Synthesis and Cytotoxic Activity of New Pyrimido[1,2-c]quinazolines, [1,2,4]triazolo[4,3-c]quinazolines and (quinazolin-4-yl)-1H-pyrazoles Hybrids

Mohamed A. Hawata 1, Wael A. El-Sayed 2,3,4, Eman S. Nossier 4, Adel A.-H. Abdel-Rahman 1,5

Abstract: New hybrid compounds with functionalized quinazoline derivatives and derived tricyclic compounds with varied condensed six and five-membered ring systems were synthesized from simple compounds. The 4-quinazolinimine, 2H-pyrimido[1,2-c]quinazolin-2-one, the pyrido[1,2-c]quinazoline and the [1,2,4]triazolo[4,3-c]quinazoline systems were synthesized starting form the key 4-azido compound and its isosteric analogue; 4-hydrazinyl derivative. Furthermore, a hybrid compound incorporating varied active motifs, the substituted tricyclic structural analog; 3-oxo-2-(quinazolin-4-yl)-2,3-dihydro-1H-pyrazole derivative, in which the pyrazole ring was attached to the quinazoline system via substitution at quinazoline-C4, was also prepared. The synthesized compounds were studied for their cytotoxic activity against the human breast cancer (MCF-7) cell line. The tested compounds possess a high effect against the breast cancer cell line (MCF-7), and compounds 6b, 6e, 8, and 11 showed comparable results to those obtained for the reference drug doxorubicin. The results also showed the effect of substituents in the pyrimidoquinazoline and triazoloquinazoline ring systems on the cytotoxic activity. Additionally, the docking studies revealed that the compounds 6b, 6e, 8, and 11 bound well within the active sites of EGFRWT and EGFRRT790M kinases and could be the lead molecules in the discovery of anticancer agents targeting inhibition of EGFRWT and EGFRRT790M.

Keywords: quinazoline; pyrimido[1,2-c]quinazoline; [1,2,4]triazolo[4,3-c]quinazoline; pyrido[1,2-c]quinazoline; breast cancer; MCF-7.

© 2021 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

Cancer is believed as the main health threat for humans and a major life-threatening disease. It was considered the second leading cause of mortality, following cardiovascular diseases, and responsible for about 14.6% of worldwide deaths [1]. The discovery of novel potent and safe anticancer agents is the major serious aim in the medicinal chemistry research field due to the induced side effects of conventional non-selective cytotoxic chemotherapies, their systemic toxicity, and drug resistance. Molecular hybridization of small nitrogen heterocycles, leading to the formation of novel hybrid leads incorporating potent cores in one
molecule, has been revealed as an important strategy for designing new potent anticancer candidates [2,3]. Quinazolines constitute an important group of heterocycles that are well known for their multilateral and significant role in various biological activities, including anti-inflammatory, antimicrobial, antihyperlipidemic, antihypertensive, anticonvulsant, and anticancer activities [4-6]. Various quinazoline derivatives [7] and their analogs have been revealed for beneficial effects in various cancers. The pivotal role of quinazoline compounds has been referred to as selective and potent inhibitors for EGFR (epidermal growth factor receptor), a key target for cancer treatment [8,9], along with their remarkable antitumor activity [10-12]. Certain mono-substituted quinazoline derivatives (compounds I and II) were shown to exert a potential EGFR inhibition [13,14]. Also, the di-substituted quinazolines (III) based indolyl system showed good cytotoxicity activity against A-549, MCF-7, and HeLa cell lines, in addition to their nanomolar EGFR inhibitory activity [15].

The FDA (U.S. Food and Drug Administration) approved several EGFR, the most important of which are the quinazoline derivatives involving selective EGFR tyrosine kinase inhibitors such as gefitinib and erlotinib [16-18] which were approved for NSCLC (non-small-cell lung cancer) treatment. Also, lapatinib is a reversible dual EGFR/HER2 TK inhibitor applied for breast cancer, mainly for the patient who revealed resistance to trastuzumab-based therapy [19,20]. Various new irreversible generations were discovered to overcome mutations of EGFR (L858R and T790M) associated with drug resistance [21,22]. Afatinib (Figure 1), the second-generation with dual EGFR/HER2 inhibition, had approval for the treatment of late-stage NSCLC patients with actively mutated EGFR by the FDA [23].

The substituted quinazoline compound, Dacomitinib (Figure 1), was detected for the NSCLC treatment [24,25]. Therefore, identifying potent irreversible EGFR/HER2 dual inhibitors remains the core of research attention for future drugs [26]. The triazole-based quinazoline anticancer compound (V) [27] was designed and synthesized based on Afatinib (3) and its analog (IV). On the other hand, in-vitro studies showed that the triazole-quinazoline
hybrid derivative (VII) [28] had revealed anticancer activity against MCF-7 human cancer cells. The significances mentioned above for such heterocycles account for possible enhancements of their effect as anticancer candidates via incorporation with other potent motifs. The above facts and our interest in the synthesis and study of new anticancer candidates based on newly synthesized small heterocycles [29-33] promoted us, herein, to the synthesis and studying the anticancer activity of some new modified hybrid quinazoline derivatives with pyridine, pyrimidine and triazole cores. Moreover, a molecular docking study was achieved using MOE software version 2014.0901 to determine the possible binding interactions of the designed quinazolines with EGFRWT and EGFR790M.

