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Abstract: To work with cancer cell cultures in vitro at 1.5 Tesla Magnetic Resonance Imaging (MRI), 

it was necessary to develop dedicated receiver coils. This device allowed to adjust the shape of the 

tested objects and thus improve the quality of imaging. One of the conditions for this new device was 

to increase the recorded signal level and reduce the distance between the tested object and the receiving 

elements of the coil. MCF7 (breast adenocarcinoma, Her-2 positive), ACHN (kidney cancer cells), and 

A549 (lung cancer cells) were characterized by using magnetic resonance imaging (MRI) in vitro. MRI 

measurements were performed using the clinical scanner with a 1.5 Tesla magnetic field. MCF-7, 

ACHN, and A549 cancer cells were characterized by T1 and T2 relaxation times. For MCF-7 cells, the 

relaxation times T1 and T2 were 2360 ± 12 ms and 116 ± 0.9 ms, respectively. For ACHN cells, the 

relaxation times T1 and T2 were 1354 ± 193 ms and 80 ± 9 ms, respectively. Values of T1 and T2 for 

A549 cancer cells cultures were 1527 ± 59 ms and 150 ± 8 ms, respectively. Once an accurate pulse 

protocol has been established and satisfactory reproducibility was obtained, the determination of 

relaxation times can be used as a tool to monitor cancer cell cultures using MRI in vitro based on the 

determination of changes in relaxation times.  
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1. Introduction 

Over the past few decades, magnetic resonance imaging (MRI) has become one of the 

most popular broadly defined clinical diagnostics methods. MRI enables the acquisition of 

morphological, functional, and metabolic parameters in tissue. In addition to a number of 

diagnostic and clinical applications, MRI can be used for in vitro preclinical, experimental 

research. MRI – is a phenomenon discovered as one of the last diagnostics methods. Without 

MRI it is impossible to imagine today's medicine, biology, chemistry, physics, and many other 

related areas of life. It provides invaluable services in the imaging of pathological changes in 

both humans and animals. It allows the assessment of internal organs' structure and the 

metabolic pathways and changes taking place in organs, tissues, and cells. With the constantly 

evolving software that allows you to extract information important for the doctor from the maze 

of pixels, more sophisticated techniques and sequences of tests cause MR diagnostics to be 

constantly accelerating. Multichannel coils contribute to shortening the examination time as 

well as its improvement. High magnetic fields result in better resolution both in space and in 

the frequency domain. Scientists and engineers are developing new functionalities in this newly 
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discovered technique, against which it will not be possible to say the last word for a long time, 

and its replacement will require further breakthroughs. 

The use of cell cultures and checking their metabolism may allow transferring in vitro 

studies to in vivo tests on a living organism due to the corresponding cell morphology. Zhang 

et al. studied various cell lines and the influence of a strong magnetic field on the cell cycle 

and cell death [1]. The aim of the study is to use MRI to develop a methodology for imaging 

MCF-7, ACHN, and A549 cancer cell cultures based on changes in T1 and T2 in vitro studies. 

It is important to improve cellular imaging using MRI, enabling non-invasive imaging of 

tissues with high sensitivity and time resolution. In MCF-7 breast cancer cells, Her-2 

overexpression is associated with a higher rate of tumor cell growth, which is directly related 

to higher growth factors [2]. The aim of this study was to develop a methodology for measuring 
1H MRI of cancer cells in vitro to complete a database allowing for the estimation of qualitative 

and quantitative changes depending on the type of cells and their condition. These goals were 

achieved by: 

(1) Development of a numerical application that measures relaxation times and its 

implementation in the MATLAB package (statistics, function approximation, data 

interpolation, use of DICOM files). 

(2) Preparation and performance of 1H MRI measurements with standard substances. 

(3) Verification of the calculation algorithm based on the literature and the results of 

phantom measurements. 

(4) Preparation of tumor cell cultures (MCF-7, kidneys, and lungs), which density will 

enable qualitative and quantitative measurements of 1H MRI to develop appropriate databases. 

