%). Compared to the base metal, the microhardness of sample L1 

improved by 10.71%. There was a steady improvement in 24.4% and 31.08% microhardness 

for samples L2 and L3, respectively. The presence of the reinforcement improved the 

microhardness due to the increment in the dislocation densities at the reinforcement-matrix 

interface [34].  

 
Figure 7. Variation of microhardness among the cast hybrid AMCs. 

The improved hardness is also due to the presence of the hard particles responsible for 

the resistance of movement between individual grains during the application of the load. The 

improved hardness in the composites compared to the base metal is also due to the grain 

refinement brought about by incorporating the reinforcing phases into the aluminum matrix. 
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The improved hardness for samples L1 to L3 is also due to the adequate bonding between the 

hybrid reinforcements and the matrix phase, which restricts the movement of dislocations in 

the cast hybrid AMCs. According to Shaikh et al. [35], the improvement in the microhardness 

is a function of the formation of dislocations due to the thermal expansion mismatch between 

the ductile aluminum matrix and the fly ash and CES reinforcements. The reported decline in 

the microhardness for sample L4 is due to the heavy presence of pores, agglomerates, and 

segregation of the reinforcing particles, as evident in the morphology studies depicted in Figure 

3. 

The behavior of the cast samples under the application of uniaxial tensile loading was 

studied in this investigation. The stress-strain curves for the tensile strength are shown in Figure 

8 (a), while the variation of the tensile strength is depicted in Figure 8 (b). The tensile strength 

analysis revealed improvements in samples L1, L2, and L3 of 4.98%, 3.03%, and 1.14%, 

respectively. The improvements in the tensile strength could be attributed to the uniform 

dispersion of the hybrid reinforcements in the aluminum matrix, as discussed in the 

examination of the microstructure. Hassan and Aigbodion [36] stated that the addition of the 

reinforcing particles improves the tensile strength by transferring load from the aluminum 

matrix to the hard reinforcements due to existing differences in elastic constants.  Evident from 

the metallography examination of the samples, the distribution of the reinforcements along the 

grain boundaries of the cast hybrid AMCs is responsible for the load transfer from the ductile 

aluminum phase to the hard-brittle reinforcing phases. A decline in tensile strength was 

reported up to sample L4 (10 wt.% fly ash and 2.5wt% CES). The presence of pores created 

due to entrapped gases formed during the cooling of the cast, segregation, and agglomeration 

of the reinforcements has been attributed to being responsible for reducing the tensile strength. 

These formed air pockets during the solidification reduce the tensile strength of the cast AMC 

because the failure mechanism during the application of the uniaxial load is initiated at the 

formed voids.  

 
Figure 8. (a) Ultimate tensile strength (UTS); (b) Percentage elongation graph for the cast samples. 

The ductility of the cast samples obtained as the percentage elongation is shown in 

Figure 9. The trend shows a reduction in ductility with an increasing weight fraction of the 

hybrid reinforcement. The dispersal of the hard-brittle reinforcements along the grain 

boundaries resulted in a reduction in ductility. In comparison to the base metal under 

consideration, the presence of the hard reinforcement hybrid particles is responsible for the 

reduction in ductility. Another reason for the reduction in ductility of the composites is the 
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presence of the CuAl2 intermetallic phase, which was analyzed via the Xray diffractometer is 

responsible for the reduction in ductility [37]. 

 
Figure 9. Ductility variation of the cast samples. 

The study of the behavior of the cast samples subjected under compressive loading 

revealed a trend similar to the tensile loading behavior. Figure 10 shows that the compressive 

strength of the cast composites was improved compared to that of the base metal. The sample 

with the best compressive strength was sample L1. This could be attributed to adequate 

interfacial bonding between the reinforcements and the matrix. The relatively lower porosity 

compared to samples L2, L3 and L4 also played a role in the higher compressive strength. The 

sample showed an improvement of 17.48% compared to the base metal.  The uniform dispersal 

of the hybrid reinforcements in the aluminum alloy is responsible for the improved compressive 

strength. Generally, the improvement in the compressive strength is due to the hardening of the 

aluminum alloy with the fly ash and carbonized eggshell particles [38]. In addition, the 

presence of the hybrid. 

 
Figure 10. Compressive strengths for the cast samples. 
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3.4. Tribology.  

The wear characteristics and mechanisms for the cast samples were investigated to 

understand the effect of the hybrid reinforcements on the aluminum alloy matrix.  