2. Materials and Methods

2.1. Chemistry.

A Kofler block melting point apparatus was applied to measure the newly synthesized quinazoline derivatives’ melting points that were uncorrected. A Varian Gemini spectrometer (300 MHz, DMSO-d$_6$) was employed to record 1H and 13C NMR with an internal reference, tetramethyilsilane (TMS). The coupling constants (J values) are given in hertz (Hz), and The chemical shifts are expressed in δ scale (ppm) relative to TMS as a reference. A Bruker-Vector22 spectrometer (Bruker, Bremen, Germany) was utilized to detect IR spectra (KBr). Mass spectra were achieved using a CC 2010 Shimadzu Gas chromatography instrument mass spectrometer (70 eV). Analytical thin-layer chromatography was done to examine the progress of the reactions using aluminum silica gel 60 F245 plates (Merck, Darmstadt, Germany). The microanalyses were performed at the microanalytical unit, Konstanz University, Germany. The cytotoxic activity of the newly synthesized derivatives was applied at the National Cancer Institute (NCI), Cairo, Egypt.

2.1.1. 4-Azido-7-bromo-6-chloroquinazoline (3).

A mixture of 7-bromo-6-chloroquinazolin-4-ol (2) (0.260 g, 1 mmol) and thionyl chloride (1.12 g, 10 mmol) was refluxed for 3 h, followed by removing the excess of thionyl chloride under decreased pressure. Then, the residue was treated with sodium azide (0.72 g, 1.1 mmol) in dry DMF (10 mL), stirring at 80 °C for 2 h. After that, the reaction mixture was triturated with water (5 mL) and left for 5 h at room temperature to afford a pale brown precipitate. Then, the precipitate was filtered off, washed with ether, and dried well to afford the azide compound (3) (0.28 g, 98%), m.p.: 213-214 ºC. IR (KBr, ν, cm$^{-1}$): 2105 (N$_3$), 1612 (C=N), 1570, 1425 (C=C Ar). 1H NMR (CDCl$_3$, 300 MHz): δ = 7.85 (s, 1H, Ar-H), 8.30 (s, 1H, Ar-H), 8.88 (s, 1H, Ar-H). 13C NMR (CDCl$_3$, 75 MHz): δ = 125.5, 127.7, 129.3, 130.5, 145.8, 146.6, 155.3, 157.4 (Ar-Carbons) ppm. M.S-EI: m/z 282/284 (M$^+$). Anal. Calcd. for C$_8$H$_3$BrClN$_5$ (284.50): C, 33.77; H, 1.06; N, 24.62; Found: C, 33.55; H, 1.00; N, 24.45%.

2.1.2. 7-Bromo-6-chloro-triphenylphosphine-4-quinazolinimine (4).

Triphenyl phosphine (0.28 g, 1.1 mmol) and the azide derivative (3) (0.57 g, 2 mmol) were dissolved in pyridine (4 mL) and left at room temperature for 1 h. Addition of water (15 mL) was followed by extraction with CH$_2$Cl$_2$ (3 x 15 mL), drying over Na$_2$SO$_4$, and filtration. The collected extracts were evaporated under reduced pressure to afford the phosphinimine product (4) (0.5 g, 97%), m.p.: 177-178 ºC. IR (KBr, ν, cm$^{-1}$): 1609 (C=N), 1568, 1426 (C=C...
Ar). 1H-NMR (DMSO-d6, 300 MHz) δ = 7.18-7.31 (m, 8H, Ar-H), 7.42-7.58 (m, 7H, Ar-H), 7.98 (s, 1H, Ar-H), 8.24 (s, 1H, Ar-H), 8.97 (s, 1H, Ar-H). 13C-NMR (DMSO-d6, 75 MHz) δ = 122.11, 125.31, 126.07, 126.37, 126.52, 130.68, 131.41, 132.37, 154.42, 166.60 (Ar-Carbons). M.S-EI: m/z 517/519 = (M)+. Anal. Calcd. for C26H18BrClN3P (518.77): C, 60.20; H, 3.50; N, 8.10; Found: C, 60.03; H, 3.33; N, 8.00%.

2.1.3. 7-Bromo-6-chloroquinazolin-4-amine (5).

The phosphinimine (4) (0.52 g, 1 mmol) in pyridine (5 mL) followed by addition of concentrated ammonium hydroxide (10 mL) and the solution was allowed to stand for 3 h. The solvents were removed in vacuo and the residue was purified by crystallization to give the corresponding amine (5) (0.22 g, 83%), m.p.: 290-292 °C. IR (KBr, ν, cm⁻¹): 3275 cm⁻¹ (NH₂), 1614 cm⁻¹ (C=N), 1582, 1482 cm⁻¹ (C=C Ar). 1H-NMR (DMSO-d6, 300 MHz) δ = 7.61 (brs, 2H, NH₂, D₂O exchangeable), 7.87 (s, 1H, Ar-H), 8.07 (s, 1H, Ar-H), 8.46 (s, 1H, Ar-H), 7.78 (s, 1H, Ar-H). 13C-NMR (DMSO-d6, 75 MHz) δ = 114.22, 123.66, 125.61, 126.78, 128.73, 132.37, 133.04, 148.77, 155, 12, 161.87 (Ar-Carbons). M.S-EI: m/z 256/258 = (M)+. Anal. Calcd. for C8H5BrClN3 (258.50): C, 37.17; H, 1.95; N, 16.26; Found: C, 37.10; H, 1.88; N, 16.07%.

2.1.4. General procedures for preparation of compounds 6a-e.

A solution of quinazolinyl azide derivative (3) (0.285 g, 1 mmol), diethyl malonate, diethyl 2-methylmalonate, diethyl 2-methylene hydrazonate, diethyl 2-butylmalonate or diethyl 2-phenylmalonate (1 mmol), and diphenyl ether (5 mL) was refluxed for 1 h. Diethyl ether (10 mL) was added with strong stirring, and the products were collected by filtration to afford the pyrimidoquinazoline derivatives (6a-e), respectively, in 63-82% yields.

2.1.4.1. 7-Bromo-6-chloro-4-hydroxy-2H-pyrimido[1,2-c]quinazolin-2-one (6a).