(5) Development of a method of verification and optimization of results. 

In this research, MRI was performed on cell cultures with reproducible results. We used 

MRI to characterize MCF-7, ACHN, and A549 cancer cell cultures. MRI signal depends on 

the biochemical properties of the examined cells and physical parameters selected for the 

examination. Research on cell cultures allows imaging of dynamic and kinetic changes by 

studying relaxation time T1 and T2. Therefore, in our work, MCF-7, ACHN, and A549 cancer 

cells were characterized using relaxation time. 

2. Materials and Methods 

2.1. Cell cultures. 

The MCF-7 cell line (American Type Culture Collection, VA, USA) was purchased 

from Sigma Aldrich (MO, USA). For culturing this cell line, EMEM medium (EBSS) + 2 mM 

glutamine + 1% NEAA indispensable amino acids + 10% FBS fetal bovine serum were used. 

In addition, we used the A549 lung cancer cell line (American Type Culture Collection, VA, 

USA) and the ACHN kidney cancer cell line (American Type Culture Collection, VA, USA). 

Both cell lines were grown under standard conditions: 37°C, 5% CO2, and 95% humidity. The 

culture medium consisted of modified Eagle Dulbecco's medium (Sigma-Aldrich, MO, USA), 

modified Dulbecco Eagle Eagle's nutrient mix F-12 Ham medium (Sigma-Aldrich, MO, USA), 

fetal bovine serum (Biochrom, Germany), and penicillin-streptomycin (Sigma-Aldrich, MO, 

USA). Cells were counted using Muse Cell Analyzer (Merck Millipore, MA, USA). 
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2.2. MRI quantitative.  

The experiments were performed using Optima MR360 magnetic resonance from 

General Electric Healthcare (Milwaukee, Wisconsin, USA) with 1.5 Tesla field strength, 

software version SV23. The cell cultures in the vials were placed in the center of the magnetic 

resonance magnet. Prepared samples were scanned using the Fast Spin-Echo (FSE) sequence 

with axial projection using a small flex coil. The following scanning parameters were used: 

FOV field of view = 10 x 10 cm; Matrix = 320 x 224; NEX = 2.0; Slice Thickness = 1.0 mm; 

Spacing = 0.5 mm.  

T1 relaxation time measurements were made in 13 steps with a repetition time (TR) in 

the range of 50 ÷ 15000 ms (31, 60, 100, 200, 500, 700, 1000, 1500, 2000, 3000, 5000, 10000, 

15000 ms) with a constant echo time (TE) of 3 ms. However, in the case of T2 relaxation time, 

TE time varied in the range of 10 ÷ 250 ms (10, 20, 30, 42, 68, 85, 102, 130, 150, 200, 250, 

300, 447.4 ms). TE time was unchanging and amounted to 10,000 ms. The figure 1 shows 

examples of DICOM images from the determination of relaxation times T1 and T2. The left 

part includes images made with the following TR scanning parameters: 32, 700, 2000, 5000, 

15000 ms, respectively, with a constant echo time TE = 3ms. The right part shows images made 

with the following TE parameters: 10, 68, 130, 250, 447.4 ms, while maintaining a constant 

repetition time TR = 10,000 ms. 

3. Results and Discussion 

The study used the OPTIMA 360MR magnetic resonance system manufactured by 

General Electric Healthcare. It is a device based on a 1.5 Tesla superconducting magnet. The 

parameters of the gradient system, which are the amplitude and the slope speed, are respectively 

33mT / m and 120 T / m / s. It is equipped with a set of coils to diagnose the entire human body 

and diagnostic stations, allowing for the analysis of the obtained images for medical diagnosis. 

A specialized software package with a system for researching the field of elastography makes 

it a very good system for imaging diagnostics of the human body. 