 
Figure 11. Coefficient of friction against time. 

This was achieved using the already described parameters used to evaluate the COF 

and volumetric wear rate. The effect of the hybrid reinforcements on the COF under the applied 

load is shown in Figure 11. The average coefficient of friction at a glance was used to describe 

the wear resistance of the cast samples. The average COF for samples L0, L1, L2, L3, and L4 

were 0.416, 0.289, 0.386, 0.403, and 0.409, respectively. These results indicate that the cast 

AMCs possess improved wear resistance compared to the base metal. Although this was the 

case, it was also noticed that the COF decreased with the increasing weight fraction of the 

reinforcement. This trend was due to the increased formation of voids already discussed in the 

porosity analysis of the cast samples. 

In Figure 11, the evaluation of the COF against time showed an initial rise which was 

characteristic of the initial contact of the steel ball on the surface of the samples. Another 

indicator for the initial rise in the COF was also a result of the thermal softening of the surface 

of the samples with the application of the load while the steel counterface was sliding across 

the surface of the cast samples. The conversion of wear mechanism from adhesive to abrasive 

is also an indicator of improved wear resistance overtime during the application of load.  With 

increasing sliding time, the COF decreased and settled. This was brought about by forming a 

mechanically mixed layer that works by forming a protective barrier that reduced the contact 

between the steel ball and the surface of the samples.  For the AMCs, the presence of the hybrid 

reinforcements improved the wear resistance, as evident by the reduced COF compared to the 

base metal. These hard reinforcing particles work to restrict the flow of the aluminum matrix 

during the sliding of the steel ball. In addition to this, the presence of the reinforcements also 

works to reduce the contact area between the sliding steel ball and the surface of the cast AMC. 

Another reason for the improved wear resistance could be the presence of wear debris, which 

is an indication of adhesive wear. The deposition of the wear debris reduces the direct contact 

of the steel counterface on the AMC, thereby temporarily improving its wear resistance. This, 
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in turn, leads to the initiation of abrasive wear, which results in the micro plowing of the AMC's 

surface.  

 
Figure 12. Wear rate for the cast samples under different loads. 

The wear rate of the cast samples under consideration is shown in Figure 12. The 

volumetric wear rate indicates that the presence of the hybrid reinforcing particles can 

considerably improve the cast AMCs' wear resistance. The wear rate was lowest for sample 

L1, indicating that the sample possesses the best wear resistance compared to all the samples 

under investigation. The reduction in the volumetric wear rate was 30.46%, 7.14%, 3.03%, and 

1.68% for samples L1, L2, L3, and L4, respectively, which shows that the wear resistance of 

the hybrid AMCs was improved. 

The wear mechanism of the cast samples under investigation was studied using SEM. 

The micrographs of samples L0 and L1 are shown in Figure 13. The major wear mechanisms 

in AMCs are abrasion, adhesion, fretting, and delamination [40]. For all the cast samples being 

studied, the SEM micrographs show that the major wear mechanisms of the samples were 

adhesive wear, delamination, and abrasive wear.  

 

 
Figure 13. Wear micrographs for (a) Sample L0; (b) Sample L1. 

The inspection of the worn surface of samples L2 shows a combination of plastic 

deformation, which indicates the presence of adhesive wear mechanisms and delamination. 
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The plastic deformation could be attributed to the increased temperature due to the action of 

the ball on the surface of the AMC. Delamination wear mode occurred in both samples L0 and 

L1. This could have been due to the work hardening due to the applied loads, which resulted 

in the formation of cracks [41]. The formation of craters is a result of erosive wear, which could 

be attributed to the harder reinforcement debris cutting through the metal surface at a relatively 

higher sliding speed. The craters could also have been formed due to the localized cyclic 

stresses. 

3.5. Electrochemical studies. 

The potentiodynamic study aided in the analysis of the corrosion characteristics of the 

cast samples under consideration. The polarization tests on the cast samples were done in a 

3.5% NaCl medium. As depicted in the Tafel plot shown in Figure 14 (a), the analysis exhibits 

both passive and active corrosion states. The shift of the potentiodynamic curves of the samples 

under investigation to the anodic region suggests better corrosion resistance. 