Yield 0.21 g (63%), m.p.: 279-280 °C. 1H-NMR (DMSO-d6, 300 MHz) δ = 6.99 (s, 1H, Ar-H), 7.92 (s, 1H, Ar-H), 8.10 (s, 1H, Ar-H), 8.32 (s, 1H, Ar-H), 8.46 (s, 1H, Ar-H), 9.82 (brs, 1H, OH, D₂O exchangeable). M.S-EI: m/z 324/326 = (M)+. Anal. Calcd. for C11H₅BrClN₃O₂ (326.53): C, 40.46; H, 1.54; N, 12.87; Found: C, 40.32; H, 1.42; N, 12.66%.

2.1.4.2. 7-Bromo-6-chloro-4-hydroxy-3-methyl-2H-pyrimido[1,2-c]quinazolin-2-one (6b).

Yield 0.25 g (70%), m.p.: 295-297 °C. 1H-NMR (DMSO-d6, 300 MHz) δ = 2.34 (s, 3H, CH₃), 7.73 (s, 1H, Ar-H), 7.99 (s, 1H, Ar-H), 8.31 (s, 1H, Ar-H), 9.93 (brs, 1H, OH, D₂O exchangeable). 13C-NMR (DMSO-d6, 75 MHz) δ = 8.57 (CH₃), 94.51, 112.28, 119.52, 120.09, 125.03, 127.76, 128.11, 136.22, 144.00, 150.98, 165.29 (Ar-Carbons). M.S-EI: m/z 338/340 = (M)+. Anal. Calcd. for C₁₃H₇BrClN₃O₂ (340.56): C, 42.32; H, 2.07; N, 12.34; Found: C, 42.20; H, 2.00; N, 12.25%.

2.1.4.3. 7-Bromo-6-chloro-3-ethyl-4-hydroxy-2H-pyrimido[1,2-c]quinazolin-2-one (6c).

Yield 0.29 g (82%), m.p.: 240-242 °C. IR (KBr, v, cm⁻¹): 3360 cm⁻¹ (OH), 1674 cm⁻¹ (C=O), 1H-NMR (DMSO-d6, 300 MHz) δ = 1.04 (t, 3H, J = 4.5 Hz, 3H, CH₃), 3.39-3.44 (q, 2H, J = 4.4 Hz, CH₂), 7.91 (s, 1H, Ar-H), 8.14 (s, 1H, Ar-H), 8.48 (s, 1H, Ar-H), 9.32 (s, 1H, OH, D₂O exchangeable). 13C-NMR (DMSO-d6, 75 MHz) δ = 12.53 (CH₃), 16.41 (CH₂),
100.64, 112.38, 120.09, 127.79, 128.06, 134.21, 136.15, 138.00, 144.07, 146.95, 163.40, 165.08 (Ar-Carbons). M.S-EI: m/z 352/354 = [M+]$. Anal. Calcd. for C$_{132}H_{22}N_{19.63}$%.

2.1.4.4. 7-Bromo-3-butyl-6-chloro-4-hydroxy-2H-pyrimido[1,2-c]quinazolin-2-one (6d).

Yield 0.31 g (80%), m.p.: 285-287 °C. 1H-NMR (DMSO-d_6, 300 MHz) $\delta = 1.00$ (t, 3H, $J = 4.5$ Hz, 3H, CH$_3$), 1.27 (m, 2H, CH$_2$), 1.34 (m, 1H, CH$_2$), 4.38 (m, 2H, CH$_2$), 7.78 (s, 1H, Ar-H), 8.09 (s, 1H, Ar-H), 8.39 (s, 1H, Ar-H), 9.32 (brs, 1H, OH, D$_2$O exchangeable). M.S-EI: m/z 380/382 = (M)$^+$. Anal. Calcd. for C$_{15}$H$_{13}$BrClN$_3$O$_2$ (382.64): C, 47.08; H, 3.42; N, 10.98; Found: C, 46.96; H, 3.32; N, 10.82%.

2.1.4.5. 7-Bromo-6-chloro-4-hydroxy-3-phenyl-2H-pyrimido[1,2-c]quinazolin-2-one (6e).

Yield 0.33 g (81%), m.p.: 275-277 °C. IR (KBr, ν, cm$^{-1}$): 3450 cm$^{-1}$ (OH), 1676 cm$^{-1}$ (C=O). 1H-NMR (DMSO-d_6, 300 MHz) $\delta = 7.40-7.54$ (m, 2H, Ar-H), 7.54-7.65 (m, 3H, Ar-H), 7.81 (s, 1H, Ar-H), 8.04 (s, 1H, Ar-H), 8.44 (s, 1H, Ar-H), 9.34 (s, 1H, Ar-H), 9.38 (s, 1H, Ar-H). 13C-NMR (DMSO-d_6, 75 MHz) $\delta = 99.44$, 119.85, 127.53, 127.88, 129.04, 130.51, 130.59, 132.45, 134.64, 138.18, 144.43, 147.90, 158.48, 164.85 (Ar-Carbons). M.S-EI: m/z 400/402 = (M)$^+$. Anal. Calcd. for C$_{17}$H$_{15}$BrClN$_3$O$_2$ (402.63): C, 50.71; H, 2.25; N, 10.44; Found: C, 50.62; H, 2.17; N, 10.31%.

2.1.5. 7-Bromo-6-chloro-4-hydrazinylquinazoline (7).