Analyzing scientific articles about cell culture research, it can be concluded that they 

are the domain of high-field systems [3,4]. However, it should be said that at present, the exact 

influence of the magnetic field on the human body is not known yet, and even more so on small 

and very sensitive structures such as single cells. Rapid changes in the gradients in the system 

cause a change in the magnetic field and thus the flow of small amounts of current inside the 

examined structures. At present, there is insufficient information on this effect on the tested 

cells. It may turn out that the distant effects of the current or the magnetic field itself may lead 

to erroneous conclusions. 

Figure 1 presents 5 of 12 selected scans in acquired sequences for determining T1 time. 

The image located on the right side is selected scans necessary to determine the T2 time. The 

images shown on the left and right are the same tubes scanned in the same planes to compare 

the images. 

3.1. MCF-7 lung cancer.  

The presented Figure 1 shows the distribution of T1 and T2 times in the tested samples 

containing MCF-7 breast cancer cells. The image clearly shows the area with the shorter T1 

time, which is the area occupied by cells. Measurement was made in the middle of the area 

representing the cells. It should be noted that the image contains artifacts - they appear in the 
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wall area of the test tubes as well as on the fluid-air interface. Above is the distribution of T1 

times in samples containing MCF-7 breast cancer cell cultures. 

 
Figure 1. The methodology of T1 and  T2 measurements of  MCF-7 cells. 

Table 1. T1 and T2 of MCF-7 cell cultures. 

MCF-7 cell cultures (Figure 1) 

 Sample A Sample  B Sample C 

T1 ms 2773,64 ± 22,19 2237,07 ± 17,9 2068,05 ± 16,54 

T2 ms 115,30 ± 0,92 126,32 ± 1,01 105,49 ± 0,84 

You can clearly see the border of the area where the cells are located. The range of T1 

times presented is in the range of 1 to 4000. This range completely covers the range of changes 

in longitudinal relaxation times in cell cultures. It can be unequivocally stated that the fluid 

constituting the culture medium has a significantly longer T1 time compared to the cell area. 

This figure shows the red areas on the right of the tubes - these are artifacts. The calculated 

time T1 takes values up to 7000ms. Similarly, the color change in the upper part of the fluid at 

the air border should be considered artifacts. They manifest themselves with increased noise. 

A solid blue background around colored images needs some explanation. These are places 

where the R2 factor does not exceed 0.4, which is a sign of a very poor fit. To remove noise 

from the image, the T1 values specified with R2 below 0.4 have been replaced by a value of 0 
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ms. Distribution of the fit factor of the function approximating T1 times to the measured data. 

Graphical presentation of this parameter allows the reader to assess the accuracy of the 

individual areas of the image. It is visible that the places in the studied space, the characteristics 

of which correspond to the characteristics of the longitudinal relaxation phenomenon, are 

defined with a coefficient close to one. The coefficient of determination measures the degree 

to which the approximating function, i.e., the mathematical model, fits the sample, i.e., the 

signal intensity value in individual scans. The discerning reader will probably consider the low 

resolution of the images. It results from the magnification of the image. The actual dimensions 

of the test areas presented in the image sections are approx. 30mm x 10mm, which corresponds 

to approx. 140 x 40 pixels. This value shows how accurately the longitudinal relaxation time 

was estimated based on measurement data. The high R2 coefficient within the tubes confirms 

that the curve that approximates the measurement data has been correctly determined. 

3.2. A549 lung cancer.  

The studies were carried out on A549 lung cancer. The measurements needed to 

determine longitudinal and transverse relaxation were made. The next stage was the data 

analysis, which carried out a thorough analysis of the results obtained, to determine the 

relaxation times T1 and T2 in the tested samples, which allowed the characteristics of the tested 

sample. The analysis of the received data was performed using a licensed MATLAB package. 