 
Figure 14. (a) Tafel plots for the cast samples; (b) Corrosion rate variation of the cast samples. 
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Observations from the Tafel plots in Figure 14 (a) show that the presence of the chloride 

ions in the corrosion medium causes a dissolution of the passive layers formed on the surface 

of the samples. The results of the potentiodynamic polarization test summarized in table 5 

indicate that the sample L1 has the lowest corrosion rate of 2.70 × 10-5 g/hr. The improvement 

could be due to the anodic inhibition of the hybrid reinforcing particles [42]. In addition, the 

improvement in the corrosion resistance of the AMCs is due to the formation of a passive layer 

on the surface of the samples because of the reduction reaction of the oxygen atoms. With 

increased exposure to the chloride corrosion medium, the formed passive layer becomes 

relatively unstable and eventually deteriorates, forming localized pits. According to 

Akinwamide et al. [43], the corrosion mechanism characterized by this phenomenon is the 

migration/ penetration of the oxide ions, which diminishes and eventually destroys the passive 

oxide layers. The eventual increasing corrosion rates of the cast AMCs with increasing weight 

fraction of the reinforcement was due to the increasing porosity brought about by the increased 

viscosity and agglomeration of reinforcements. These anomalies become points for the 

initiation of the corrosion mechanics described earlier.  

Table 5. Summary of the results for the potentiodynamic polarization analysis. 

Sample 𝛃𝐜 𝛃𝐚 Corrosion potential 

(V) 

Current density 

(A/cm2) 

Corrosion rate (g/hr) 

L0 1.590 8.077 -0.838 1.10 × 10-4 3.69 × 10-5 

L1 6.589 2.245 -1.159 8.04 × 10-5 2.70 × 10-5 

L2 1.478 13.564 -0.703 9.93 × 10-5 3.33 × 10-5 

L3 7.666 2.855 -1.042 2.71 × 10-4 9.11 × 10-5 

L4 7.261 3.215 -0.926 1.82 × 10-4 6.12 × 10-5 

Figure 15 shows the corroded surface of samples L0 and L1. The degradation of the 

surfaces of sample L1 is attributed to the preferential dissolution of the more anodic aluminum 

alloy matrix in place of the cathodic fly ash/CES reinforcements particles. Corrosion of AMCs 

is usually initiated at areas of physical or chemical heterogeneity such as reinforcement/matrix 

interface, defect, intermetallic, mechanically damaged region, grain boundary, inclusion, or 

dislocation [44]. The analysis of the corroded surface of the samples shows that the main form 

of corrosion in the 3.5% NaCl medium is localized pitting. This finding has been reported in 

[39] and [40] in analyzing corrosion mechanisms of different AMCs. The micrographs of 

sample L1 show that the corrosion mechanism involves the dissolution of the surface of the 

aluminum alloy and the formation of relatively small localized pits.  

 
Figure 15. Micrographs of the corroded surface for samples (a) L0; (b) L1. 
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4. Conclusions 

 This work was done to investigate the effect of fly ash and carbonized eggshells on the 

density, mechanical properties, wear, and corrosion resistance of Al-Si12. From the 

investigations, the following conclusion has been drawn. 

The microstructure studies of the cast AMCs showed that the dispersion of the hybrid 

reinforcements in the aluminum matrix was fairly uniform. The increase in weight fraction of 

the reinforcements resulted in the increased formation of agglomerates and eventual 

segregation of the particles. Increasing the weight fraction of the reinforcements results showed 

that the density of the cast AMCs is inversely proportional to the porosity.  

Increasing the weight fraction of the reinforcements improved the microhardness up to 

the 7.5 wt.% fly ash sample, while the tensile strength decreased with increasing weight 

fractions of the reinforcements. It was established that the decrease was due to the increasing 

agglomeration and porosity of the cast hybrid AMC samples with increasing weight fraction 

of the reinforcements. The compressive strength was maximum by 17.48% for 2.5 wt.% fly 

ash sample. 

Although the wear resistance increased with the increasing weight fraction of the 

reinforcement, the wear resistance of all the cast AMCs was improved compared to the base 

metal. The analysis of the wear mechanism showed the presence of predominantly abrasion, 

adhesion, and delamination. 

Corrosion resistance for the cast AMCs was lowest for the 2.5 wt.% and 5.0 wt.% fly 

ash samples. Indicating improvements in the corrosion resistance compared to the base metal. 

The main corrosion mechanism based on the analysis of the corroded samples was localized 

pitting. 
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