A mixture of (2) (0.26 g, 1 mmol) and thionyl chloride (1.12 g, 10 mmol) was refluxed for 3 h followed by removing the excess of thionyl chloride under decreased pressure. Then, the residue was treated with hydrazine hydrate (0.08 g, 1.5 mmol) and refluxed for 5 h. finally, the solvent was removed under reduced pressure to afford yellow powder from the corresponding 4-hydrazinylquinazoline (7) (0.23 g, 85%), m.p.: 180-182 °C. 1H-NMR (DMSO-d_6, 300 MHz) $\delta = 4.90$ (brs, 2H, NH$_2$, D$_2$O exchangeable), 7.83 (s, 1H, Ar-H), 8.16-8.25 (s, 2H, Ar-H), 9.61 (brs, 1H, NH, D$_2$O exchangeable). 13C-NMR (DMSO-d_6, 75 MHz) $\delta = 114.10$, 122.19, 125.40, 127.28, 131.97, 148.41, 154.43, 155.39 (Ar-Carbons). M.S-EI: m/z 271/273 = (M)$^+$. Anal. Calcd. for C$_{19}$H$_{15}$BrClN$_4$ (273.52): C, 35.13; H, 2.21; N, 20.48; Found: C, 35.02; H, 2.11; N, 20.32%.

2.1.6. 7-Bromo-6-chloro [1,2,4]triazolo[4,3-c]quinazoline (8).

A mixture of (7) (0.274 g, 1 mmol), formic acid (0.046 g, 1 mmol), and triethyl orthoformate (0.148 g, 1 mmol) was refluxed for 8 h. Then, the obtained mixture was allowed to cool to room temperature. The formed precipitate was filtered and recrystallized from ethanol to give (8) as yellow powder (0.21 g, 75%), m.p.: 110-112 °C. 1H-NMR (DMSO-d_6, 300 MHz) $\delta = 7.79$ (s, 1H, Ar-H), 8.06 (s, 1H, Ar-H), 8.86 (s, 1H, Ar-H), 9.16 (s, 1H, Ar-H). 13C-NMR (DMSO-d_6, 75 MHz) $\delta = 116.40$, 122.76, 123.17, 128.30, 128.45, 129.11, 129.33, 131.75, 132.22, 136.96, 137.35, 139.08, 146.06, 154.36 (Ar-Carbons). M.S-EI: m/z 281/283 = (M)$^+$. Anal. Calcd. for C$_{19}$H$_{15}$BrClN$_4$ (283.51): C, 38.13; H, 1.42; N, 19.76; Found: C, 38.00; H, 1.32; N, 19.63%.
2.1.7. 7-Bromo-6-chloro-3-methyl-[1,2,4]triazolo[4,3-c]quinazoline (9).

A mixture of (7) (0.274 g, 1 mmol), acetic acid (0.06 g, 1 mmol), and triethyl orthoformate (0.148 g, 1 mmol) was refluxed for 4 h. Then, the obtained mixture was allowed to cool to room temperature. The formed precipitate was filtered and recrystallized from ethanol to give (9) as a pale-yellow powder (0.21 g, 71%), m.p.: 212 ºC. 1H-NMR (DMSO-d6, 300 MHz) δ = 2.83 (s, 3H, CH3), 7.83-8.00 (m, 2H, Ar-H), 9.03 (s, 1H, Ar-H). M.S-EL: m/z 295/297 = (M)+. Anal. Calcd. for C10H6BrClN4 (297.54): C, 40.37; H, 2.03; N, 18.83; Found: C, 40.22; H, 1.93; N, 18.76%.

2.1.8. 7-Bromo-6-chloro-3-phenyl-[1,2,4]triazolo[4,3-c]quinazoline (10).

A mixture of (7) (0.274 g, 1 mmol), benzoyl chloride (0.14 g, 1 mmol) in pyridine (10 mL), and triethyl orthoformate (0.148 g, 1 mmol) was refluxed for 8 h. Then, the obtained mixture was allowed to cool to room temperature. The formed precipitate was filtered and recrystallized from ethanol to give (10) as brown crystals (0.25 g, 70%), m.p.: 267 ºC. 1H-NMR (DMSO-d6, 300 MHz) δ = 7.50-7.66 (m, 3H, Ar-H), 7.84-7.95 (m, 3H, Ar-H), 8.17 (s, 1H, Ar-H), 8.98 (s, 1H, Ar-H). 13C-NMR (DMSO-d6, 75 MHz) δ = 117.51, 123.86, 127.00, 127.40, 128.29, 128.50, 129.05, 129.73, 130.23, 130.68, 131.51, 132.27, 138.96, 142.36, 150.73, 163.53 (Ar-Carbons). M.S-EL: m/z 357/359 = (M)+. Anal. Calcd. for C15H8BrClN4 (359.61): C, 50.10; H, 2.24; N, 15.58; Found: C, 50.00; H, 2.19; N, 15.44%.

2.1.9. 8-Amino-3-bromo-2-chloro-8H-pyrido[1,2-c]quinazoline-9-carbonitrile (11).

A mixture of (7) (0.274 g, 1 mmol), 2-(ethoxymethylene)malononitrile (0.122 g, 1 mmol), glacial acetic acid (10 mL), in ethanol (10 mL) was refluxed for 5 h. Then, the obtained mixture was allowed to cool to room temperature. The formed precipitate was filtered and recrystallized from ethanol to give (11) as pale yellow crystals (0.24 g, 70%), m.p.: 281-283 ºC. IR (KBr, ν, cm⁻¹): 3427 cm⁻¹ (NH2), 2216 cm⁻¹ (C≡N). 1H-NMR (DMSO-d6, 300 MHz) δ = 4.60 (s, 1H, C-H), 7.15-7.20 (m, 2H, Ar-H), 7.45-7.53 (m, 2H, Ar-H), 7.70 (brs, 2H, NH2, D2O exchangeable), 8.57 (s, 1H, Ar-H). M.S-EL: m/z 334/336 = (M)+. Anal. Calcd. for C12H7BrClN5 (336.57): C, 42.82; H, 2.10; N, 20.81; Found: C, 42.66; H, 2.00; N, 20.67%.

2.1.10. 3-Bromo-2-chloro-8-oxo-8H-pyrido[1,2-c]quinazoline-9-carbonitrile (12).