 
Figure 2. T1 relaxation time of A549 cancer cell cultures. 
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Figure 2 presents the results that were obtained as a result of calculating the relaxation 

times T1 and the factor fitting R2 to the culture of the A549 lung cell line. Similar to Figure 2B, 

the picture shows T1 time maps. Also, in this case, the artifact related to the tube boundary is 

visible, which is marked in red, symbolizing the upper limit of the assumed timescale T1. In 

this case, it was also limited only to the imaging of pixels for which the fit factor was in the 

range (0.4 to 1). In this case, the study was performed in the coronal plane. Table 2  shows the 

results of relaxation times that were obtained for the MCF-7 breast cancer cell line. Table 2 

shows the results of relaxation times for A549 lung cancer. 

Table. 2. T1 and T2 relaxation times for A549 lung cancer cell line. 

 Samples (n=6) 

T1 [ms] 1527± 59 

T2 [ms] 150± 8 

3.3. ACHN kidney cancer. 

The following table compares T1 and T2 relaxation time values for samples with A549 

lung cancer cells and ACHN kidney cancer. 

 
Figure 3. T1 relaxation time of ACHN cancer cell cultures. 
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Table. 3. T1 and T2 relaxation times for ACHN lung cancer cell line. 

 Samples (n=6) 

T1 [ms] 1354±193 

T2 [ms] 80 ±9 

It should be emphasized that the factory coils, much more complicated in their 

construction, perfectly illustrate the human body; however, when it is necessary to record 

signals from small objects, they are not always optimal. Often, dedicated surface coils allow 

for imaging with better parameters - their disadvantage is usually a small area that can be 

examined. The highly non-linear characteristic as a function of the distance from the coil means 

that only a small range of the area is possible for imaging. There are many publications in the 

literature on the design of experimental coils. Most often, surface coils are used to image near-

surface areas and small objects. Readers who want to see examples of this type of receiving 

system's solutions can be offered positions in which researchers used these types of electronic 

systems for magnetic resonance microscopy (MRM) [5-8]. It should be added that on the 

publishing market, you can also find books about MR coils [9]. And although high-field MR 

systems are the domain of experimental imaging, and in particular of small objects or structures 

not of a typical shape, 1.5 Tesla devices can also be used in research. This work proves this 

because it has been made entirely on the basis of such a medium-field MR system.       

Several different receiver systems were developed during the implementation of the 

tasks, which served as coils for recording signals from the tested structures. The tests were 

performed with both surface and solenoid coils. Since they had a perfect homogeneity of the 

field, the latter allowed them to obtain very good images. However, covering the assumed test 

space with such a structure poses many difficulties as far as the electronic structure is 

concerned. Extending the coil causes an increase in inductance and thus a change in impedance 

parameters for the resonance frequency. The necessity to ensure an appropriate wave 

impedance requires the use of impedance matching circuits. This, in turn, leads to a loss of 

signal. 

The basic assumption of the first coil was the possibility of testing test tubes with a 

maximum diameter of approx. 20 and a length of approx. 50 mm. Its structure is based on a 

copper sheet section 0.2 mm thick and 5 mm wide. The choice of material was determined by 

the need to minimize losses. At the frequency of 63.885MHz, there is a skin effect which causes 

that the current flows in the conductor only through the outer part of the wire. For copper under 

these conditions, the skin depth is only 8.34 µm. This means that in practice, only this part of 

the electric current flows. It should be added that the function describing the current density 

distribution as a function of the radius of the conductor is very steep, but it is continuous. This 

epidermal depth is the point on the radius of the circular conductor where the current drops to 

approx. 37% of the maximum value: 

 
This problem is very well described in world literature and goes beyond the scope of 

this work [10-17]. 

The construction uses capacitors specially made for applications in MR systems. The 

entire system was tuned to the central frequency with the RIGOL DSA815 TG Spectrum 

Analyzer. The mechanical structure of the coil is based on Teflon. This synthetic fluoropolymer 

is perfect for making coil housing where stiffness, high resistance, and low leakage are 

required. 
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A phantom containing water and plastic capillaries was prepared to evaluate the 

operation of the coil. The dimensions of the elements included in the phantom (Figure 4) are 

the outer diameter of the glass tube 16.5 mm ± 0.05 mm, the inner diameter of the glass tube is 

13.5 mm ± 0.05 mm, the outer diameter of the capillary 2 mm ± 0.05 mm, the thickness of the 

capillary wall 0.3 mm ± 0.05 mm, inner diameter of the capillary 1.4 mm ± 0.05 mm. The glass 

tube was half full with capillaries. 