A mixture of (7) (0.274 g, 1 mmol), ethyl 2-cyano-3-ethoxyacrylate (0.17 g, 1 mmol), glacial acetic acid (10 mL), in ethanol (10 mL) was refluxed for 4 h. Then, the obtained mixture was allowed to cool to room temperature. The formed precipitate was filtered and recrystallized from ethanol to give (12) as pale yellow crystals (0.25 g, 75%), m.p.: 267-269 ºC. IR (KBr, ν, cm⁻¹): 2211 cm⁻¹ (C≡N), 1651 cm⁻¹ (C=O). 1H-NMR (DMSO-d6, 300 MHz) δ = 7.56 (s, 1H, Ar-H), 7.66 (s, 1H, Ar-H), 7.84 (s, 1H, Ar-H), 9.17 (s, 1H, Ar-H). M.S-EL: m/z 333/335 = (M)+. Anal. Calcd. for C12H4BrClN5O (335.54): C, 42.95; H, 1.20; N, 16.70; Found: C, 42.82; H, 1.10; N, 16.50%.

2.1.11. Ethyl 3-bromo-2-chloro-8-oxo-8H-pyrido[1,2-c]quinazoline-9-carboxylate (13).

A mixture of (7) (0.274 g, 1 mmol), diethyl 2-(ethoxymethylene)malonate (0.22 g, 1 mmol), glacial acetic acid (10 mL), in ethanol (10 mL) was refluxed for 4 h. Then, the obtained mixture was allowed to cool to room temperature. The formed precipitate was filtered and

https://doi.org/10.33263/BRIAC124.52175233
recrystallized from ethanol to give (13) as pale yellow crystals (0.33 g, 85%), m.p.: 230-232 °C.

\(^1\)H-NMR (DMSO-\(d_6\), 300 MHz) \(\delta = 1.30\) (t, 3H, J = 6.5 Hz, CH\(_3\)), 4.30 (q, 2H, J = 6.5 Hz, CH\(_2\)), 5.99 (d, 1H, J = 5.5 Hz, Ar-H), 7.20 (s, 1H, Ar-H), 7.50-7.55 (m, 2H, Ar-H), 8.80 (d, 1H, J = 5.5 Hz, Ar-H). M.S-EI: \(m/z\) = 380/382 (M)\(^+\). Anal. Calcd. for C\(_{14}H_9BrClN\(_2\)O\(_3\)) (382.60): C, 43.95; H, 2.37; N, 10.98; Found: C, 43.79; H, 2.17; N, 10.80%.

2.1.12. 5-Amino-7-bromo-6-chloro-1-(quinazolin-4-yl)-1H-pyrazole-4-carbonitrile (14).

A mixture of (7) (0.274 g, 1 mmol), 2-(ethoxymethylene)malononitrile (0.122 g, 1 mmol) in ethanol (10 mL) was refluxed for 5 h. Then, the obtained mixture was allowed to cool to room temperature. The formed precipitate was filtered and recrystallized from ethanol to give (14) as pale yellow solid (0.28 g, 81%), m.p.: 170-172 °C. IR (KBr, \(\nu\), cm\(^{-1}\)): 3475 cm\(^{-1}\) (C=O), 3182 cm\(^{-1}\) (C≡N). \(^1\)H-NMR (DMSO-\(d_6\), 300 MHz) \(\delta = 7.47\) (s, 1H, Ar-H), 8.04 (s, 1H, Ar-H), 8.42 (s, 1H, Ar-H), 11.00 (brs, 1H, NH, D\(_2\)O exchangeable). M.S-EI: \(m/z\) = 359/361 = (M)\(^+\). Anal. Calcd. for C\(_{12}H_8BrClN\(_6\)) (349.57): C, 41.23; H, 1.73; N, 24.04; Found: C, 41.09; H, 1.67; N, 23.96%.

2.1.13. 7-Bromo-6-chloro-3-oxo-2-(quinazolin-4-yl)-2,3-dihydro-1H-pyrazole-4-carbonitrile (15).

A mixture of (7) (0.274 g, 1 mmol), ethyl 2-cyano-3-ethoxyacrylate (0.169 g, 1 mmol) in ethanol (10 mL) was refluxed for 7 h. Then, the obtained mixture was allowed to cool to room temperature. The formed precipitate was filtered and recrystallized from ethanol to give (15) as pale yellow crystals (0.28 g, 81%), m.p.: 218-220 °C. IR (KBr, \(\nu\), cm\(^{-1}\)): 3345 cm\(^{-1}\) (NH), 2215 cm\(^{-1}\) (C≡N). \(^1\)H-NMR (DMSO-\(d_6\), 300 MHz) \(\delta = 7.17\) (s, 1H, Ar-H), 8.05 (s, 2H, Ar-H), 8.44 (s, 1H, Ar-H), 11.00 (brs, 1H, NH, D\(_2\)O exchangeable). M.S-EI: \(m/z\) = 348/350 = (M)\(^+\). Anal. Calcd. for C\(_{12}H_8BrClN\(_3\)O (350.56): C, 41.11; H, 1.44; N, 19.98; Found: C, 41.03; H, 1.34; N, 19.86%.

2.1.14. Ethyl 7-bromo-6-chloro-3-oxo-2-(quinazolin-4-yl)-2,3-dihydro-1H-pyrazole-4-carboxylate (16).

A mixture of (7) (0.274 g, 1 mmol), diethyl 2-(ethoxymethylene)malonate (0.216 g, 1 mmol) in ethanol (10 mL) was refluxed for 5 h. Then, the obtained mixture was allowed to cool to room temperature. The formed precipitate was filtered and recrystallized from ethanol to give (16) as pale yellow crystals (0.31 g, 78%), m.p.: 232-234 °C. IR (KBr, \(\nu\), cm\(^{-1}\)): 3182 cm\(^{-1}\) (NH), 1714 cm\(^{-1}\) (C=O). \(^1\)H-NMR (DMSO-\(d_6\), 300 MHz) \(\delta = 1.23\) (t, 3H, J = 5.5 Hz, CH\(_3\)), 4.17 (q, 2H, J = 5.5 Hz, CH\(_2\)), 7.43 (s, 1H, Ar-H), 8.34 (s, 1H, Ar-H), 8.44 (s, 1H, Ar-H), 11.00 (brs, 1H, NH, D\(_2\)O exchangeable). M.S-EI: \(m/z\) = 395/397 (M)\(^+\). Anal. Calcd. for C\(_{14}H_{10}BrClN\(_3\)O\(_3\)) (397.61): C, 42.29; H, 2.53; N, 14.09; Found: C, 42.18; H, 2.44; N, 14.00%.