 
Figure 4. (a) Phantom for testing coils; (b) appearance of the coil mounted to the MRI system, prepared for 

phantom imaging (house-made). 

 
Figure 5. The result of scanning the phantom with an experimental coil with the marked dimensions obtained at 

a medical diagnostic station (own elaboration).  
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As shown in Figure 4, the coil allowed imaging the phantom with a modified wrist 

examination protocol. The minimum FOV was 4cm, and the acquisition resolution was 

512x152. Such imaging conditions allow obtaining spatial resolution on the level of about 

78um. Such a high resolution obtained in this system also has some disadvantages, namely 

reducing the pixel size is associated with increasing the share of noise in the resulting image. 

Nevertheless, the attempt to increase the spatial resolution in the study of this group of objects 

is fully justified. 

Figure 5 shows the results of the phantom scan and the obtainable MR images. The 

very good quality of the obtained image deserves attention. This coil also makes it possible to 

obtain spectroscopic images. 

The assumptions for the work were to develop an application that would allow the 

calculation of longitudinal and transverse relaxation times based on the data obtained as a result 

of MR signal acquisition. An integral part of the work was an application developed and written 

in MATLAB. The operation of the application was based on the GUI user interface in which 

DICOM files are downloaded, processed, and in the final stage, the results are displayed. The 

program allows you to work in four modes: 

1. Measurement of T1 and T2 time based on an average value of the region of interest. 

The result is the numerical value of Times T1 and T2 and the value of the adjustment coefficient 

R2; 

2. Measurement of T1 and T2 time based on the values of individual pixels in the profile 

selected and marked on the DICOM image. In the model, the result consists of three charts 

presenting: 

- T1 or T2 time chart in the selected profile; 

- graph of the R2 fit factor; 

- signal intensity graph in the analyzed profile; 

3. T1 and T2 time measurement for the selected area. This mode provides a pixel-to-

pixel map of the T1 as well as T2 times. In addition, it is also possible to obtain images of the 

R2 coefficient; 

4. Measurement of T1 and T2 time based on the mean value of the region of interest 

with the difference that all raw data and results are saved to an ASCII text file. This 

functionality allows for easy documentation as well as post-processing. 

Based on the performed tests, it can be stated that it turns out to be important to select 

the necessary non-invasive method for the quantitative and qualitative assessment of research 

in imaging cell cultures. In this study, a coil to study small objects, which are undoubtedly cell 

cultures, was used. The small flex surface coil can be used for testing small objects because 

they are characterized by high resolution and sensitivity, which improves the received signal 

in vitro tests. It should be noted that the coil has a heterogeneous signal intensity, which should 

be taken into account when testing cultures. In cell culture studies, attention should be paid to 

the resolution and sensitivity of the coil, which significantly decreases with the distance of the 

tested object from the coil. In the first study in 1977, Wagh et al. presented measurements of 

longitudinal relaxation time in cell cultures [18]. Since then, there have been many reports on 

the use of the MRI method for experimental research. In scientific studies, Haedicke et al. we 

can read about the T1 contrast agent based on manganese porphyrin, MnEtP used for labeling 

and tracking stem cells using MRI 3T [19]. Jasmin also in vitro studies described the use of 

SPION for labeling mesenchymal stem cells and assessing their efficacy and cytotoxicity using 

the MRI method [20]. In contrast, Pothirajan et al., in their work, evaluated the possibility of 
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using MRI to monitor cartilage growth by non-invasive assessment of cells and extracellular 

matrix (ECM) using relaxation times T1 and T2 [21]. Mohhimi et al. assessed gadolinium oxide 

cytotoxicity by implementing polymers and nanoparticles in Hepa 1-6 cell lines by assessing 

changes in T1 longitudinal relaxation [22]. T1 relaxation time in the human lung based on a 

review of Dietrich et al. for 1.5 Tesla resonance, it is about 1200 ms ± 150 ms, while breathing 

pure oxygen is about 1050 ms (Dietrich et al. 2017). Alamidi et al., based on the conducted 

research, presented the T1 relaxation time in smokers' lungs, which decreased with age [23]. 