2.1.15. 7-Bromo-6-chloro-3-methyl-1-(quinazolin-4-yl)-1H-pyrazol-5(4H)-one (18).

A mixture of (7) (0.274 g, 1 mmol), ethyl acetoacetate (0.13 g, 1 mmol), glacial acetic acid (10 ml), in ethanol (10 ml) was refluxed for 4 h. Then, the obtained mixture was allowed to cool to room temperature. The formed precipitate was filtered and recrystallized from ethanol to give (18) as pale yellow crystals (0.22 g, 66%), m.p.: 170-172 °C. \(^1\)H-NMR (DMSO-\(d_6\), 300 MHz) \(\delta = 1.95\) (s, 3H, CH\(_3\)), 3.00 (s, 2H, CH\(_2\)), 7.93 (s, 1H, Ar-H), 8.15 (s, 1H, Ar-H), 8.99 (s,
1H, Ar-H). M.S-EI: m/z = 337/339 (M)+. Anal. Calcd. for C_{12}H_{8}BrClN_{4}O (339.58): C, 42.44; H, 2.37; N, 16.50; Found: C, 42.30; H, 2.28; N, 16.41%.

2.1.16. 7-Bromo-6-chloro-4-(3,5-dimethyl-1H-pyrazol-1-yl)quinazoline (19).

A mixture of 7 (0.274 g, 1 mmol), acetyl acetone (0.10 g, 1 mmol), glacial acetic acid (10 mL), in ethanol (10 mL) was refluxed for 5 h. Then, the obtained mixture was allowed to cool to room temperature. The formed precipitate was filtered and recrystallized from ethanol to give (19) as pale yellow crystals (0.26 g, 77%), m.p.: 251-253 ºC. IR (KBr, ν, cm⁻¹): 1612 cm⁻¹ (C=N). ¹H-NMR (DMSO-d6, 300 MHz) δ = 1.91 (s, 3H, CH₃), 2.17 (s, 3H, CH₃), 4.98 (s, 1H, H-4 pyrazole), 7.90 (s, 1H, Ar-H), 8.26 (s, 1H, Ar-H), 9.24 (s, 1H, Ar-H). M.S-EI: m/z = 335/337 (M)+. Anal. Calcd. for C_{13}H_{10}BrClN_{4}O (337.60): C, 46.25; H, 2.99; N, 16.60; Found: C, 46.13; H, 2.81; N, 16.50%.

2.2. Cytotoxicity assay.

2.2.1. Measurement of potential cytotoxicity by SRB assay.

Some of the newly synthesized compounds have been evaluated for their Potential Cytotoxicity testing against breast cancer (MCF-7) using the method of Skehan and Storeng [34]. At first, cells were plated in a 96-multiwell plate (10⁴ cells/well) for 24 h before treatment with the screened compounds to allow cell attachment to the plate’s wall. The screened compounds with different concentrations (0, 1, 2.5, 5, and 10 μg/ml) were added to the cell monolayer triplicate wells and were prepared for each individual dose. Then, the monolayer cells with the screened compounds were incubated for 48 h at 37°C and 5 % CO₂,. The cells were fixed after 48 h, washed, and stained with Sulfo-Rhodamine-B stain. After that, the excess stain was removed through washing with acetic acid and recovered with Tris EDTA buffer. Finally, color Intensity was measured in an ELISA reader. The relation between drug concentration and the surviving fraction is plotted to have the survival curve of each tumor cell line after the specific compound. The IC₅₀ percent control of infected and uninfected response values was calculated for the various active compounds reported in Table 1. Doxorubicin (DOX) was used as a positive standard. Compounds having IC₅₀ < 5 μg/ml are considered potentially active and exposed to further in vivo studies.

2.3. Molecular docking study.

The docking studies were created using Molecular Operating Environment (MOE-Dock) software version 2014.0901. The co-crystallized structures of EGFRWT and EGFR T790M enzymes (PDB codes: 1M17 and 3UG2) [35-37] complexed with erlotinib and gefitinib, respectively, were downloaded from the RCSB Protein Data Bank. The partial charges were automatically detected, and all minimizations for the structures were applied with MOE until an RMSD gradient of 0.05 kcal·mol⁻¹Å⁻¹ with MMFF94x force field. Preparation of EGFRWT and EGFR T790M structures was done using Protonate 3D protocol in MOE with the default options. Validation of the docking processes was confirmed through re-docking of the original ligands, followed by docking of the targets 6b, 6e, 8, and 11 into the active sites after deleting the original ligands following the reported method [38,39].
3. Results and Discussion

3.1. Chemistry.

In the current investigation, the halo-substituted-4-quinazolinimine and the 2H-pyrimido[1,2-c]quinazolin-2-one compounds were synthesized starting from the key 4-azido compound. The 6,7-dihaloquinazoline-4-ol derivative 2 [40] was converted into the 4-azido-7-bromo-6-chloroquinazoline 3 in 98% yield via reaction with thionyl chloride followed by sodium azide in DMF. The 1H-NMR spectrum showed three singlets at $\delta = 7.85$, 8.30, and 8.88 ppm for Ar-H. Treating of 3 with triphenylphosphine gave 4 in 97% yield. The IR spectrum showed the characteristic band for C=N at 1609 and C=C Ar at 1568, 1426 cm$^{-1}$. A mixture of 4 and acetic acid was refluxed to give 7-bromo-6-chloroquinazolin-4-amine 5 in 83% yield. The IR spectrum showed the characteristic band for NH$_2$ at 3275, C=N at 1614, and C=C Ar at 1582, 1482 cm$^{-1}$. The 1H-NMR spectrum showed broad singlet at $\delta = 7.61$ for NH$_2$ and four singlets at $\delta = 7.87$, 8.07, 8.46, and 7.78 for Ar-H. Treating of 3 with orthoformate derivatives afforded 6a-e in 63-82% yields. The structures of 6a-e were confirmed by IR, 1H- and 13C-NMR, mass spectroscopy as well as elemental analyses (Scheme 1).

![Scheme 1. Synthesis of new Pyrimido[1,2-c]quinazolin-2-ones](https://biointerfaceresearch.com/)

The pyrido[1,2-c]quinazoline and the [1,2,4]triazolo[4,3-c]quinazoline systems were synthesized using the key compound 7-hydrazinyl derivative 7, which was obtained from compound 2. Thus, treatment of the latter azide with CS$_2$ in toluene at reflux temperature followed by refluxing the corresponding thiol with hydrazine hydrate gave 7-bromo-6-chloro-4-hydrazinylquinazoline 7 in 85% yield, which was treated with triethylorthoformate and formic acid, acetic acid, or benzoyl chloride to give the corresponding triazoloquinazoline derivatives 8-10 in 67-73% yields, respectively.

Refluxing of 7 with 2-(ethoxymethylene)malononitrile, ethyl 2-cyano-3-ethoxyacrylate, and/or diethyl 2-(ethoxymethylene)malonate in the presence of a catalytic amount from glacial acetic acid yielded 11-13 in 70-85% yields. The structures of 8-13 were confirmed by IR, 1H- and 13C-NMR, mass spectroscopy as well as elemental analyses (Scheme 2).

A mixture of 7 and ethyl 2-cyano-3-ethoxyacrylate, 2-(ethoxymethylene)malononitrile, diethyl 2-(ethoxymethylene)malonate, ethyl acetoacetate, or acetylacetone in the presence of a catalytic amount of glacial acetic acid was refluxed for 4-7 h to afford 14-19 in 66-83% yields (Scheme 3).

The 1H NMR spectra of the obtained products showed the additional pyrazole protons' signals, which have also been revealed in their 13C NMR spectra. In addition, their IR spectra showed the characteristic bands for the carbonitrile, the NH$_2$, and the carbonyl groups in their assigned structures (see Exp. part).

Scheme 3. Synthesis of new 1-(Quinazolin-4-yl)-1H-Pyrazoles

3.2. Cytotoxic activity.

The anticancer activity of the newly synthesized analogs was screened against human breast cancer cell line (MCF-7) using the assay used by Skehan and Storeng [34] to measure
the cellular membrane permeabilization (rupture) and severe irreversible cell damage. The *in-vitro* cytotoxicity evaluation was performed using doxorubicin as a reference. The obtained data were expressed as IC$_{50}$ values that represent the compound concentrations needed to create a 50% inhibition of cell growth after 24 h of incubation, as shown in Table 1. The data showed that doxorubicin had an IC$_{50}$ at 4–9 µM against all cells investigated with no differentiation between cancer and normal cells.

The results from Table 1 and Figure 2 explicated that some of the screened derivatives displayed an excellent to moderate inhibitory activity against the MCF-7 cancer cell line. The results showed that compounds 6b, 6e, 8, and 11 revealed high anticancer activity near to that observed for doxorubicin followed by the activity of compounds 6d, 14, and 15. Although being active reveals a degree of good activity, compounds 5, 7, 17, and 19 showed the lowest activity results compared to the applied reference drug (Table 1).

By correlation of the observed activity data with the characteristic structural features of the tested compounds, it has been revealed that incorporation of a condensed pyrimidine or pyridine ring, or attachment of a pyrazole ring at the quinazolyl-C4, to the dihalo-substituted quinazoline ring system results in enhancement of the cytotoxic activity. The latter observation was achieved by the comparison of the activity of the 4-substituted quinazoline compounds (compounds 2-5 and 7) with the prepared tricyclic derivatives. The results also showed the effect of substituents at C-3 (compounds 6a-e) on the activity and revealed that the substitution of the pyrimido[1,2-c]quinazolines system with methyl and phenyl groups results in increased activities. Interestingly, the obtained cytotoxic activity for the prepared also indicate the effect of the nature of the substituent at the triazole-C5 since the [1,2,4]triazolo[4,3-c]quinazoline, which showed that substitution with the methyl and phenyl parts lead to decreased activity compared to the structural isosteric analog (compound 8) which is free of substitution at this position.

On the other hand, the results of the tested pyrido[1,2-c]quinazoline derivatives showed that the compound possessing the amino and the nitrile groups revealed the highest cytotoxic activity compared to those incorporating the carbonyl and ester functionalities. Furthermore, the afforded results for the quinazolin-4-yl-2,3-dihydro-1H-pyrazole compounds showed that the two derivatives incorporating the carbonitrile substituent at pyrazole-C4 revealed relatively improved cytotoxic activity compared to the other derivative of the same basic ring system, which lacks for such substituent and possessing a methyl group. In addition, the lowest activity was observed by the pyrazolyl-quinazoline derivative incorporating dimethyl substituents in the attached pyrazole ring.

Table 1: The IC$_{50}$ (µg/mL) of some of the selected new compounds against Breast cancer cell line (MCF-7).