There are also studies talking about the values of T1 and T2 relaxation times for pathological 

tissues [24]. Sobhani et al. used manganese zinc ferrite in their research as a contrast agent to 

detect mouse breast cancer cells [25]. Beall et al. published results showing differences in T1 

and T2 relaxation times for healthy and cancerous epithelial breast cells in mouse cultures, 

which were 916 ± 24 ms and 1155 ± 42 ms, respectively [26]. Khaniabadi et al. used 

superparamagnetic iron oxide nanoparticles (SPION) and using the spin-echo sequence, 

obtained T2-dependent images based on which breast cancer cells (MCF-7) were detected [27]. 

The use of coated nanoparticles (NP), for example, SPION coated with trastuzumab and 

indocyanine green (ICG) can be successfully used as drug carriers for HER2 overexpressing 

breast cancer as demonstrated in in vitro and in vivo studies by Luo et al. [28]. Similar studies 

were performed by Khaniabadi et al., Who showed in vitro studies that superparamagnetic iron 

oxide nanoparticles conjugated to the C595 monoclonal antibody (SPION-C595) reduce T2 

relaxation time 76%, which may prove to be an effective method for detecting breast cancer 

cells MCF7 [29]. Gunanathan et al. in their research they proposed contrast agents containing 

pyridine containing Gd (III) and Eu (III) (EPTA-Gd / Eu), water-soluble, for magnetic 

resonance imaging, which effectively reduced T1 and T2 relaxation times at the location of the 

estrogen receptor [30].  

There are several scientific reports describing changes in relaxation time in the kidneys; 

for example, McLachlan and Hamilton using the T1 relaxation time examined the effect of 

Sarcoma-180 cancer on blood and tissues in mouse studies, based on the research found an 

increase in relaxation times of kidney and blood [31]. Escanye et al. investigated the 

relationship between longitudinal relaxation in healthy and tumor tissues of mice and Larmor 

frequencies, but no consistent results were obtained [32]. Ross et al. using 31P NMR they 

implemented studies on renal biochemistry, based on which it was found that T1 relaxation 

time is different for the renal cortex and spinal cord, which may be due to different lipid 

composition [33].  Takeda et al. confirmed that renal relaxation times in vivo studies could be 

calculated based on low magnetic field MRI results [34]. An et al. used T2 relaxation time to 

assess ability (FA-MAN) in assessing glioma imaging in vivo [35]. 

4. Conclusions 

The study used the OPTIMA 360MR magnetic resonance system manufactured by 

General Electric Healthcare. It is a device based on a 1.5T superconducting magnet. The 

parameters of the gradient system, which are the amplitude and the slope speed, are respectively 

33mT / m and 120 T / m / s. It is equipped with a set of coils to diagnose the entire human body 

and diagnostic stations, allowing for the analysis of the obtained images for medical diagnosis. 

A specialized software package with a system for researching the field of elastography makes 

it a very good system for imaging diagnostics of the human body. 

Analyzing scientific articles about cell culture research, it can be concluded that they 

are the domain of high-bay systems. However, it should be said that the exact influence of the 
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magnetic field on the human body is not known yet, and even more so on small and very 

sensitive structures such as single cells. Rapid changes in the gradients in the system cause a 

change in the magnetic field and thus the flow of small amounts of current inside the examined 

structures. At present, there is insufficient information on this effect on the tested cells. It may 

turn out that the distant effects of the current or the magnetic field itself may lead to erroneous 

conclusions. For several years, the number of works on the impact of work, especially with 

high-pressure systems on the body of employees or patients themselves, has been increasing 
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