<table>
<thead>
<tr>
<th>Compd no.</th>
<th>IC$_{50}$ µg/ml</th>
<th>Compd no.</th>
<th>IC$_{50}$ µg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOX</td>
<td>2.97</td>
<td>DOX</td>
<td>2.97</td>
</tr>
<tr>
<td>3</td>
<td>4.50</td>
<td>9</td>
<td>4.00</td>
</tr>
<tr>
<td>4</td>
<td>4.17</td>
<td>10</td>
<td>3.88</td>
</tr>
<tr>
<td>5</td>
<td>5.00</td>
<td>11</td>
<td>3.45</td>
</tr>
<tr>
<td>6a</td>
<td>4.15</td>
<td>12</td>
<td>4.10</td>
</tr>
<tr>
<td>6b</td>
<td>3.50</td>
<td>13</td>
<td>4.70</td>
</tr>
<tr>
<td>6c</td>
<td>4.00</td>
<td>14</td>
<td>3.90</td>
</tr>
<tr>
<td>6d</td>
<td>4.90</td>
<td>15</td>
<td>3.90</td>
</tr>
<tr>
<td>6e</td>
<td>3.44</td>
<td>16</td>
<td>4.11</td>
</tr>
<tr>
<td>7</td>
<td>5.00</td>
<td>17</td>
<td>5.00</td>
</tr>
<tr>
<td>8</td>
<td>3.39</td>
<td>19</td>
<td>5.35</td>
</tr>
</tbody>
</table>
3.3. Molecular docking study.

Molecular docking is considered a vital means to predict the possible mechanisms of biologically active targets. Referring to the importance of quinazoline derivatives in the treatment of cancer through inhibition of EGFR [8-10], the promising cytotoxic derivatives 6b, 6e, 8, and 11, as representative examples of the synthesized compounds in this series, were docked into the active sites of EGFRWT and EGFRT790M enzymes.

The native ligands, erlotinib, and gefitinib were re-docked within the active sites of EGFRWT and EGFRT790M enzymes (PDB codes: 1M17 and 3UG2), respectively [36-38] to validate the docking processes and revealed energy scores -12.35 and -11.70 kcal/mol at root mean square deviation (RMDS) values of 0.91 and 1.22 Å, respectively. Regarding Figure 2, the N1 of quinazoline scaffold of erlotinib and gefitinib afforded H-bond acceptors with the backbones of Met769 and Met 793 within the binding sites EGFRWT and EGFRT790M enzymes (distance: 2.70 and 2.85 Å, respectively).

As illustrated in Figure 3 and like the reference drug, erlotinib within the active site of EGFRWT, The N1 of quinazoline scaffold of the screened derivatives 6b, 6e, 8, and 11 revealed H-bond acceptors with the backbone of Met769 (distance: 2.71, 2.54, 2.69 and 2.94 Å, respectively). Moreover, the hydroxyl oxygens in compounds 6b and 6e gave H-bond acceptors with the sidechains of Thr766 (distance: 2.84 and 2.73 Å, respectively). The nitrogen of the amino group in compound 11 formed H-bond acceptor with the sidechain of Thr830 (distance: 2.96 Å). The centroid of the phenyl ring in compound 6e exhibited arene-cation interaction with Lys721 (Figure 3).
Figure 3. A-D views representing 2D binding modes of the promising targets 6b, 6e, 8, and 11, respectively, into the active site of EGFRWT enzyme (PDB codes: 1M17).

By inspection of docking within the binding site of EGFRT790M in Figure 4, the backbone of the key amino acid Met793 formed H-bonds with the N1 of quinazoline moiety in compounds 6b, 8, and 11 (distance: 3.00, 2.79, and 3.05 Å, respectively) and with the hydroxyl protons of in compounds 6b and 6e (distance: 3.15 and 2.00 Å, respectively). Furthermore, the hydroxyl proton in compound 6b afforded an H-bond donor with the backbone of Pro794 (distance: 2.09 Å).

From the previous results, it was concluded that the screened targets 6b, 6e, 8, and 11 bearing quinazoline system embedded well and nicely within the binding pockets of EGFRWT and EGFRT790M enzymes with similar interactions given by the original ligands, erlotinib and gefitinib, and that was confirmed through superimposition between them in Figure 5. Collectively, these data highlighted hybrids 6b, 6e, 8, and 11 as good leads for further optimization as promising antitumor drugs through inhibition of EGFRWT and EGFRT790M kinases.

Figure 4. A-D views representing 2D binding modes of the promising targets 6b, 6e, 8, and 11, respectively, into the active site of EGFRT790M enzyme (PDB code: 3UG2).
Figure 5. 3D images of the superimposition between the docked native ligands erlotinib and gefitinib (red), 6b (yellow), 6e (green), 8 (blue), and 11 (violet) in the active sites of EGFRWT and EGFRT790M enzymes (PDB codes: 1M17 and 3UG2), respectively.

4. Conclusions

The afforded results revealed the effect of incorporation of varied heterocyclic systems with the substituted quinazoline system and the effect of substituents in the newly synthesized 2H-pyrimido[1,2-c]quinazolin-2-one, the pyrido[1,2-c]quinazoline, the [1,2,4]triazolo[4,3-c]quinazoline, and the pyrazolyl-quinazoline hybrids on the anticancer activity. In addition, all the compounds incorporating the latter ring systems showed high cytotoxic effects against the human breast cancer cell line (MCF-7), which accounts for the importance of incorporating the quinazoline system into other heterocyclic cores such as the pyridine, pyrimidine, and pyrazole rings. The promising molecular docking findings showed that the quinazoline targets 6b, 6e, 8, and 11 could be considered lead molecules to develop further novel EGFRWT and EGFRT790M inhibitors for cancer therapy.

Funding

This research received no external funding.

Acknowledgments

We are pleased to present our sincere gratitude to the Faculty of Science, Menoufia University, and National Research Centre for continuous support for completing the presented research.

https://biointerfaceresearch.com/
Conflicts of Interest

The authors declare no conflict of interest.

References

